thor-os/kernel/src/net/tcp_layer.cpp
2016-09-17 14:16:56 +02:00

540 lines
17 KiB
C++

//=======================================================================
// Copyright Baptiste Wicht 2013-2016.
// Distributed under the terms of the MIT License.
// (See accompanying file LICENSE or copy at
// http://www.opensource.org/licenses/MIT)
//=======================================================================
#include <bit_field.hpp>
#include <atomic.hpp>
#include <list.hpp>
#include "conc/condition_variable.hpp"
#include "net/tcp_layer.hpp"
#include "net/dns_layer.hpp"
#include "net/checksum.hpp"
#include "kernel_utils.hpp"
#include "circular_buffer.hpp"
#include "timer.hpp"
namespace {
static constexpr size_t timeout_ms = 1000;
static constexpr size_t max_tries = 5;
using flag_data_offset = std::bit_field<uint16_t, uint8_t, 12, 4>;
using flag_reserved = std::bit_field<uint16_t, uint8_t, 9, 3>;
using flag_ns = std::bit_field<uint16_t, uint8_t, 8, 1>;
using flag_cwr = std::bit_field<uint16_t, uint8_t, 7, 1>;
using flag_ece = std::bit_field<uint16_t, uint8_t, 6, 1>;
using flag_urg = std::bit_field<uint16_t, uint8_t, 5, 1>;
using flag_ack = std::bit_field<uint16_t, uint8_t, 4, 1>;
using flag_psh = std::bit_field<uint16_t, uint8_t, 3, 1>;
using flag_rst = std::bit_field<uint16_t, uint8_t, 2, 1>;
using flag_syn = std::bit_field<uint16_t, uint8_t, 1, 1>;
using flag_fin = std::bit_field<uint16_t, uint8_t, 0, 1>;
struct tcp_connection {
size_t source_port;
size_t target_port;
std::atomic<bool> listening;
condition_variable queue;
circular_buffer<network::ethernet::packet, 8> packets;
tcp_connection(size_t source_port, size_t target_port)
: source_port(source_port), target_port(target_port), listening(false) {
//Nothing else to init
}
};
// Note: We need a list to not invalidate the values during insertions
std::list<tcp_connection> connections;
tcp_connection* get_connection(size_t source_port, size_t target_port) {
auto end = connections.end();
auto it = connections.begin();
while (it != end) {
auto& connection = *it;
if (connection.source_port == source_port && connection.target_port == target_port) {
return &connection;
}
++it;
}
return nullptr;
}
void compute_checksum(network::ethernet::packet& packet) {
auto* ip_header = reinterpret_cast<network::ip::header*>(packet.payload + packet.tag(1));
auto* tcp_header = reinterpret_cast<network::tcp::header*>(packet.payload + packet.index);
auto tcp_len = switch_endian_16(ip_header->total_len) - sizeof(network::ip::header);
tcp_header->checksum = 0;
// Accumulate the Payload
auto sum = network::checksum_add_bytes(packet.payload + packet.index, tcp_len);
// Accumulate the IP addresses
sum += network::checksum_add_bytes(&ip_header->source_ip, 8);
// Accumulate the IP Protocol
sum += ip_header->protocol;
// Accumulate the TCP length
sum += tcp_len;
// Complete the 1-complement sum
tcp_header->checksum = switch_endian_16(network::checksum_finalize_nz(sum));
}
uint16_t get_default_flags() {
uint16_t flags = 0; // By default
(flag_data_offset(&flags)) = 5; // No options
return flags;
}
void prepare_packet(network::ethernet::packet& packet, size_t source, size_t target) {
packet.tag(2, packet.index);
// Set the TCP header
auto* tcp_header = reinterpret_cast<network::tcp::header*>(packet.payload + packet.index);
tcp_header->source_port = switch_endian_16(source);
tcp_header->target_port = switch_endian_16(target);
tcp_header->window_size = 1024;
packet.index += sizeof(network::tcp::header);
}
size_t tcp_payload_len(const network::ethernet::packet& packet){
auto* ip_header = reinterpret_cast<const network::ip::header*>(packet.payload + packet.tag(1));
auto* tcp_header = reinterpret_cast<const network::tcp::header*>(packet.payload + packet.tag(2));
auto tcp_flags = switch_endian_16(tcp_header->flags);
auto ip_header_len = (ip_header->version_ihl & 0xF) * 4;
auto tcp_len = switch_endian_16(ip_header->total_len) - ip_header_len;
auto tcp_data_offset = *flag_data_offset(&tcp_flags) * 4;
auto payload_len = tcp_len - tcp_data_offset;
return payload_len;
}
} //end of anonymous namespace
void network::tcp::decode(network::interface_descriptor& interface, network::ethernet::packet& packet) {
packet.tag(2, packet.index);
auto* ip_header = reinterpret_cast<network::ip::header*>(packet.payload + packet.tag(1));
auto* tcp_header = reinterpret_cast<network::tcp::header*>(packet.payload + packet.index);
logging::logf(logging::log_level::TRACE, "tcp: Start TCP packet handling\n");
auto source_port = switch_endian_16(tcp_header->source_port);
auto target_port = switch_endian_16(tcp_header->target_port);
auto seq = switch_endian_32(tcp_header->sequence_number);
auto ack = switch_endian_32(tcp_header->ack_number);
logging::logf(logging::log_level::TRACE, "tcp: Source Port %u \n", size_t(source_port));
logging::logf(logging::log_level::TRACE, "tcp: Target Port %u \n", size_t(target_port));
logging::logf(logging::log_level::TRACE, "tcp: Seq Number %u \n", size_t(seq));
logging::logf(logging::log_level::TRACE, "tcp: Ack Number %u \n", size_t(ack));
auto flags = switch_endian_16(tcp_header->flags);
// Propagate to kernel connections
auto end = connections.end();
auto it = connections.begin();
while (it != end) {
auto& connection = *it;
if (connection.listening.load() && connection.source_port == source_port && connection.target_port == target_port) {
auto copy = packet;
copy.payload = new char[copy.payload_size];
std::copy_n(packet.payload, packet.payload_size, copy.payload);
connection.packets.push(copy);
connection.queue.wake_up();
}
++it;
}
auto seq_number = ack;
auto ack_number = seq + tcp_payload_len(packet);
//TODO socket.seq_number = ack;
//TODO socket.ack_number = seq + tcp_payload_len(packet);
packet.index += sizeof(header);
network::propagate_packet(packet, network::socket_protocol::TCP);
// A push needs to be acknowledged
if (*flag_psh(&flags)) {
auto p = tcp::prepare_packet(interface, ip_header->source_ip, target_port, source_port, 0);
if (!p) {
logging::logf(logging::log_level::ERROR, "tcp: Impossible to prepare TCP packet for ACK\n");
return;
}
auto* ack_tcp_header = reinterpret_cast<header*>(p->payload + p->tag(2));
ack_tcp_header->sequence_number = switch_endian_32(seq_number);
ack_tcp_header->ack_number = switch_endian_32(ack_number);
auto flags = get_default_flags();
(flag_ack(&flags)) = 1;
ack_tcp_header->flags = switch_endian_16(flags);
tcp::finalize_packet(interface, *p);
}
}
std::expected<network::ethernet::packet> network::tcp::prepare_packet(network::interface_descriptor& interface, network::ip::address target_ip, size_t source, size_t target, size_t payload_size) {
// Ask the IP layer to craft a packet
auto packet = network::ip::prepare_packet(interface, sizeof(header) + payload_size, target_ip, 0x06);
if (packet) {
::prepare_packet(*packet, source, target);
}
return packet;
}
std::expected<network::ethernet::packet> network::tcp::prepare_packet(char* buffer, network::interface_descriptor& interface, network::socket& socket, size_t payload_size) {
auto target_ip = socket.server_address;
// Ask the IP layer to craft a packet
auto packet = network::ip::prepare_packet(buffer, interface, sizeof(header) + payload_size, target_ip, 0x06);
if (packet) {
auto source = socket.local_port;
auto target = socket.server_port;
::prepare_packet(*packet, source, target);
auto* tcp_header = reinterpret_cast<header*>(packet->payload + packet->tag(2));
auto flags = get_default_flags();
(flag_psh(&flags)) = 1;
(flag_ack(&flags)) = 1;
tcp_header->flags = switch_endian_16(flags);
tcp_header->sequence_number = switch_endian_32(socket.seq_number);
tcp_header->ack_number = switch_endian_32(socket.ack_number);
}
return packet;
}
void network::tcp::finalize_packet(network::interface_descriptor& interface, network::ethernet::packet& p) {
p.index -= sizeof(header);
// Compute the checksum
compute_checksum(p);
// Give the packet to the IP layer for finalization
network::ip::finalize_packet(interface, p);
}
void network::tcp::finalize_packet(network::interface_descriptor& interface, network::socket& socket, network::ethernet::packet& p) {
p.index -= sizeof(header);
// Compute the checksum
compute_checksum(p);
if (!p.user) {
logging::logf(logging::log_level::ERROR, "tcp: Function uniquely implemented for user packets!\n");
return; //TODO Fail
}
auto source = socket.local_port;
auto target = socket.server_port;
auto connection_ptr = get_connection(target, source);
if (!connection_ptr) {
logging::logf(logging::log_level::ERROR, "tcp: Unable to find connection!\n");
return; //TODO Fail
}
auto& connection = *connection_ptr;
connection.listening = true;
uint32_t seq = 0;
uint32_t ack = 0;
bool received = false;
for(size_t t = 0; t < max_tries; ++t){
// Give the packet to the IP layer for finalization
network::ip::finalize_packet(interface, p);
auto before = timer::milliseconds();
auto after = before;
while(true){
// Make sure we don't wait for more than the timeout
if (after > before + timeout_ms) {
break;
}
auto remaining = timeout_ms - (after - before);
if(connection.queue.sleep(remaining)){
auto received_packet = connection.packets.pop();
auto* tcp_header = reinterpret_cast<header*>(received_packet.payload + received_packet.index);
auto flags = switch_endian_16(tcp_header->flags);
if (*flag_ack(&flags)) {
logging::logf(logging::log_level::TRACE, "tcp: Received ACK\n");
seq = switch_endian_32(tcp_header->sequence_number);
ack = switch_endian_32(tcp_header->ack_number);
delete[] received_packet.payload;
received = true;
break;
} else {
logging::logf(logging::log_level::TRACE, "tcp: Received unrelated answer\n");
}
delete[] received_packet.payload;
}
}
if(received){
break;
}
after = timer::milliseconds();
}
// Stop listening
connection.listening = false;
if(received){
// Set the future sequence and acknowledgement numbers
socket.seq_number = ack;
socket.ack_number = seq;
} else {
//TODO We need to be able to make finalize fail!
}
}
std::expected<void> network::tcp::connect(network::socket& sock, network::interface_descriptor& interface) {
auto target_ip = sock.server_address;
auto source = sock.local_port;
auto target = sock.server_port;
sock.seq_number = 0;
sock.ack_number = 0;
auto packet = tcp::prepare_packet(interface, target_ip, source, target, 0);
if (!packet) {
return std::make_unexpected<void>(packet.error());
}
auto* tcp_header = reinterpret_cast<header*>(packet->payload + packet->tag(2));
tcp_header->sequence_number = 0;
tcp_header->ack_number = 0;
auto flags = get_default_flags();
(flag_syn(&flags)) = 1;
tcp_header->flags = switch_endian_16(flags);
// Create the connection
auto& connection = connections.emplace_back(target, source);
connection.listening = true;
logging::logf(logging::log_level::TRACE, "tcp: Send SYN\n");
tcp::finalize_packet(interface, *packet);
uint32_t seq;
uint32_t ack;
while (true) {
// TODO Need a timeout
connection.queue.sleep();
auto received_packet = connection.packets.pop();
auto* tcp_header = reinterpret_cast<header*>(received_packet.payload + received_packet.index);
auto flags = switch_endian_16(tcp_header->flags);
logging::logf(logging::log_level::TRACE, "tcp: Received answer\n");
if (*flag_syn(&flags) && *flag_ack(&flags)) {
logging::logf(logging::log_level::TRACE, "tcp: Received SYN/ACK\n");
seq = switch_endian_32(tcp_header->sequence_number);
ack = switch_endian_32(tcp_header->ack_number);
delete[] received_packet.payload;
break;
}
delete[] received_packet.payload;
}
connection.listening = false;
sock.seq_number = ack;
sock.ack_number = seq + 1;
// At this point we have received the SYN/ACK, only remains to ACK
{
auto packet = tcp::prepare_packet(interface, target_ip, source, target, 0);
if (!packet) {
return std::make_unexpected<void>(packet.error());
}
auto* tcp_header = reinterpret_cast<header*>(packet->payload + packet->tag(2));
tcp_header->sequence_number = switch_endian_32(sock.seq_number);
tcp_header->ack_number = switch_endian_32(sock.ack_number);
auto flags = get_default_flags();
(flag_ack(&flags)) = 1;
tcp_header->flags = switch_endian_16(flags);
logging::logf(logging::log_level::TRACE, "tcp: Send ACK\n");
tcp::finalize_packet(interface, *packet);
}
return {};
}
std::expected<void> network::tcp::disconnect(network::socket& sock, network::interface_descriptor& interface) {
auto target_ip = sock.server_address;
auto source = sock.local_port;
auto target = sock.server_port;
auto packet = tcp::prepare_packet(interface, target_ip, source, target, 0);
if (!packet) {
return std::make_unexpected<void>(packet.error());
}
auto* tcp_header = reinterpret_cast<header*>(packet->payload + packet->tag(2));
tcp_header->sequence_number = switch_endian_32(sock.seq_number);
tcp_header->ack_number = switch_endian_32(sock.ack_number);
auto flags = get_default_flags();
(flag_fin(&flags)) = 1;
(flag_ack(&flags)) = 1;
tcp_header->flags = switch_endian_16(flags);
auto& connection = connections.emplace_back(target, source);
connection.listening = true;
logging::logf(logging::log_level::TRACE, "tcp: Send FIN/ACK\n");
tcp::finalize_packet(interface, *packet);
uint32_t seq;
uint32_t ack;
auto fin_rec = false;
auto fin_ack_rec = false;
while (true) {
// TODO Need a timeout
connection.queue.sleep();
auto received_packet = connection.packets.pop();
auto* tcp_header = reinterpret_cast<header*>(received_packet.payload + received_packet.index);
auto flags = switch_endian_16(tcp_header->flags);
logging::logf(logging::log_level::TRACE, "tcp: Received answer\n");
if (*flag_fin(&flags) && *flag_ack(&flags)) {
logging::logf(logging::log_level::TRACE, "tcp: Received FIN/ACK\n");
seq = switch_endian_32(tcp_header->sequence_number);
ack = switch_endian_32(tcp_header->ack_number);
fin_ack_rec = true;
} else if (*flag_ack(&flags)) {
logging::logf(logging::log_level::TRACE, "tcp: Received ACK\n");
seq = switch_endian_32(tcp_header->sequence_number);
ack = switch_endian_32(tcp_header->ack_number);
fin_rec = true;
}
delete[] received_packet.payload;
if (fin_rec && fin_ack_rec) {
break;
}
}
connection.listening = false;
sock.seq_number = ack;
sock.ack_number = seq + 1;
// At this point we have received the FIN/ACK, only remains to ACK
{
auto packet = tcp::prepare_packet(interface, target_ip, source, target, 0);
if (!packet) {
return std::make_unexpected<void>(packet.error());
}
auto* tcp_header = reinterpret_cast<header*>(packet->payload + packet->tag(2));
tcp_header->sequence_number = switch_endian_32(sock.seq_number);
tcp_header->ack_number = switch_endian_32(sock.ack_number);
auto flags = get_default_flags();
(flag_ack(&flags)) = 1;
tcp_header->flags = switch_endian_16(flags);
logging::logf(logging::log_level::TRACE, "tcp: Send ACK\n");
tcp::finalize_packet(interface, *packet);
}
auto end = connections.end();
auto it = connections.begin();
while (it != end) {
if (&(*it) == &connection) {
connections.erase(it);
break;
}
++it;
}
return {};
}