@[has_globals] module builtin pub type FnExitCb = fn () fn C.atexit(f FnExitCb) int fn C.strerror(int) &char // These functions (_vinit, and _vcleanup), are generated by V, and if you have a `module no_main` program, // you should ensure to call them when appropriate. fn C._vinit(argc int, argv &&char) fn C._vcleanup() fn v_segmentation_fault_handler(signal_number i32) { $if freestanding { eprintln('signal 11: segmentation fault') } $else { C.fprintf(C.stderr, c'signal %d: segmentation fault\n', signal_number) } $if use_libbacktrace ? { eprint_libbacktrace(1) } $else { print_backtrace() } exit(128 + signal_number) } // exit terminates execution immediately and returns exit `code` to the shell. @[noreturn] pub fn exit(code int) { C.exit(code) } // at_exit registers a fn callback, that will be called at normal process termination. // It returns an error, if the registration was not successful. // The registered callback functions, will be called either via exit/1, // or via return from the main program, in the reverse order of their registration. // The same fn may be registered multiple times. // Each callback fn will called once for each registration. pub fn at_exit(cb FnExitCb) ! { $if freestanding { return error('at_exit not implemented with -freestanding') } $else { res := C.atexit(cb) if res != 0 { return error_with_code('at_exit failed', res) } } } // panic_debug private function that V uses for panics, -cg/-g is passed // recent versions of tcc print nicer backtraces automatically // Note: the duplication here is because tcc_backtrace should be called directly // inside the panic functions. @[noreturn] fn panic_debug(line_no int, file string, mod string, fn_name string, s string) { // Note: the order here is important for a stabler test output // module is less likely to change than function, etc... // During edits, the line number will change most frequently, // so it is last $if freestanding { bare_panic(s) } $else { // vfmt off // Note: be carefull to not allocate here, avoid string interpolation eprintln('================ V panic ================') eprint(' module: '); eprintln(mod) eprint(' function: '); eprint(fn_name); eprintln('()') eprint(' message: '); eprintln(s) eprint(' file: '); eprint(file); eprint(':'); C.fprintf(C.stderr, c'%d\n', line_no) eprint(' v hash: '); eprintln(vcurrent_hash()) eprintln('=========================================') // vfmt on flush_stdout() $if native { C.exit(1) // TODO: native backtraces } $else $if exit_after_panic_message ? { C.exit(1) } $else $if no_backtrace ? { C.exit(1) } $else { $if tinyc { $if panics_break_into_debugger ? { break_if_debugger_attached() } $else { C.tcc_backtrace(c'Backtrace') } C.exit(1) } $if use_libbacktrace ? { eprint_libbacktrace(1) } $else { print_backtrace_skipping_top_frames(1) } $if panics_break_into_debugger ? { break_if_debugger_attached() } C.exit(1) } } C.exit(1) } // panic_option_not_set is called by V, when you use option error propagation in your main function. // It ends the program with a panic. @[noreturn] pub fn panic_option_not_set(s string) { panic('option not set (' + s + ')') } // panic_result_not_set is called by V, when you use result error propagation in your main function // It ends the program with a panic. @[noreturn] pub fn panic_result_not_set(s string) { panic('result not set (' + s + ')') } pub fn vcurrent_hash() string { return @VCURRENTHASH } // panic prints a nice error message, then exits the process with exit code of 1. // It also shows a backtrace on most platforms. @[noreturn] pub fn panic(s string) { // Note: be careful to not use string interpolation here: $if freestanding { bare_panic(s) } $else { eprint('V panic: ') eprintln(s) eprint('v hash: ') eprintln(vcurrent_hash()) flush_stdout() $if native { C.exit(1) // TODO: native backtraces } $else $if exit_after_panic_message ? { C.exit(1) } $else $if no_backtrace ? { C.exit(1) } $else { $if tinyc { $if panics_break_into_debugger ? { break_if_debugger_attached() } $else { C.tcc_backtrace(c'Backtrace') } C.exit(1) } $if use_libbacktrace ? { eprint_libbacktrace(1) } $else { print_backtrace_skipping_top_frames(1) } $if panics_break_into_debugger ? { break_if_debugger_attached() } C.exit(1) } } C.exit(1) } // return a C-API error message matching to `errnum` pub fn c_error_number_str(errnum int) string { mut err_msg := '' $if freestanding { err_msg = 'error ' + errnum.str() } $else { $if !vinix { c_msg := C.strerror(errnum) err_msg = string{ str: &u8(c_msg) len: unsafe { C.strlen(c_msg) } is_lit: 1 } } } return err_msg } // panic_n prints an error message, followed by the given number, then exits the process with exit code of 1. @[noreturn] pub fn panic_n(s string, number1 i64) { panic(s + number1.str()) } // panic_n2 prints an error message, followed by the given numbers, then exits the process with exit code of 1. @[noreturn] pub fn panic_n2(s string, number1 i64, number2 i64) { panic(s + number1.str() + ', ' + number2.str()) } // panic_n3 prints an error message, followed by the given numbers, then exits the process with exit code of 1. @[noreturn] fn panic_n3(s string, number1 i64, number2 i64, number3 i64) { panic(s + number1.str() + ', ' + number2.str() + ', ' + number2.str()) } // panic with a C-API error message matching `errnum` @[noreturn] pub fn panic_error_number(basestr string, errnum int) { panic(basestr + c_error_number_str(errnum)) } // eprintln prints a message with a line end, to stderr. Both stderr and stdout are flushed. pub fn eprintln(s string) { if s.str == 0 { eprintln('eprintln(NIL)') return } $if builtin_print_use_fprintf ? { C.fprintf(C.stderr, c'%.*s\n', s.len, s.str) return } $if freestanding { // flushing is only a thing with C.FILE from stdio.h, not on the syscall level bare_eprint(s.str, u64(s.len)) bare_eprint(c'\n', 1) } $else $if ios { C.WrappedNSLog(s.str) } $else { flush_stdout() flush_stderr() // eprintln is used in panics, so it should not fail at all $if android && !termux { C.android_print(C.stderr, c'%.*s\n', s.len, s.str) } _writeln_to_fd(2, s) flush_stderr() } } // eprint prints a message to stderr. Both stderr and stdout are flushed. pub fn eprint(s string) { if s.str == 0 { eprint('eprint(NIL)') return } $if builtin_print_use_fprintf ? { C.fprintf(C.stderr, c'%.*s', s.len, s.str) return } $if freestanding { // flushing is only a thing with C.FILE from stdio.h, not on the syscall level bare_eprint(s.str, u64(s.len)) } $else $if ios { // TODO: Implement a buffer as NSLog doesn't have a "print" C.WrappedNSLog(s.str) } $else { flush_stdout() flush_stderr() $if android && !termux { C.android_print(C.stderr, c'%.*s', s.len, s.str) } _write_buf_to_fd(2, s.str, s.len) flush_stderr() } } pub fn flush_stdout() { $if freestanding { not_implemented := 'flush_stdout is not implemented\n' bare_eprint(not_implemented.str, u64(not_implemented.len)) } $else { C.fflush(C.stdout) } } pub fn flush_stderr() { $if freestanding { not_implemented := 'flush_stderr is not implemented\n' bare_eprint(not_implemented.str, u64(not_implemented.len)) } $else { C.fflush(C.stderr) } } // unbuffer_stdout will turn off the default buffering done for stdout. // It will affect all consequent print and println calls, effectively making them behave like // eprint and eprintln do. It is useful for programs, that want to produce progress bars, without // cluttering your code with a flush_stdout() call after every print() call. It is also useful for // programs (sensors), that produce small chunks of output, that you want to be able to process // immediately. // Note 1: if used, *it should be called at the start of your program*, before using // print or println(). // Note 2: most libc implementations, have logic that use line buffering for stdout, when the output // stream is connected to an interactive device, like a terminal, and otherwise fully buffer it, // which is good for the output performance for programs that can produce a lot of output (like // filters, or cat etc), but bad for latency. Normally, it is usually what you want, so it is the // default for V programs too. // See https://www.gnu.org/software/libc/manual/html_node/Buffering-Concepts.html . // See https://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_05 . pub fn unbuffer_stdout() { $if freestanding { not_implemented := 'unbuffer_stdout is not implemented\n' bare_eprint(not_implemented.str, u64(not_implemented.len)) } $else { unsafe { C.setbuf(C.stdout, 0) } } } // print prints a message to stdout. Note that unlike `eprint`, stdout is not automatically flushed. @[manualfree] pub fn print(s string) { $if builtin_print_use_fprintf ? { C.fprintf(C.stdout, c'%.*s', s.len, s.str) return } $if android && !termux { C.android_print(C.stdout, c'%.*s\n', s.len, s.str) } $else $if ios { // TODO: Implement a buffer as NSLog doesn't have a "print" C.WrappedNSLog(s.str) } $else $if freestanding { bare_print(s.str, u64(s.len)) } $else { _write_buf_to_fd(1, s.str, s.len) } } // println prints a message with a line end, to stdout. Note that unlike `eprintln`, stdout is not automatically flushed. @[manualfree] pub fn println(s string) { if s.str == 0 { println('println(NIL)') return } $if noprintln ? { return } $if builtin_print_use_fprintf ? { C.fprintf(C.stdout, c'%.*s\n', s.len, s.str) return } $if android && !termux { C.android_print(C.stdout, c'%.*s\n', s.len, s.str) return } $else $if ios { C.WrappedNSLog(s.str) return } $else $if freestanding { bare_print(s.str, u64(s.len)) bare_print(c'\n', 1) return } $else { _writeln_to_fd(1, s) } } @[manualfree] fn _writeln_to_fd(fd int, s string) { $if builtin_writeln_should_write_at_once ? { unsafe { buf_len := s.len + 1 // space for \n mut buf := malloc(buf_len) C.memcpy(buf, s.str, s.len) buf[s.len] = `\n` _write_buf_to_fd(fd, buf, buf_len) free(buf) } } $else { lf := u8(`\n`) _write_buf_to_fd(fd, s.str, s.len) _write_buf_to_fd(fd, &lf, 1) } } @[manualfree] fn _write_buf_to_fd(fd int, buf &u8, buf_len int) { if buf_len <= 0 { return } mut ptr := unsafe { buf } mut remaining_bytes := isize(buf_len) mut x := isize(0) $if freestanding || vinix || builtin_write_buf_to_fd_should_use_c_write ? { unsafe { for remaining_bytes > 0 { x = C.write(fd, ptr, remaining_bytes) ptr += x remaining_bytes -= x } } } $else { mut stream := voidptr(C.stdout) if fd == 2 { stream = voidptr(C.stderr) } unsafe { for remaining_bytes > 0 { x = isize(C.fwrite(ptr, 1, remaining_bytes, stream)) ptr += x remaining_bytes -= x } } } } // v_memory_panic will be true, *only* when a call to malloc/realloc/vcalloc etc could not succeed. // In that situation, functions that are registered with at_exit(), should be able to limit their // activity accordingly, by checking this flag. // The V compiler itself for example registers a function with at_exit(), for showing timers. // Without a way to distinguish, that we are in a memory panic, that would just display a second panic, // which would be less clear to the user. __global v_memory_panic = false @[noreturn] fn _memory_panic(fname string, size isize) { v_memory_panic = true // Note: do not use string interpolation here at all, since string interpolation itself allocates eprint(fname) eprint('(') $if freestanding || vinix { eprint('size') // TODO: use something more informative here } $else { C.fprintf(C.stderr, c'%p', voidptr(size)) } if size < 0 { eprint(' < 0') } eprintln(')') panic('memory allocation failure') } __global total_m = i64(0) // malloc dynamically allocates a `n` bytes block of memory on the heap. // malloc returns a `byteptr` pointing to the memory address of the allocated space. // unlike the `calloc` family of functions - malloc will not zero the memory block. @[unsafe] pub fn malloc(n isize) &u8 { $if trace_malloc ? { total_m += n C.fprintf(C.stderr, c'_v_malloc %6d total %10d\n', n, total_m) // print_backtrace() } if n < 0 { _memory_panic(@FN, n) } else if n == 0 { return &u8(unsafe { nil }) } mut res := &u8(unsafe { nil }) $if prealloc { return unsafe { prealloc_malloc(n) } } $else $if gcboehm ? { unsafe { res = C.GC_MALLOC(n) } } $else $if freestanding { // todo: is this safe to call malloc there? We export __malloc as malloc and it uses dlmalloc behind the scenes // so theoretically it is safe res = unsafe { __malloc(usize(n)) } } $else { $if windows { // Warning! On windows, we always use _aligned_malloc to allocate memory. // This ensures that we can later free the memory with _aligned_free // without needing to track whether the memory was originally allocated // by malloc or _aligned_malloc. res = unsafe { C._aligned_malloc(n, 1) } } $else { res = unsafe { C.malloc(n) } } } if res == 0 { _memory_panic(@FN, n) } $if debug_malloc ? { // Fill in the memory with something != 0 i.e. `M`, so it is easier to spot // when the calling code wrongly relies on it being zeroed. unsafe { C.memset(res, 0x4D, n) } } return res } @[unsafe] pub fn malloc_noscan(n isize) &u8 { $if trace_malloc ? { total_m += n C.fprintf(C.stderr, c'malloc_noscan %6d total %10d\n', n, total_m) // print_backtrace() } if n < 0 { _memory_panic(@FN, n) } mut res := &u8(unsafe { nil }) $if prealloc { return unsafe { prealloc_malloc(n) } } $else $if gcboehm ? { $if gcboehm_opt ? { unsafe { res = C.GC_MALLOC_ATOMIC(n) } } $else { unsafe { res = C.GC_MALLOC(n) } } } $else $if freestanding { res = unsafe { __malloc(usize(n)) } } $else { $if windows { // Warning! On windows, we always use _aligned_malloc to allocate memory. // This ensures that we can later free the memory with _aligned_free // without needing to track whether the memory was originally allocated // by malloc or _aligned_malloc. res = unsafe { C._aligned_malloc(n, 1) } } $else { res = unsafe { C.malloc(n) } } } if res == 0 { _memory_panic(@FN, n) } $if debug_malloc ? { // Fill in the memory with something != 0 i.e. `M`, so it is easier to spot // when the calling code wrongly relies on it being zeroed. unsafe { C.memset(res, 0x4D, n) } } return res } @[inline] fn __at_least_one(how_many u64) u64 { // handle the case for allocating memory for empty structs, which have sizeof(EmptyStruct) == 0 // in this case, just allocate a single byte, avoiding the panic for malloc(0) if how_many == 0 { return 1 } return how_many } // malloc_uncollectable dynamically allocates a `n` bytes block of memory // on the heap, which will NOT be garbage-collected (but its contents will). @[unsafe] pub fn malloc_uncollectable(n isize) &u8 { $if trace_malloc ? { total_m += n C.fprintf(C.stderr, c'malloc_uncollectable %6d total %10d\n', n, total_m) // print_backtrace() } if n < 0 { _memory_panic(@FN, n) } mut res := &u8(unsafe { nil }) $if prealloc { return unsafe { prealloc_malloc(n) } } $else $if gcboehm ? { unsafe { res = C.GC_MALLOC_UNCOLLECTABLE(n) } } $else $if freestanding { res = unsafe { __malloc(usize(n)) } } $else { $if windows { // Warning! On windows, we always use _aligned_malloc to allocate memory. // This ensures that we can later free the memory with _aligned_free // without needing to track whether the memory was originally allocated // by malloc or _aligned_malloc. res = unsafe { C._aligned_malloc(n, 1) } } $else { res = unsafe { C.malloc(n) } } } if res == 0 { _memory_panic(@FN, n) } $if debug_malloc ? { // Fill in the memory with something != 0 i.e. `M`, so it is easier to spot // when the calling code wrongly relies on it being zeroed. unsafe { C.memset(res, 0x4D, n) } } return res } // v_realloc resizes the memory block `b` with `n` bytes. // The `b byteptr` must be a pointer to an existing memory block // previously allocated with `malloc` or `vcalloc`. // Please, see also realloc_data, and use it instead if possible. @[unsafe] pub fn v_realloc(b &u8, n isize) &u8 { $if trace_realloc ? { C.fprintf(C.stderr, c'v_realloc %6d\n', n) } mut new_ptr := &u8(unsafe { nil }) $if prealloc { unsafe { new_ptr = malloc(n) C.memcpy(new_ptr, b, n) } return new_ptr } $else $if gcboehm ? { new_ptr = unsafe { C.GC_REALLOC(b, n) } } $else { $if windows { // Warning! On windows, we always use _aligned_realloc to reallocate memory. // This ensures that we can later free the memory with _aligned_free // without needing to track whether the memory was originally allocated // by malloc or _aligned_malloc/_aligned_realloc. new_ptr = unsafe { C._aligned_realloc(b, n, 1) } } $else { new_ptr = unsafe { C.realloc(b, n) } } } if new_ptr == 0 { _memory_panic(@FN, n) } return new_ptr } // realloc_data resizes the memory block pointed by `old_data` to `new_size` // bytes. `old_data` must be a pointer to an existing memory block, previously // allocated with `malloc` or `vcalloc`, of size `old_data`. // realloc_data returns a pointer to the new location of the block. // Note: if you know the old data size, it is preferable to call `realloc_data`, // instead of `v_realloc`, at least during development, because `realloc_data` // can make debugging easier, when you compile your program with // `-d debug_realloc`. @[unsafe] pub fn realloc_data(old_data &u8, old_size int, new_size int) &u8 { $if trace_realloc ? { C.fprintf(C.stderr, c'realloc_data old_size: %6d new_size: %6d\n', old_size, new_size) } $if prealloc { return unsafe { prealloc_realloc(old_data, old_size, new_size) } } $if debug_realloc ? { // Note: this is slower, but helps debugging memory problems. // The main idea is to always force reallocating: // 1) allocate a new memory block // 2) copy the old to the new // 3) fill the old with 0x57 (`W`) // 4) free the old block // => if there is still a pointer to the old block somewhere // it will point to memory that is now filled with 0x57. unsafe { new_ptr := malloc(new_size) min_size := if old_size < new_size { old_size } else { new_size } C.memcpy(new_ptr, old_data, min_size) C.memset(old_data, 0x57, old_size) free(old_data) return new_ptr } } mut nptr := &u8(unsafe { nil }) $if gcboehm ? { nptr = unsafe { C.GC_REALLOC(old_data, new_size) } } $else { $if windows { // Warning! On windows, we always use _aligned_realloc to reallocate memory. // This ensures that we can later free the memory with _aligned_free // without needing to track whether the memory was originally allocated // by malloc or _aligned_malloc/_aligned_realloc. nptr = unsafe { C._aligned_realloc(old_data, new_size, 1) } } $else { nptr = unsafe { C.realloc(old_data, new_size) } } } if nptr == 0 { _memory_panic(@FN, isize(new_size)) } return nptr } // vcalloc dynamically allocates a zeroed `n` bytes block of memory on the heap. // vcalloc returns a `byteptr` pointing to the memory address of the allocated space. // vcalloc checks for negative values given in `n`. pub fn vcalloc(n isize) &u8 { $if trace_vcalloc ? { total_m += n C.fprintf(C.stderr, c'vcalloc %6d total %10d\n', n, total_m) } if n < 0 { _memory_panic(@FN, n) } else if n == 0 { return &u8(unsafe { nil }) } $if prealloc { return unsafe { prealloc_calloc(n) } } $else $if gcboehm ? { return unsafe { &u8(C.GC_MALLOC(n)) } } $else { $if windows { // Warning! On windows, we always use _aligned_malloc to allocate memory. // This ensures that we can later free the memory with _aligned_free // without needing to track whether the memory was originally allocated // by malloc or _aligned_malloc/_aligned_realloc/_aligned_recalloc. ptr := unsafe { C._aligned_malloc(n, 1) } if ptr != &u8(unsafe { nil }) { unsafe { C.memset(ptr, 0, n) } } return ptr } $else { return unsafe { C.calloc(1, n) } } } return &u8(unsafe { nil }) // not reached, TODO: remove when V's checker is improved } // special versions of the above that allocate memory which is not scanned // for pointers (but is collected) when the Boehm garbage collection is used pub fn vcalloc_noscan(n isize) &u8 { $if trace_vcalloc ? { total_m += n C.fprintf(C.stderr, c'vcalloc_noscan %6d total %10d\n', n, total_m) } $if prealloc { return unsafe { prealloc_calloc(n) } } $else $if gcboehm ? { if n < 0 { _memory_panic(@FN, n) } $if gcboehm_opt ? { res := unsafe { C.GC_MALLOC_ATOMIC(n) } unsafe { C.memset(res, 0, n) } return &u8(res) } $else { res := unsafe { C.GC_MALLOC(n) } return &u8(res) } } $else { return unsafe { vcalloc(n) } } return &u8(unsafe { nil }) // not reached, TODO: remove when V's checker is improved } // free allows for manually freeing memory allocated at the address `ptr`. @[unsafe] pub fn free(ptr voidptr) { $if trace_free ? { C.fprintf(C.stderr, c'free ptr: %p\n', ptr) } $if builtin_free_nop ? { return } if ptr == unsafe { 0 } { $if trace_free_nulls ? { C.fprintf(C.stderr, c'free null ptr\n', ptr) } $if trace_free_nulls_break ? { break_if_debugger_attached() } return } $if prealloc { return } $else $if gcboehm ? { // It is generally better to leave it to Boehm's gc to free things. // Calling C.GC_FREE(ptr) was tried initially, but does not work // well with programs that do manual management themselves. // // The exception is doing leak detection for manual memory management: $if gcboehm_leak ? { unsafe { C.GC_FREE(ptr) } } } $else { $if windows { // Warning! On windows, we always use _aligned_free to free memory. unsafe { C._aligned_free(ptr) } } $else { C.free(ptr) } } } // memdup dynamically allocates a `sz` bytes block of memory on the heap // memdup then copies the contents of `src` into the allocated space and // returns a pointer to the newly allocated space. @[unsafe] pub fn memdup(src voidptr, sz isize) voidptr { $if trace_memdup ? { C.fprintf(C.stderr, c'memdup size: %10d\n', sz) } if sz == 0 { return vcalloc(1) } unsafe { mem := malloc(sz) return C.memcpy(mem, src, sz) } } @[unsafe] pub fn memdup_noscan(src voidptr, sz isize) voidptr { $if trace_memdup ? { C.fprintf(C.stderr, c'memdup_noscan size: %10d\n', sz) } if sz == 0 { return vcalloc_noscan(1) } unsafe { mem := malloc_noscan(sz) return C.memcpy(mem, src, sz) } } // memdup_uncollectable dynamically allocates a `sz` bytes block of memory // on the heap, which will NOT be garbage-collected (but its contents will). // memdup_uncollectable then copies the contents of `src` into the allocated // space and returns a pointer to the newly allocated space. @[unsafe] pub fn memdup_uncollectable(src voidptr, sz isize) voidptr { $if trace_memdup ? { C.fprintf(C.stderr, c'memdup_uncollectable size: %10d\n', sz) } if sz == 0 { return vcalloc(1) } unsafe { mem := malloc_uncollectable(sz) return C.memcpy(mem, src, sz) } } // memdup_align dynamically allocates a memory block of `sz` bytes on the heap, // copies the contents from `src` into the allocated space, and returns a pointer // to the newly allocated memory. The returned pointer is aligned to the specified `align` boundary. // - `align` must be a power of two and at least 1 // - `sz` must be non-negative // - The memory regions should not overlap @[unsafe] pub fn memdup_align(src voidptr, sz isize, align isize) voidptr { $if trace_memdup ? { C.fprintf(C.stderr, c'memdup_align size: %10d align: %10d\n', sz, align) } if sz == 0 { return vcalloc(1) } n := sz $if trace_malloc ? { total_m += n C.fprintf(C.stderr, c'_v_memdup_align %6d total %10d\n', n, total_m) // print_backtrace() } if n < 0 { _memory_panic(@FN, n) } mut res := &u8(unsafe { nil }) $if prealloc { res = prealloc_malloc_align(n, align) } $else $if gcboehm ? { unsafe { res = C.GC_memalign(align, n) } } $else $if freestanding { // todo: is this safe to call malloc there? We export __malloc as malloc and it uses dlmalloc behind the scenes // so theoretically it is safe panic('memdup_align is not implemented with -freestanding') res = unsafe { __malloc(usize(n)) } } $else { $if windows { // Warning! On windows, we always use _aligned_malloc to allocate memory. // This ensures that we can later free the memory with _aligned_free // without needing to track whether the memory was originally allocated // by malloc or _aligned_malloc. res = unsafe { C._aligned_malloc(n, align) } } $else { res = unsafe { C.aligned_alloc(align, n) } } } if res == 0 { _memory_panic(@FN, n) } $if debug_malloc ? { // Fill in the memory with something != 0 i.e. `M`, so it is easier to spot // when the calling code wrongly relies on it being zeroed. unsafe { C.memset(res, 0x4D, n) } } return C.memcpy(res, src, sz) } // GCHeapUsage contains stats about the current heap usage of your program. pub struct GCHeapUsage { pub: heap_size usize free_bytes usize total_bytes usize unmapped_bytes usize bytes_since_gc usize } // gc_heap_usage returns the info about heap usage. pub fn gc_heap_usage() GCHeapUsage { $if gcboehm ? { mut res := GCHeapUsage{} C.GC_get_heap_usage_safe(&res.heap_size, &res.free_bytes, &res.unmapped_bytes, &res.bytes_since_gc, &res.total_bytes) return res } $else { return GCHeapUsage{} } } // gc_memory_use returns the total memory use in bytes by all allocated blocks. pub fn gc_memory_use() usize { $if gcboehm ? { return C.GC_get_memory_use() } $else { return 0 } } @[inline] fn v_fixed_index(i int, len int) int { $if !no_bounds_checking { if i < 0 || i >= len { panic('fixed array index out of range (index: ' + i64(i).str() + ', len: ' + i64(len).str() + ')') } } return i } // NOTE: g_main_argc and g_main_argv are filled in right after C's main start. // They are used internally by V's builtin; for user code, it is much // more convenient to just use `os.args` or call `arguments()` instead. @[markused] __global g_main_argc = int(0) @[markused] __global g_main_argv = unsafe { nil } @[markused] __global g_live_reload_info voidptr // arguments returns the command line arguments, used for starting the current program as a V array of strings. // The first string in the array (index 0), is the name of the program, used for invoking the program. // The second string in the array (index 1), if it exists, is the first argument to the program, etc. // For example, if you started your program as `myprogram -option`, then arguments() will return ['myprogram', '-option']. // Note: if you `v run file.v abc def`, then arguments() will return ['file', 'abc', 'def'], or ['file.exe', 'abc', 'def'] (on Windows). pub fn arguments() []string { argv := &&u8(g_main_argv) mut res := []string{cap: g_main_argc} for i in 0 .. g_main_argc { $if windows { res << unsafe { string_from_wide(&u16(argv[i])) } } $else { res << unsafe { tos_clone(argv[i]) } } } return res }