v/vlib/builtin/array_d_gcboehm_opt.v

348 lines
9.9 KiB
V

// non-pub versions of array functions
// that allocale new memory using `GC_MALLOC_ATOMIC()`
// when `-gc boehm_*_opt` is used. These memory areas are not
// scanned for pointers.
module builtin
fn __new_array_noscan(mylen int, cap int, elm_size int) array {
panic_on_negative_len(mylen)
panic_on_negative_cap(cap)
cap_ := if cap < mylen { mylen } else { cap }
arr := array{
element_size: elm_size
data: vcalloc_noscan(u64(cap_) * u64(elm_size))
len: mylen
cap: cap_
}
return arr
}
fn __new_array_with_default_noscan(mylen int, cap int, elm_size int, val voidptr) array {
panic_on_negative_len(mylen)
panic_on_negative_cap(cap)
cap_ := if cap < mylen { mylen } else { cap }
mut arr := array{
element_size: elm_size
data: vcalloc_noscan(u64(cap_) * u64(elm_size))
len: mylen
cap: cap_
}
if val != 0 && arr.data != unsafe { nil } {
if elm_size == 1 {
byte_value := *(&u8(val))
dptr := &u8(arr.data)
for i in 0 .. arr.len {
unsafe {
dptr[i] = byte_value
}
}
} else {
for i in 0 .. arr.len {
unsafe { arr.set_unsafe(i, val) }
}
}
}
return arr
}
fn __new_array_with_multi_default_noscan(mylen int, cap int, elm_size int, val voidptr) array {
panic_on_negative_len(mylen)
panic_on_negative_cap(cap)
cap_ := if cap < mylen { mylen } else { cap }
mut arr := array{
element_size: elm_size
data: vcalloc_noscan(u64(cap_) * u64(elm_size))
len: mylen
cap: cap_
}
if val != 0 && arr.data != unsafe { nil } {
for i in 0 .. arr.len {
unsafe { arr.set_unsafe(i, charptr(val) + i * elm_size) }
}
}
return arr
}
fn __new_array_with_array_default_noscan(mylen int, cap int, elm_size int, val array) array {
panic_on_negative_len(mylen)
panic_on_negative_cap(cap)
cap_ := if cap < mylen { mylen } else { cap }
mut arr := array{
element_size: elm_size
data: vcalloc_noscan(u64(cap_) * u64(elm_size))
len: mylen
cap: cap_
}
for i in 0 .. arr.len {
val_clone := val.clone()
unsafe { arr.set_unsafe(i, &val_clone) }
}
return arr
}
// Private function, used by V (`nums := [1, 2, 3]`)
fn new_array_from_c_array_noscan(len int, cap int, elm_size int, c_array voidptr) array {
panic_on_negative_len(len)
panic_on_negative_cap(cap)
cap_ := if cap < len { len } else { cap }
arr := array{
element_size: elm_size
data: vcalloc_noscan(u64(cap_) * u64(elm_size))
len: len
cap: cap_
}
// TODO: Write all memory functions (like memcpy) in V
unsafe { vmemcpy(arr.data, c_array, u64(len) * u64(elm_size)) }
return arr
}
// Private function. Doubles array capacity if needed.
fn (mut a array) ensure_cap_noscan(required int) {
if required <= a.cap {
return
}
if a.flags.has(.nogrow) {
panic_n('array.ensure_cap_noscan: array with the flag `.nogrow` cannot grow in size, array required new size:',
required)
}
mut cap := if a.cap > 0 { i64(a.cap) } else { i64(2) }
for required > cap {
cap *= 2
}
if cap > max_int {
if a.cap < max_int {
// limit the capacity, since bigger values, will overflow the 32bit integer used to store it
cap = max_int
} else {
panic_n('array.ensure_cap_noscan: array needs to grow to cap (which is > 2^31):',
cap)
}
}
new_size := u64(cap) * u64(a.element_size)
new_data := vcalloc_noscan(new_size)
if a.data != unsafe { nil } {
unsafe { vmemcpy(new_data, a.data, u64(a.len) * u64(a.element_size)) }
// TODO: the old data may be leaked when no GC is used (ref-counting?)
}
a.data = new_data
a.offset = 0
a.cap = int(cap)
}
// repeat returns a new array with the given array elements repeated given times.
// `cgen` will replace this with an appropriate call to `repeat_to_depth()`
// version of `repeat()` that handles multi dimensional arrays
// `unsafe` to call directly because `depth` is not checked
@[unsafe]
fn (a array) repeat_to_depth_noscan(count int, depth int) array {
if count < 0 {
panic_n('array.repeat: count is negative:', count)
}
mut size := u64(count) * u64(a.len) * u64(a.element_size)
if size == 0 {
size = u64(a.element_size)
}
arr := array{
element_size: a.element_size
data: if depth > 0 { vcalloc(size) } else { vcalloc_noscan(size) }
len: count * a.len
cap: count * a.len
}
if a.len > 0 {
a_total_size := u64(a.len) * u64(a.element_size)
arr_step_size := u64(a.len) * u64(arr.element_size)
mut eptr := &u8(arr.data)
unsafe {
for _ in 0 .. count {
if depth > 0 {
ary_clone := a.clone_to_depth_noscan(depth)
vmemcpy(eptr, &u8(ary_clone.data), a_total_size)
} else {
vmemcpy(eptr, &u8(a.data), a_total_size)
}
eptr += arr_step_size
}
}
}
return arr
}
// insert inserts a value in the array at index `i`
fn (mut a array) insert_noscan(i int, val voidptr) {
if i < 0 || i > a.len {
panic_n2('array.insert_noscan: index out of range (i,a.len):', i, a.len)
}
if a.len == max_int {
panic('array.insert_noscan: a.len reached max_int')
}
a.ensure_cap_noscan(a.len + 1)
unsafe {
vmemmove(a.get_unsafe(i + 1), a.get_unsafe(i), u64(a.len - i) * u64(a.element_size))
a.set_unsafe(i, val)
}
a.len++
}
// insert_many inserts many values into the array from index `i`.
@[unsafe]
fn (mut a array) insert_many_noscan(i int, val voidptr, size int) {
if i < 0 || i > a.len {
panic_n2('array.insert_many: index out of range (i, a.len):', i, a.len)
}
new_len := i64(a.len) + i64(size)
if new_len > max_int {
panic_n('array.insert_many_noscan: max_int will be exceeded by a.len:', new_len)
}
a.ensure_cap_noscan(a.len + size)
elem_size := a.element_size
unsafe {
iptr := a.get_unsafe(i)
vmemmove(a.get_unsafe(i + size), iptr, u64(a.len - i) * u64(elem_size))
vmemcpy(iptr, val, u64(size) * u64(elem_size))
}
a.len += size
}
// prepend prepends one value to the array.
fn (mut a array) prepend_noscan(val voidptr) {
a.insert_noscan(0, val)
}
// prepend_many prepends another array to this array.
@[unsafe]
fn (mut a array) prepend_many_noscan(val voidptr, size int) {
unsafe { a.insert_many_noscan(0, val, size) }
}
// pop returns the last element of the array, and removes it.
fn (mut a array) pop_noscan() voidptr {
// in a sense, this is the opposite of `a << x`
if a.len == 0 {
panic('array.pop: array is empty')
}
new_len := a.len - 1
last_elem := unsafe { &u8(a.data) + u64(new_len) * u64(a.element_size) }
a.len = new_len
// Note: a.cap is not changed here *on purpose*, so that
// further << ops on that array will be more efficient.
return unsafe { memdup_noscan(last_elem, a.element_size) }
}
// `clone_static_to_depth_noscan()` returns an independent copy of a given array.
// Unlike `clone_to_depth_noscan()` it has a value receiver and is used internally
// for slice-clone expressions like `a[2..4].clone()` and in -autofree generated code.
fn (a array) clone_static_to_depth_noscan(depth int) array {
return unsafe { a.clone_to_depth_noscan(depth) }
}
// recursively clone given array - `unsafe` when called directly because depth is not checked
@[unsafe]
fn (a &array) clone_to_depth_noscan(depth int) array {
mut size := u64(a.cap) * u64(a.element_size)
if size == 0 {
size++
}
mut arr := array{
element_size: a.element_size
data: if depth == 0 { vcalloc_noscan(size) } else { vcalloc(size) }
len: a.len
cap: a.cap
}
// Recursively clone-generated elements if array element is array type
if depth > 0 {
for i in 0 .. a.len {
ar := array{}
unsafe { vmemcpy(&ar, a.get_unsafe(i), int(sizeof(array))) }
ar_clone := unsafe { ar.clone_to_depth_noscan(depth - 1) }
unsafe { arr.set_unsafe(i, &ar_clone) }
}
return arr
} else {
if a.data != 0 {
unsafe { vmemcpy(&u8(arr.data), a.data, u64(a.cap) * u64(a.element_size)) }
}
return arr
}
}
fn (mut a array) push_noscan(val voidptr) {
if a.len < 0 {
panic('array.push_noscan: negative len')
}
if a.len >= max_int {
panic('array.push_noscan: len bigger than max_int')
}
if a.len >= a.cap {
a.ensure_cap_noscan(a.len + 1)
}
unsafe { vmemcpy(&u8(a.data) + u64(a.element_size) * u64(a.len), val, a.element_size) }
a.len++
}
// push_many implements the functionality for pushing another array.
// `val` is array.data and user facing usage is `a << [1,2,3]`
@[unsafe]
fn (mut a array) push_many_noscan(val voidptr, size int) {
if size == 0 || val == unsafe { nil } {
return
}
new_len := i64(a.len) + i64(size)
if new_len > max_int {
// string interpolation also uses <<; avoid it, use a fixed string for the panic
panic('array.push_many_noscan: new len exceeds max_int')
}
if a.data == val && a.data != 0 {
// handle `arr << arr`
copy := a.clone()
a.ensure_cap_noscan(a.len + size)
unsafe {
vmemcpy(a.get_unsafe(a.len), copy.data, u64(a.element_size) * u64(size))
}
} else {
a.ensure_cap_noscan(a.len + size)
if a.data != 0 && val != 0 {
unsafe { vmemcpy(a.get_unsafe(a.len), val, u64(a.element_size) * u64(size)) }
}
}
a.len = int(new_len)
}
// reverse returns a new array with the elements of the original array in reverse order.
fn (a array) reverse_noscan() array {
if a.len < 2 {
return a
}
mut arr := array{
element_size: a.element_size
data: vcalloc_noscan(u64(a.cap) * u64(a.element_size))
len: a.len
cap: a.cap
}
for i in 0 .. a.len {
unsafe { arr.set_unsafe(i, a.get_unsafe(a.len - 1 - i)) }
}
return arr
}
// grow_cap grows the array's capacity by `amount` elements.
fn (mut a array) grow_cap_noscan(amount int) {
new_cap := i64(amount) + i64(a.cap)
if new_cap > max_int {
panic_n('array.grow_cap: max_int will be exceeded by new cap:', new_cap)
}
a.ensure_cap_noscan(int(new_cap))
}
// grow_len ensures that an array has a.len + amount of length
@[unsafe]
fn (mut a array) grow_len_noscan(amount int) {
new_len := i64(amount) + i64(a.len)
if new_len > max_int {
panic_n('array.grow_len: max_int will be exceeded by new len:', new_len)
}
a.ensure_cap_noscan(int(new_len))
a.len = int(new_len)
}