math: cleanup gamma.v: remove if true { and gotos; move constants closer to the places that do use them

This commit is contained in:
Delyan Angelov 2025-02-06 09:22:45 +02:00
parent 4c8c892b96
commit d1ec41cd6a
No known key found for this signature in database
GPG Key ID: 66886C0F12D595ED

View File

@ -11,14 +11,12 @@ fn stirling(x f64) (f64, f64) {
if x > 200 { if x > 200 {
return inf(1), 1.0 return inf(1), 1.0
} }
sqrt_two_pi := 2.506628274631000502417
max_stirling := 143.01608
mut w := 1.0 / x mut w := 1.0 / x
w = 1.0 + w * ((((gamma_s[0] * w + gamma_s[1]) * w + gamma_s[2]) * w + gamma_s[3]) * w + w = 1.0 + w * ((((gamma_s[0] * w + gamma_s[1]) * w + gamma_s[2]) * w + gamma_s[3]) * w +
gamma_s[4]) gamma_s[4])
mut y1 := exp(x) mut y1 := exp(x)
mut y2 := 1.0 mut y2 := 1.0
if x > max_stirling { // avoid Pow() overflow if x > 143.01608 { // avoid Pow() overflow, the constant is max_stirling
v := pow(x, 0.5 * x - 0.25) v := pow(x, 0.5 * x - 0.25)
y1_ := y1 y1_ := y1
y1 = v y1 = v
@ -26,7 +24,7 @@ fn stirling(x f64) (f64, f64) {
} else { } else {
y1 = pow(x, x - 0.5) / y1 y1 = pow(x, x - 0.5) / y1
} }
return y1, f64(sqrt_two_pi) * w * y2 return y1, f64(2.506628274631000502417) * w * y2 // the constant is sqrt_two_pi
} }
// gamma returns the gamma function of x. // gamma returns the gamma function of x.
@ -40,7 +38,6 @@ fn stirling(x f64) (f64, f64) {
// gamma(nan) = nan // gamma(nan) = nan
pub fn gamma(a f64) f64 { pub fn gamma(a f64) f64 {
mut x := a mut x := a
euler := 0.57721566490153286060651209008240243104215933593992 // A001620
if is_neg_int(x) || is_inf(x, -1) || is_nan(x) { if is_neg_int(x) || is_inf(x, -1) || is_nan(x) {
return nan() return nan()
} }
@ -92,18 +89,14 @@ pub fn gamma(a f64) f64 {
} }
for x < 0 { for x < 0 {
if x > -1e-09 { if x > -1e-09 {
unsafe { return gamma_too_small(x, z)
goto small
}
} }
z = z / x z = z / x
x = x + 1 x = x + 1
} }
for x < 2 { for x < 2 {
if x < 1e-09 { if x < 1e-09 {
unsafe { return gamma_too_small(x, z)
goto small
}
} }
z = z / x z = z / x
x = x + 1 x = x + 1
@ -116,13 +109,14 @@ pub fn gamma(a f64) f64 {
gamma_p[4]) * x + gamma_p[5]) * x + gamma_p[6] gamma_p[4]) * x + gamma_p[5]) * x + gamma_p[6]
q = ((((((x * gamma_q[0] + gamma_q[1]) * x + gamma_q[2]) * x + gamma_q[3]) * x + q = ((((((x * gamma_q[0] + gamma_q[1]) * x + gamma_q[2]) * x + gamma_q[3]) * x +
gamma_q[4]) * x + gamma_q[5]) * x + gamma_q[6]) * x + gamma_q[7] gamma_q[4]) * x + gamma_q[5]) * x + gamma_q[6]) * x + gamma_q[7]
if true { return z * p / q
return z * p / q }
}
small: fn gamma_too_small(x f64, z f64) f64 {
if x == 0 { if x == 0 {
return inf(1) return inf(1)
} }
euler := 0.57721566490153286060651209008240243104215933593992 // A001620
return z / ((1.0 + euler * x) * x) return z / ((1.0 + euler * x) * x)
} }
@ -142,14 +136,6 @@ pub fn log_gamma(x f64) f64 {
// log_gamma_sign returns the natural logarithm and sign (-1 or +1) of Gamma(x) // log_gamma_sign returns the natural logarithm and sign (-1 or +1) of Gamma(x)
pub fn log_gamma_sign(a f64) (f64, int) { pub fn log_gamma_sign(a f64) (f64, int) {
mut x := a mut x := a
ymin := 1.461632144968362245
tiny := exp2(-70)
two52 := exp2(52) // 0x4330000000000000 ~4.5036e+15
two58 := exp2(58) // 0x4390000000000000 ~2.8823e+17
tc := 1.46163214496836224576e+00 // 0x3FF762D86356BE3F
tf := -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42
// tt := -(tail of tf)
tt := -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F
mut sign := 1 mut sign := 1
if is_nan(x) { if is_nan(x) {
return x, sign return x, sign
@ -165,7 +151,7 @@ pub fn log_gamma_sign(a f64) (f64, int) {
x = -x x = -x
neg = true neg = true
} }
if x < tiny { // if |x| < 2**-70, return -log(|x|) if x < exp2(-70) { // if |x| < 2**-70, return -log(|x|)
if neg { if neg {
sign = -1 sign = -1
} }
@ -173,7 +159,7 @@ pub fn log_gamma_sign(a f64) (f64, int) {
} }
mut nadj := 0.0 mut nadj := 0.0
if neg { if neg {
if x >= two52 { if x >= exp2(52) { // the constant is 0x4330000000000000 ~4.5036e+15
// x| >= 2**52, must be -integer // x| >= 2**52, must be -integer
return inf(1), sign return inf(1), sign
} }
@ -190,6 +176,8 @@ pub fn log_gamma_sign(a f64) (f64, int) {
if x == 1 || x == 2 { // purge off 1 and 2 if x == 1 || x == 2 { // purge off 1 and 2
return 0.0, sign return 0.0, sign
} else if x < 2 { // use lgamma(x) = lgamma(x+1) - log(x) } else if x < 2 { // use lgamma(x) = lgamma(x+1) - log(x)
ymin := 1.461632144968362245
tc := 1.46163214496836224576e+00 // 0x3FF762D86356BE3F
mut y := 0.0 mut y := 0.0
mut i := 0 mut i := 0
if x <= 0.9 { if x <= 0.9 {
@ -234,6 +222,9 @@ pub fn log_gamma_sign(a f64) (f64, int) {
w * lgamma_t[13]))) w * lgamma_t[13])))
gamma_p3 := lgamma_t[2] + w * (lgamma_t[5] + w * (lgamma_t[8] + w * (lgamma_t[11] + gamma_p3 := lgamma_t[2] + w * (lgamma_t[5] + w * (lgamma_t[8] + w * (lgamma_t[11] +
w * lgamma_t[14]))) w * lgamma_t[14])))
tf := -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42
// tt := -(tail of tf)
tt := -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F
p := z * gamma_p1 - (tt - w * (gamma_p2 + y * gamma_p3)) p := z * gamma_p1 - (tt - w * (gamma_p2 + y * gamma_p3))
lgamma += (tf + p) lgamma += (tf + p)
} else if i == 2 { } else if i == 2 {
@ -278,7 +269,7 @@ pub fn log_gamma_sign(a f64) (f64, int) {
z *= (y + 2) z *= (y + 2)
lgamma += log(z) lgamma += log(z)
} }
} else if x < two58 { // 8 <= x < 2**58 } else if x < exp2(58) { // 8 <= x < 2**58, which is 0x4390000000000000 ~2.8823e+17
t := log(x) t := log(x)
z := 1.0 / x z := 1.0 / x
y := z * z y := z * z
@ -297,8 +288,6 @@ pub fn log_gamma_sign(a f64) (f64, int) {
// sin_pi(x) is a helper function for negative x // sin_pi(x) is a helper function for negative x
fn sin_pi(x_ f64) f64 { fn sin_pi(x_ f64) f64 {
mut x := x_ mut x := x_
two52 := exp2(52) // 0x4330000000000000 ~4.5036e+15
two53 := exp2(53) // 0x4340000000000000 ~9.0072e+15
if x < 0.25 { if x < 0.25 {
return -sin(pi * x) return -sin(pi * x)
} }
@ -309,10 +298,11 @@ fn sin_pi(x_ f64) f64 {
x = mod(x, 2) x = mod(x, 2)
n = int(x * 4) n = int(x * 4)
} else { } else {
if x >= two53 { // x must be even if x >= exp2(53) { // x must be even; the constant is 0x4340000000000000 ~9.0072e+15
x = 0 x = 0
n = 0 n = 0
} else { } else {
two52 := exp2(52) // 0x4330000000000000 ~4.5036e+15
if x < two52 { if x < two52 {
z = x + two52 // exact z = x + two52 // exact
} }