fn main() { mut grid := [ [0, 3, 0, 0, 7, 0, 0, 0, 0], [0, 0, 0, 1, 3, 5, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 5, 0], [1, 0, 0, 0, 6, 0, 0, 0, 3], [4, 0, 0, 8, 0, 3, 0, 0, 1], [7, 0, 0, 0, 2, 0, 0, 0, 6], [0, 0, 0, 0, 0, 0, 2, 1, 0], [0, 0, 0, 4, 1, 2, 0, 0, 5], [0, 0, 0, 0, 0, 0, 0, 7, 4], ] print_grid('Sudoku Puzzle:', grid) println('Solving...') if solve_sudoku(mut grid) { print_grid('Solution:', grid) } else { println('No solution exists.') exit(1) } } // is_valid checks if placing `num` at grid[row][col] is valid fn is_valid(grid [][]int, row int, col int, num int) bool { // check the row, if the number has been placed already: for x := 0; x < 9; x++ { if grid[row][x] == num { return false } } // check column for x := 0; x < 9; x++ { if grid[x][col] == num { return false } } // check 3x3 subgrid start_row := row - row % 3 start_col := col - col % 3 for i := 0; i < 3; i++ { for j := 0; j < 3; j++ { if grid[i + start_row][j + start_col] == num { return false } } } return true } // find_empty finds an empty cell (0) in the grid: fn find_empty(grid [][]int) ?(int, int) { for i := 0; i < 9; i++ { for j := 0; j < 9; j++ { if grid[i][j] == 0 { return i, j } } } return none } // solve_sudoku solves the Sudoku puzzle using backtracking fn solve_sudoku(mut grid [][]int) bool { // If there is no empty cell, the puzzle is solved: row, col := find_empty(grid) or { return true } // Try placing all the digits in turn in the empty cell: for num := 1; num <= 9; num++ { if is_valid(grid, row, col, num) { grid[row][col] = num // Recursively try to solve the rest if solve_sudoku(mut grid) { return true } // We could not find a solution using this number, // so backtrack and try another number instead: grid[row][col] = 0 } } return false } // print_grid prints a labeled Sudoku grid fn print_grid(label string, grid [][]int) { println(label) for i := 0; i < 9; i++ { if i % 3 == 0 && i != 0 { println('- - - - - - - - - - - -') } for j := 0; j < 9; j++ { if j % 3 == 0 && j != 0 { print(' | ') } print('${grid[i][j]} ') } println('') } }