v/vlib/builtin/builtin.c.v

947 lines
27 KiB
V

@[has_globals]
module builtin
pub type FnExitCb = fn ()
fn C.atexit(f FnExitCb) int
fn C.strerror(int) &char
// These functions (_vinit, and _vcleanup), are generated by V, and if you have a `module no_main` program,
// you should ensure to call them when appropriate.
fn C._vinit(argc int, argv &&char)
fn C._vcleanup()
fn v_segmentation_fault_handler(signal_number i32) {
$if freestanding {
eprintln('signal 11: segmentation fault')
} $else {
C.fprintf(C.stderr, c'signal %d: segmentation fault\n', signal_number)
}
$if use_libbacktrace ? {
eprint_libbacktrace(1)
} $else {
print_backtrace()
}
exit(128 + signal_number)
}
// exit terminates execution immediately and returns exit `code` to the shell.
@[noreturn]
pub fn exit(code int) {
C.exit(code)
}
// at_exit registers a fn callback, that will be called at normal process termination.
// It returns an error, if the registration was not successful.
// The registered callback functions, will be called either via exit/1,
// or via return from the main program, in the reverse order of their registration.
// The same fn may be registered multiple times.
// Each callback fn will called once for each registration.
pub fn at_exit(cb FnExitCb) ! {
$if freestanding {
return error('at_exit not implemented with -freestanding')
} $else {
res := C.atexit(cb)
if res != 0 {
return error_with_code('at_exit failed', res)
}
}
}
// panic_debug private function that V uses for panics, -cg/-g is passed
// recent versions of tcc print nicer backtraces automatically
// Note: the duplication here is because tcc_backtrace should be called directly
// inside the panic functions.
@[noreturn]
fn panic_debug(line_no int, file string, mod string, fn_name string, s string) {
// Note: the order here is important for a stabler test output
// module is less likely to change than function, etc...
// During edits, the line number will change most frequently,
// so it is last
$if freestanding {
bare_panic(s)
} $else {
// vfmt off
// Note: be carefull to not allocate here, avoid string interpolation
eprintln('================ V panic ================')
eprint(' module: '); eprintln(mod)
eprint(' function: '); eprint(fn_name); eprintln('()')
eprint(' message: '); eprintln(s)
eprint(' file: '); eprint(file); eprint(':');
C.fprintf(C.stderr, c'%d\n', line_no)
eprint(' v hash: '); eprintln(vcurrent_hash())
eprintln('=========================================')
// vfmt on
flush_stdout()
$if native {
C.exit(1) // TODO: native backtraces
} $else $if exit_after_panic_message ? {
C.exit(1)
} $else $if no_backtrace ? {
C.exit(1)
} $else {
$if tinyc {
$if panics_break_into_debugger ? {
break_if_debugger_attached()
} $else {
C.tcc_backtrace(c'Backtrace')
}
C.exit(1)
}
$if use_libbacktrace ? {
eprint_libbacktrace(1)
} $else {
print_backtrace_skipping_top_frames(1)
}
$if panics_break_into_debugger ? {
break_if_debugger_attached()
}
C.exit(1)
}
}
C.exit(1)
}
// panic_option_not_set is called by V, when you use option error propagation in your main function.
// It ends the program with a panic.
@[noreturn]
pub fn panic_option_not_set(s string) {
panic('option not set (' + s + ')')
}
// panic_result_not_set is called by V, when you use result error propagation in your main function
// It ends the program with a panic.
@[noreturn]
pub fn panic_result_not_set(s string) {
panic('result not set (' + s + ')')
}
pub fn vcurrent_hash() string {
return @VCURRENTHASH
}
// panic prints a nice error message, then exits the process with exit code of 1.
// It also shows a backtrace on most platforms.
@[noreturn]
pub fn panic(s string) {
// Note: be careful to not use string interpolation here:
$if freestanding {
bare_panic(s)
} $else {
eprint('V panic: ')
eprintln(s)
eprint('v hash: ')
eprintln(vcurrent_hash())
flush_stdout()
$if native {
C.exit(1) // TODO: native backtraces
} $else $if exit_after_panic_message ? {
C.exit(1)
} $else $if no_backtrace ? {
C.exit(1)
} $else {
$if tinyc {
$if panics_break_into_debugger ? {
break_if_debugger_attached()
} $else {
C.tcc_backtrace(c'Backtrace')
}
C.exit(1)
}
$if use_libbacktrace ? {
eprint_libbacktrace(1)
} $else {
print_backtrace_skipping_top_frames(1)
}
$if panics_break_into_debugger ? {
break_if_debugger_attached()
}
C.exit(1)
}
}
C.exit(1)
}
// return a C-API error message matching to `errnum`
pub fn c_error_number_str(errnum int) string {
mut err_msg := ''
$if freestanding {
err_msg = 'error ' + errnum.str()
} $else {
$if !vinix {
c_msg := C.strerror(errnum)
err_msg = string{
str: &u8(c_msg)
len: unsafe { C.strlen(c_msg) }
is_lit: 1
}
}
}
return err_msg
}
// panic_n prints an error message, followed by the given number, then exits the process with exit code of 1.
@[noreturn]
pub fn panic_n(s string, number1 i64) {
panic(s + impl_i64_to_string(number1))
}
// panic_n2 prints an error message, followed by the given numbers, then exits the process with exit code of 1.
@[noreturn]
pub fn panic_n2(s string, number1 i64, number2 i64) {
panic(s + impl_i64_to_string(number1) + ', ' + impl_i64_to_string(number2))
}
// panic_n3 prints an error message, followed by the given numbers, then exits the process with exit code of 1.
@[noreturn]
fn panic_n3(s string, number1 i64, number2 i64, number3 i64) {
panic(s + impl_i64_to_string(number1) + ', ' + impl_i64_to_string(number2) + ', ' +
impl_i64_to_string(number2))
}
// panic with a C-API error message matching `errnum`
@[noreturn]
pub fn panic_error_number(basestr string, errnum int) {
panic(basestr + c_error_number_str(errnum))
}
// eprintln prints a message with a line end, to stderr. Both stderr and stdout are flushed.
pub fn eprintln(s string) {
if s.str == 0 {
eprintln('eprintln(NIL)')
return
}
$if builtin_print_use_fprintf ? {
C.fprintf(C.stderr, c'%.*s\n', s.len, s.str)
return
}
$if freestanding {
// flushing is only a thing with C.FILE from stdio.h, not on the syscall level
bare_eprint(s.str, u64(s.len))
bare_eprint(c'\n', 1)
} $else $if ios {
C.WrappedNSLog(s.str)
} $else {
flush_stdout()
flush_stderr()
// eprintln is used in panics, so it should not fail at all
$if android && !termux {
C.android_print(C.stderr, c'%.*s\n', s.len, s.str)
}
_writeln_to_fd(2, s)
flush_stderr()
}
}
// eprint prints a message to stderr. Both stderr and stdout are flushed.
pub fn eprint(s string) {
if s.str == 0 {
eprint('eprint(NIL)')
return
}
$if builtin_print_use_fprintf ? {
C.fprintf(C.stderr, c'%.*s', s.len, s.str)
return
}
$if freestanding {
// flushing is only a thing with C.FILE from stdio.h, not on the syscall level
bare_eprint(s.str, u64(s.len))
} $else $if ios {
// TODO: Implement a buffer as NSLog doesn't have a "print"
C.WrappedNSLog(s.str)
} $else {
flush_stdout()
flush_stderr()
$if android && !termux {
C.android_print(C.stderr, c'%.*s', s.len, s.str)
}
_write_buf_to_fd(2, s.str, s.len)
flush_stderr()
}
}
pub fn flush_stdout() {
$if freestanding {
not_implemented := 'flush_stdout is not implemented\n'
bare_eprint(not_implemented.str, u64(not_implemented.len))
} $else {
C.fflush(C.stdout)
}
}
pub fn flush_stderr() {
$if freestanding {
not_implemented := 'flush_stderr is not implemented\n'
bare_eprint(not_implemented.str, u64(not_implemented.len))
} $else {
C.fflush(C.stderr)
}
}
// unbuffer_stdout will turn off the default buffering done for stdout.
// It will affect all consequent print and println calls, effectively making them behave like
// eprint and eprintln do. It is useful for programs, that want to produce progress bars, without
// cluttering your code with a flush_stdout() call after every print() call. It is also useful for
// programs (sensors), that produce small chunks of output, that you want to be able to process
// immediately.
// Note 1: if used, *it should be called at the start of your program*, before using
// print or println().
// Note 2: most libc implementations, have logic that use line buffering for stdout, when the output
// stream is connected to an interactive device, like a terminal, and otherwise fully buffer it,
// which is good for the output performance for programs that can produce a lot of output (like
// filters, or cat etc), but bad for latency. Normally, it is usually what you want, so it is the
// default for V programs too.
// See https://www.gnu.org/software/libc/manual/html_node/Buffering-Concepts.html .
// See https://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html#tag_15_05 .
pub fn unbuffer_stdout() {
$if freestanding {
not_implemented := 'unbuffer_stdout is not implemented\n'
bare_eprint(not_implemented.str, u64(not_implemented.len))
} $else {
unsafe { C.setbuf(C.stdout, 0) }
}
}
// print prints a message to stdout. Note that unlike `eprint`, stdout is not automatically flushed.
@[manualfree]
pub fn print(s string) {
$if builtin_print_use_fprintf ? {
C.fprintf(C.stdout, c'%.*s', s.len, s.str)
return
}
$if android && !termux {
C.android_print(C.stdout, c'%.*s\n', s.len, s.str)
} $else $if ios {
// TODO: Implement a buffer as NSLog doesn't have a "print"
C.WrappedNSLog(s.str)
} $else $if freestanding {
bare_print(s.str, u64(s.len))
} $else {
_write_buf_to_fd(1, s.str, s.len)
}
}
// println prints a message with a line end, to stdout. Note that unlike `eprintln`, stdout is not automatically flushed.
@[manualfree]
pub fn println(s string) {
if s.str == 0 {
println('println(NIL)')
return
}
$if noprintln ? {
return
}
$if builtin_print_use_fprintf ? {
C.fprintf(C.stdout, c'%.*s\n', s.len, s.str)
return
}
$if android && !termux {
C.android_print(C.stdout, c'%.*s\n', s.len, s.str)
return
} $else $if ios {
C.WrappedNSLog(s.str)
return
} $else $if freestanding {
bare_print(s.str, u64(s.len))
bare_print(c'\n', 1)
return
} $else {
_writeln_to_fd(1, s)
}
}
@[manualfree]
fn _writeln_to_fd(fd int, s string) {
$if builtin_writeln_should_write_at_once ? {
unsafe {
buf_len := s.len + 1 // space for \n
mut buf := malloc(buf_len)
C.memcpy(buf, s.str, s.len)
buf[s.len] = `\n`
_write_buf_to_fd(fd, buf, buf_len)
free(buf)
}
} $else {
lf := u8(`\n`)
_write_buf_to_fd(fd, s.str, s.len)
_write_buf_to_fd(fd, &lf, 1)
}
}
@[manualfree]
fn _write_buf_to_fd(fd int, buf &u8, buf_len int) {
if buf_len <= 0 {
return
}
mut ptr := unsafe { buf }
mut remaining_bytes := isize(buf_len)
mut x := isize(0)
$if freestanding || vinix || builtin_write_buf_to_fd_should_use_c_write ? {
unsafe {
for remaining_bytes > 0 {
x = C.write(fd, ptr, remaining_bytes)
ptr += x
remaining_bytes -= x
}
}
} $else {
mut stream := voidptr(C.stdout)
if fd == 2 {
stream = voidptr(C.stderr)
}
unsafe {
for remaining_bytes > 0 {
x = isize(C.fwrite(ptr, 1, remaining_bytes, stream))
ptr += x
remaining_bytes -= x
}
}
}
}
// v_memory_panic will be true, *only* when a call to malloc/realloc/vcalloc etc could not succeed.
// In that situation, functions that are registered with at_exit(), should be able to limit their
// activity accordingly, by checking this flag.
// The V compiler itself for example registers a function with at_exit(), for showing timers.
// Without a way to distinguish, that we are in a memory panic, that would just display a second panic,
// which would be less clear to the user.
__global v_memory_panic = false
@[noreturn]
fn _memory_panic(fname string, size isize) {
v_memory_panic = true
// Note: do not use string interpolation here at all, since string interpolation itself allocates
eprint(fname)
eprint('(')
$if freestanding || vinix {
eprint('size') // TODO: use something more informative here
} $else {
C.fprintf(C.stderr, c'%p', voidptr(size))
}
if size < 0 {
eprint(' < 0')
}
eprintln(')')
panic('memory allocation failure')
}
__global total_m = i64(0)
// malloc dynamically allocates a `n` bytes block of memory on the heap.
// malloc returns a `byteptr` pointing to the memory address of the allocated space.
// unlike the `calloc` family of functions - malloc will not zero the memory block.
@[unsafe]
pub fn malloc(n isize) &u8 {
$if trace_malloc ? {
total_m += n
C.fprintf(C.stderr, c'_v_malloc %6d total %10d\n', n, total_m)
// print_backtrace()
}
if n < 0 {
_memory_panic(@FN, n)
} else if n == 0 {
return &u8(unsafe { nil })
}
mut res := &u8(unsafe { nil })
$if prealloc {
return unsafe { prealloc_malloc(n) }
} $else $if gcboehm ? {
unsafe {
res = C.GC_MALLOC(n)
}
} $else $if freestanding {
// todo: is this safe to call malloc there? We export __malloc as malloc and it uses dlmalloc behind the scenes
// so theoretically it is safe
res = unsafe { __malloc(usize(n)) }
} $else {
$if windows {
// Warning! On windows, we always use _aligned_malloc to allocate memory.
// This ensures that we can later free the memory with _aligned_free
// without needing to track whether the memory was originally allocated
// by malloc or _aligned_malloc.
res = unsafe { C._aligned_malloc(n, 1) }
} $else {
res = unsafe { C.malloc(n) }
}
}
if res == 0 {
_memory_panic(@FN, n)
}
$if debug_malloc ? {
// Fill in the memory with something != 0 i.e. `M`, so it is easier to spot
// when the calling code wrongly relies on it being zeroed.
unsafe { C.memset(res, 0x4D, n) }
}
return res
}
@[unsafe]
pub fn malloc_noscan(n isize) &u8 {
$if trace_malloc ? {
total_m += n
C.fprintf(C.stderr, c'malloc_noscan %6d total %10d\n', n, total_m)
// print_backtrace()
}
if n < 0 {
_memory_panic(@FN, n)
}
mut res := &u8(unsafe { nil })
$if prealloc {
return unsafe { prealloc_malloc(n) }
} $else $if gcboehm ? {
$if gcboehm_opt ? {
unsafe {
res = C.GC_MALLOC_ATOMIC(n)
}
} $else {
unsafe {
res = C.GC_MALLOC(n)
}
}
} $else $if freestanding {
res = unsafe { __malloc(usize(n)) }
} $else {
$if windows {
// Warning! On windows, we always use _aligned_malloc to allocate memory.
// This ensures that we can later free the memory with _aligned_free
// without needing to track whether the memory was originally allocated
// by malloc or _aligned_malloc.
res = unsafe { C._aligned_malloc(n, 1) }
} $else {
res = unsafe { C.malloc(n) }
}
}
if res == 0 {
_memory_panic(@FN, n)
}
$if debug_malloc ? {
// Fill in the memory with something != 0 i.e. `M`, so it is easier to spot
// when the calling code wrongly relies on it being zeroed.
unsafe { C.memset(res, 0x4D, n) }
}
return res
}
@[inline]
fn __at_least_one(how_many u64) u64 {
// handle the case for allocating memory for empty structs, which have sizeof(EmptyStruct) == 0
// in this case, just allocate a single byte, avoiding the panic for malloc(0)
if how_many == 0 {
return 1
}
return how_many
}
// malloc_uncollectable dynamically allocates a `n` bytes block of memory
// on the heap, which will NOT be garbage-collected (but its contents will).
@[unsafe]
pub fn malloc_uncollectable(n isize) &u8 {
$if trace_malloc ? {
total_m += n
C.fprintf(C.stderr, c'malloc_uncollectable %6d total %10d\n', n, total_m)
// print_backtrace()
}
if n < 0 {
_memory_panic(@FN, n)
}
mut res := &u8(unsafe { nil })
$if prealloc {
return unsafe { prealloc_malloc(n) }
} $else $if gcboehm ? {
unsafe {
res = C.GC_MALLOC_UNCOLLECTABLE(n)
}
} $else $if freestanding {
res = unsafe { __malloc(usize(n)) }
} $else {
$if windows {
// Warning! On windows, we always use _aligned_malloc to allocate memory.
// This ensures that we can later free the memory with _aligned_free
// without needing to track whether the memory was originally allocated
// by malloc or _aligned_malloc.
res = unsafe { C._aligned_malloc(n, 1) }
} $else {
res = unsafe { C.malloc(n) }
}
}
if res == 0 {
_memory_panic(@FN, n)
}
$if debug_malloc ? {
// Fill in the memory with something != 0 i.e. `M`, so it is easier to spot
// when the calling code wrongly relies on it being zeroed.
unsafe { C.memset(res, 0x4D, n) }
}
return res
}
// v_realloc resizes the memory block `b` with `n` bytes.
// The `b byteptr` must be a pointer to an existing memory block
// previously allocated with `malloc` or `vcalloc`.
// Please, see also realloc_data, and use it instead if possible.
@[unsafe]
pub fn v_realloc(b &u8, n isize) &u8 {
$if trace_realloc ? {
C.fprintf(C.stderr, c'v_realloc %6d\n', n)
}
mut new_ptr := &u8(unsafe { nil })
$if prealloc {
unsafe {
new_ptr = malloc(n)
C.memcpy(new_ptr, b, n)
}
return new_ptr
} $else $if gcboehm ? {
new_ptr = unsafe { C.GC_REALLOC(b, n) }
} $else {
$if windows {
// Warning! On windows, we always use _aligned_realloc to reallocate memory.
// This ensures that we can later free the memory with _aligned_free
// without needing to track whether the memory was originally allocated
// by malloc or _aligned_malloc/_aligned_realloc.
new_ptr = unsafe { C._aligned_realloc(b, n, 1) }
} $else {
new_ptr = unsafe { C.realloc(b, n) }
}
}
if new_ptr == 0 {
_memory_panic(@FN, n)
}
return new_ptr
}
// realloc_data resizes the memory block pointed by `old_data` to `new_size`
// bytes. `old_data` must be a pointer to an existing memory block, previously
// allocated with `malloc` or `vcalloc`, of size `old_data`.
// realloc_data returns a pointer to the new location of the block.
// Note: if you know the old data size, it is preferable to call `realloc_data`,
// instead of `v_realloc`, at least during development, because `realloc_data`
// can make debugging easier, when you compile your program with
// `-d debug_realloc`.
@[unsafe]
pub fn realloc_data(old_data &u8, old_size int, new_size int) &u8 {
$if trace_realloc ? {
C.fprintf(C.stderr, c'realloc_data old_size: %6d new_size: %6d\n', old_size, new_size)
}
$if prealloc {
return unsafe { prealloc_realloc(old_data, old_size, new_size) }
}
$if debug_realloc ? {
// Note: this is slower, but helps debugging memory problems.
// The main idea is to always force reallocating:
// 1) allocate a new memory block
// 2) copy the old to the new
// 3) fill the old with 0x57 (`W`)
// 4) free the old block
// => if there is still a pointer to the old block somewhere
// it will point to memory that is now filled with 0x57.
unsafe {
new_ptr := malloc(new_size)
min_size := if old_size < new_size { old_size } else { new_size }
C.memcpy(new_ptr, old_data, min_size)
C.memset(old_data, 0x57, old_size)
free(old_data)
return new_ptr
}
}
mut nptr := &u8(unsafe { nil })
$if gcboehm ? {
nptr = unsafe { C.GC_REALLOC(old_data, new_size) }
} $else {
$if windows {
// Warning! On windows, we always use _aligned_realloc to reallocate memory.
// This ensures that we can later free the memory with _aligned_free
// without needing to track whether the memory was originally allocated
// by malloc or _aligned_malloc/_aligned_realloc.
nptr = unsafe { C._aligned_realloc(old_data, new_size, 1) }
} $else {
nptr = unsafe { C.realloc(old_data, new_size) }
}
}
if nptr == 0 {
_memory_panic(@FN, isize(new_size))
}
return nptr
}
// vcalloc dynamically allocates a zeroed `n` bytes block of memory on the heap.
// vcalloc returns a `byteptr` pointing to the memory address of the allocated space.
// vcalloc checks for negative values given in `n`.
pub fn vcalloc(n isize) &u8 {
$if trace_vcalloc ? {
total_m += n
C.fprintf(C.stderr, c'vcalloc %6d total %10d\n', n, total_m)
}
if n < 0 {
_memory_panic(@FN, n)
} else if n == 0 {
return &u8(unsafe { nil })
}
$if prealloc {
return unsafe { prealloc_calloc(n) }
} $else $if gcboehm ? {
return unsafe { &u8(C.GC_MALLOC(n)) }
} $else {
$if windows {
// Warning! On windows, we always use _aligned_malloc to allocate memory.
// This ensures that we can later free the memory with _aligned_free
// without needing to track whether the memory was originally allocated
// by malloc or _aligned_malloc/_aligned_realloc/_aligned_recalloc.
ptr := unsafe { C._aligned_malloc(n, 1) }
if ptr != &u8(unsafe { nil }) {
unsafe { C.memset(ptr, 0, n) }
}
return ptr
} $else {
return unsafe { C.calloc(1, n) }
}
}
return &u8(unsafe { nil }) // not reached, TODO: remove when V's checker is improved
}
// special versions of the above that allocate memory which is not scanned
// for pointers (but is collected) when the Boehm garbage collection is used
pub fn vcalloc_noscan(n isize) &u8 {
$if trace_vcalloc ? {
total_m += n
C.fprintf(C.stderr, c'vcalloc_noscan %6d total %10d\n', n, total_m)
}
$if prealloc {
return unsafe { prealloc_calloc(n) }
} $else $if gcboehm ? {
if n < 0 {
_memory_panic(@FN, n)
}
$if gcboehm_opt ? {
res := unsafe { C.GC_MALLOC_ATOMIC(n) }
unsafe { C.memset(res, 0, n) }
return &u8(res)
} $else {
res := unsafe { C.GC_MALLOC(n) }
return &u8(res)
}
} $else {
return unsafe { vcalloc(n) }
}
return &u8(unsafe { nil }) // not reached, TODO: remove when V's checker is improved
}
// free allows for manually freeing memory allocated at the address `ptr`.
@[unsafe]
pub fn free(ptr voidptr) {
$if trace_free ? {
C.fprintf(C.stderr, c'free ptr: %p\n', ptr)
}
$if builtin_free_nop ? {
return
}
if ptr == unsafe { 0 } {
$if trace_free_nulls ? {
C.fprintf(C.stderr, c'free null ptr\n', ptr)
}
$if trace_free_nulls_break ? {
break_if_debugger_attached()
}
return
}
$if prealloc {
return
} $else $if gcboehm ? {
// It is generally better to leave it to Boehm's gc to free things.
// Calling C.GC_FREE(ptr) was tried initially, but does not work
// well with programs that do manual management themselves.
//
// The exception is doing leak detection for manual memory management:
$if gcboehm_leak ? {
unsafe { C.GC_FREE(ptr) }
}
} $else {
$if windows {
// Warning! On windows, we always use _aligned_free to free memory.
unsafe { C._aligned_free(ptr) }
} $else {
C.free(ptr)
}
}
}
// memdup dynamically allocates a `sz` bytes block of memory on the heap
// memdup then copies the contents of `src` into the allocated space and
// returns a pointer to the newly allocated space.
@[unsafe]
pub fn memdup(src voidptr, sz isize) voidptr {
$if trace_memdup ? {
C.fprintf(C.stderr, c'memdup size: %10d\n', sz)
}
if sz == 0 {
return vcalloc(1)
}
unsafe {
mem := malloc(sz)
return C.memcpy(mem, src, sz)
}
}
@[unsafe]
pub fn memdup_noscan(src voidptr, sz isize) voidptr {
$if trace_memdup ? {
C.fprintf(C.stderr, c'memdup_noscan size: %10d\n', sz)
}
if sz == 0 {
return vcalloc_noscan(1)
}
unsafe {
mem := malloc_noscan(sz)
return C.memcpy(mem, src, sz)
}
}
// memdup_uncollectable dynamically allocates a `sz` bytes block of memory
// on the heap, which will NOT be garbage-collected (but its contents will).
// memdup_uncollectable then copies the contents of `src` into the allocated
// space and returns a pointer to the newly allocated space.
@[unsafe]
pub fn memdup_uncollectable(src voidptr, sz isize) voidptr {
$if trace_memdup ? {
C.fprintf(C.stderr, c'memdup_uncollectable size: %10d\n', sz)
}
if sz == 0 {
return vcalloc(1)
}
unsafe {
mem := malloc_uncollectable(sz)
return C.memcpy(mem, src, sz)
}
}
// memdup_align dynamically allocates a memory block of `sz` bytes on the heap,
// copies the contents from `src` into the allocated space, and returns a pointer
// to the newly allocated memory. The returned pointer is aligned to the specified `align` boundary.
// - `align` must be a power of two and at least 1
// - `sz` must be non-negative
// - The memory regions should not overlap
@[unsafe]
pub fn memdup_align(src voidptr, sz isize, align isize) voidptr {
$if trace_memdup ? {
C.fprintf(C.stderr, c'memdup_align size: %10d align: %10d\n', sz, align)
}
if sz == 0 {
return vcalloc(1)
}
n := sz
$if trace_malloc ? {
total_m += n
C.fprintf(C.stderr, c'_v_memdup_align %6d total %10d\n', n, total_m)
// print_backtrace()
}
if n < 0 {
_memory_panic(@FN, n)
}
mut res := &u8(unsafe { nil })
$if prealloc {
res = prealloc_malloc_align(n, align)
} $else $if gcboehm ? {
unsafe {
res = C.GC_memalign(align, n)
}
} $else $if freestanding {
// todo: is this safe to call malloc there? We export __malloc as malloc and it uses dlmalloc behind the scenes
// so theoretically it is safe
panic('memdup_align is not implemented with -freestanding')
res = unsafe { __malloc(usize(n)) }
} $else {
$if windows {
// Warning! On windows, we always use _aligned_malloc to allocate memory.
// This ensures that we can later free the memory with _aligned_free
// without needing to track whether the memory was originally allocated
// by malloc or _aligned_malloc.
res = unsafe { C._aligned_malloc(n, align) }
} $else {
res = unsafe { C.aligned_alloc(align, n) }
}
}
if res == 0 {
_memory_panic(@FN, n)
}
$if debug_malloc ? {
// Fill in the memory with something != 0 i.e. `M`, so it is easier to spot
// when the calling code wrongly relies on it being zeroed.
unsafe { C.memset(res, 0x4D, n) }
}
return C.memcpy(res, src, sz)
}
// GCHeapUsage contains stats about the current heap usage of your program.
pub struct GCHeapUsage {
pub:
heap_size usize
free_bytes usize
total_bytes usize
unmapped_bytes usize
bytes_since_gc usize
}
// gc_heap_usage returns the info about heap usage.
pub fn gc_heap_usage() GCHeapUsage {
$if gcboehm ? {
mut res := GCHeapUsage{}
C.GC_get_heap_usage_safe(&res.heap_size, &res.free_bytes, &res.unmapped_bytes,
&res.bytes_since_gc, &res.total_bytes)
return res
} $else {
return GCHeapUsage{}
}
}
// gc_memory_use returns the total memory use in bytes by all allocated blocks.
pub fn gc_memory_use() usize {
$if gcboehm ? {
return C.GC_get_memory_use()
} $else {
return 0
}
}
@[inline]
fn v_fixed_index(i int, len int) int {
$if !no_bounds_checking {
if i < 0 || i >= len {
panic('fixed array index out of range (index: ' + i64(i).str() + ', len: ' +
i64(len).str() + ')')
}
}
return i
}
// NOTE: g_main_argc and g_main_argv are filled in right after C's main start.
// They are used internally by V's builtin; for user code, it is much
// more convenient to just use `os.args` or call `arguments()` instead.
@[markused]
__global g_main_argc = int(0)
@[markused]
__global g_main_argv = unsafe { nil }
@[markused]
__global g_live_reload_info voidptr
// arguments returns the command line arguments, used for starting the current program as a V array of strings.
// The first string in the array (index 0), is the name of the program, used for invoking the program.
// The second string in the array (index 1), if it exists, is the first argument to the program, etc.
// For example, if you started your program as `myprogram -option`, then arguments() will return ['myprogram', '-option'].
// Note: if you `v run file.v abc def`, then arguments() will return ['file', 'abc', 'def'], or ['file.exe', 'abc', 'def'] (on Windows).
pub fn arguments() []string {
argv := &&u8(g_main_argv)
mut res := []string{cap: g_main_argc}
for i in 0 .. g_main_argc {
$if windows {
res << unsafe { string_from_wide(&u16(argv[i])) }
} $else {
res << unsafe { tos_clone(argv[i]) }
}
}
return res
}