v/vlib/encoding/binary/serialize.v

505 lines
10 KiB
V

module binary
struct EncodeState {
mut:
b []u8
// pre-allocated buffers
b2 []u8 = [u8(0), 0]
b4 []u8 = [u8(0), 0, 0, 0]
b8 []u8 = [u8(0), 0, 0, 0, 0, 0, 0, 0]
big_endian bool
}
@[params]
pub struct EncodeConfig {
pub mut:
buffer_len int = 1024
big_endian bool // use big endian encoding the data
}
// encode_binary encode a T type data into u8 array.
// for encoding struct, you can use `@[serialize: '-']` to skip field.
pub fn encode_binary[T](obj T, config EncodeConfig) ![]u8 {
mut s := EncodeState{
b: []u8{cap: config.buffer_len}
big_endian: config.big_endian
}
$if T is $array {
encode_array(mut s, obj)!
} $else $if T is $string {
encode_string(mut s, obj)!
} $else $if T is $struct {
encode_struct(mut s, obj)!
} $else $if T is $map {
encode_map(mut s, obj)!
} $else {
encode_primitive(mut s, obj)!
}
return s.b
}
fn encode_struct[T](mut s EncodeState, obj T) ! {
$for field in T.fields {
mut is_skip := false
for attr in field.attrs {
f := attr.split_any(':')
if f.len == 2 {
match f[0].trim_space() {
'serialize' {
// @[serialize:'-']
if f[1].trim_space() == '-' {
is_skip = true
}
}
else {}
}
}
}
if !is_skip {
value := obj.$(field.name)
$if field.typ is $array {
encode_array(mut s, value)!
} $else $if field.typ is $string {
encode_string(mut s, value)!
} $else $if field.typ is $struct {
encode_struct(mut s, value)!
} $else $if field.typ is $map {
encode_map(mut s, value)!
} $else {
encode_primitive(mut s, value)!
}
}
}
}
// help unions for bypass `-cstrict`/ `-Wstrict-aliasing` check.
union U32_F32 {
u u32
f f32
}
union U64_F64 {
u u64
f f64
}
fn encode_primitive[T](mut s EncodeState, value T) ! {
$if T is int {
// NOTE: `int` always use 64bit
s.put_u64(u64(value))
} $else $if T is u8 {
s.put_u8(u8(value))
} $else $if T is u16 {
s.put_u16(u16(value))
} $else $if T is u32 {
s.put_u32(u32(value))
} $else $if T is u64 {
s.put_u64(u64(value))
} $else $if T is i8 {
s.put_u8(u8(value))
} $else $if T is i16 {
s.put_u16(u16(value))
} $else $if T is i32 {
s.put_u32(u32(value))
} $else $if T is i64 {
s.put_u64(u64(value))
} $else $if T is f32 {
unsafe { s.put_u32(U32_F32{ f: value }.u) }
} $else $if T is f64 {
unsafe { s.put_u64(U64_F64{ f: value }.u) }
} $else $if T is bool {
s.put_u8(u8(value))
} $else $if T is rune {
s.put_u32(u32(value))
} $else $if T is isize {
if sizeof(isize) == 4 {
s.put_u32(u32(value))
} else {
s.put_u64(u64(value))
}
} $else $if T is usize {
if sizeof(usize) == 4 {
s.put_u32(u32(value))
} else {
s.put_u64(u64(value))
}
} $else $if T is voidptr {
s.put_u64(u64(value))
} $else {
// TODO: `any` type support?
return error('${@FN}(): unsupported type ${typeof(value).name}')
}
}
fn encode_array[T](mut s EncodeState, arr []T) ! {
s.put_u64(u64(arr.len))
$if T is u8 {
// optimization for `[]u8`
s.b << arr
} $else {
for element in arr {
$if T is $string {
encode_string(mut s, element)!
} $else $if T is $struct {
encode_struct(mut s, element)!
} $else $if T is $map {
encode_map(mut s, element)!
} $else {
encode_primitive(mut s, element)!
}
}
}
}
fn encode_string(mut s EncodeState, str string) ! {
s.put_u64(u64(str.len))
s.b << str.bytes()
}
fn encode_map[K, V](mut s EncodeState, m map[K]V) ! {
s.put_u64(u64(m.len))
for k, v in m {
// encode key first
// Maps can have keys of type string, rune, integer, float or voidptr.
$if K is $string {
encode_string(mut s, k)!
} $else {
encode_primitive(mut s, k)!
}
// encode value
$if V is $string {
encode_string(mut s, v)!
} $else $if V is $struct {
encode_struct(mut s, v)!
} $else $if V is $map {
encode_map(mut s, v)!
} $else {
encode_primitive(mut s, v)!
}
}
}
struct DecodeState {
mut:
b []u8
b2 []u8 = [u8(0), 0]
b4 []u8 = [u8(0), 0, 0, 0]
b8 []u8 = [u8(0), 0, 0, 0, 0, 0, 0, 0]
offset int
big_endian bool
}
@[params]
pub struct DecodeConfig {
pub mut:
buffer_len int = 1024
big_endian bool // use big endian decode the data
}
// decode_binary decode a u8 array into T type data.
// for decoding struct, you can use `@[serialize: '-']` to skip field.
pub fn decode_binary[T](b []u8, config DecodeConfig) !T {
mut s := DecodeState{
b: b
big_endian: config.big_endian
}
$if T is $array {
return decode_array(mut s, T{})!
} $else $if T is $string {
return decode_string(mut s)!
} $else $if T is $struct {
return decode_struct(mut s, T{})!
} $else $if T is $map {
return decode_map(mut s, T{})!
} $else {
return decode_primitive(mut s, unsafe { T(0) })!
}
}
fn decode_struct[T](mut s DecodeState, _ T) !T {
mut obj := T{}
$for field in T.fields {
mut is_skip := false
for attr in field.attrs {
f := attr.split_any(':')
if f.len == 2 {
match f[0].trim_space() {
'serialize' {
// @[serialize:'-']
if f[1].trim_space() == '-' {
is_skip = true
}
}
else {}
}
}
}
if !is_skip {
$if field.typ is $array {
obj.$(field.name) = decode_array(mut s, obj.$(field.name))!
} $else $if field.typ is $string {
obj.$(field.name) = decode_string(mut s)!
} $else $if field.typ is $struct {
obj.$(field.name) = decode_struct(mut s, obj.$(field.name))!
} $else $if field.typ is $map {
obj.$(field.name) = decode_map(mut s, obj.$(field.name))!
} $else {
obj.$(field.name) = decode_primitive(mut s, obj.$(field.name))!
}
}
}
return obj
}
fn decode_primitive[T](mut s DecodeState, value T) !T {
$if T is int {
// NOTE: int always use 64bit
return T(s.get_u64()!)
} $else $if T is u8 {
return T(s.get_u8()!)
} $else $if T is u16 {
return T(s.get_u16()!)
} $else $if T is u32 {
return T(s.get_u32()!)
} $else $if T is u64 {
return T(s.get_u64()!)
} $else $if T is i8 {
return T(s.get_u8()!)
} $else $if T is i16 {
return T(s.get_u16()!)
} $else $if T is i32 {
return T(s.get_u32()!)
} $else $if T is i64 {
return T(s.get_u64()!)
} $else $if T is f32 {
v := s.get_u32()!
return unsafe {
U32_F32{
u: v
}.f
}
} $else $if T is f64 {
v := s.get_u64()!
return unsafe {
U64_F64{
u: v
}.f
}
} $else $if T is bool {
return s.get_u8()! != 0
} $else $if T is rune {
return T(s.get_u32()!)
} $else $if T is isize {
if sizeof(isize) == 4 {
return T(s.get_u32()!)
} else {
return T(s.get_u64()!)
}
} $else $if T is usize {
if sizeof(usize) == 4 {
return T(s.get_u32()!)
} else {
return T(s.get_u64()!)
}
} $else $if T is voidptr {
return T(s.get_u64()!)
} $else {
// TODO: `any` type support?
return error('${@FN}(): unsupported type ${typeof(value).name}')
}
return error('${@FN}(): impossible error')
}
fn decode_array[T](mut s DecodeState, _ []T) ![]T {
len := int(s.get_u64()!)
if len <= 0 || s.offset + len > s.b.len {
return error('${@FN}(): invalid array length decode from stream')
}
mut arr := []T{cap: len}
$if T is u8 {
// optimization for `[]u8`
arr << s.b[s.offset..s.offset + len]
s.offset += len
} $else {
for _ in 0 .. len {
if s.offset >= s.b.len {
return error('${@FN}(): unexpected end of data')
}
$if T is $array {
arr << decode_array(mut s, T{})!
} $else $if T is $string {
arr << decode_string(mut s)!
} $else $if T is $struct {
arr << decode_struct(mut s, T{})!
} $else $if T is $map {
arr << decode_map(mut s, T{})!
} $else {
arr << decode_primitive(mut s, unsafe { T(0) })!
}
}
}
return arr
}
fn decode_string(mut s DecodeState) !string {
len := int(s.get_u64()!)
if len <= 0 || s.offset + len > s.b.len {
return error('${@FN}(): invalid string length decode from stream')
}
str := unsafe { s.b[s.offset..s.offset + len].bytestr() }
s.offset += len
return str
}
// `Any` is a sum type that lists the possible types to be decoded and used.
type Any = int
| bool
| f64
| f32
| i64
| i32
| i16
| i8
| map[string]Any
| map[int]Any
| string
| u64
| u32
| u16
| u8
| rune
| isize
| usize
| []Any
fn decode_map[K, V](mut s DecodeState, _ map[K]V) !map[K]V {
len := int(s.get_u64()!)
if len <= 0 || s.offset + len > s.b.len {
return error('${@FN}(): invalid map length decode from stream')
}
mut m := map[K]V{}
for _ in 0 .. len {
// decode key first
// Maps can have keys of type string, rune, integer, float or voidptr.
mut k := Any(0)
$if K is $string {
k = decode_string(mut s)!
} $else {
k = decode_primitive(mut s, unsafe { K(0) })!
}
// decode value
$if V is $struct {
v := decode_struct(mut s, V{})!
m[k as K] = v
} $else $if V is $map {
v := decode_map(mut s, V{})!
m[k as K] = v
} $else $if V is $string {
v := decode_string(mut s)!
m[k as K] = v
} $else {
v := decode_primitive(mut s, unsafe { V(0) })!
m[k as K] = v
}
}
return m
}
@[inline]
fn (mut s DecodeState) get_u64() !u64 {
if s.offset + 8 > s.b.len {
return error('${@FN}(): bytes length is not enough for u64')
}
defer {
s.offset += 8
}
if s.big_endian {
return big_endian_u64_at(s.b, s.offset)
} else {
return little_endian_u64_at(s.b, s.offset)
}
}
@[inline]
fn (mut s DecodeState) get_u32() !u32 {
if s.offset + 4 > s.b.len {
return error('${@FN}(): bytes length is not enough for u32')
}
defer {
s.offset += 4
}
if s.big_endian {
return big_endian_u32_at(s.b, s.offset)
} else {
return little_endian_u32_at(s.b, s.offset)
}
}
@[inline]
fn (mut s DecodeState) get_u16() !u16 {
if s.offset + 2 > s.b.len {
return error('${@FN}(): bytes length is not enough for u16')
}
defer {
s.offset += 2
}
if s.big_endian {
return big_endian_u16_at(s.b, s.offset)
} else {
return little_endian_u16_at(s.b, s.offset)
}
}
@[inline]
fn (mut s DecodeState) get_u8() !u8 {
if s.offset + 1 > s.b.len {
return error('${@FN}(): bytes length is not enough for u8')
}
defer {
s.offset += 1
}
return s.b[s.offset]
}
@[inline]
fn (mut s EncodeState) put_u64(value u64) {
if s.big_endian {
big_endian_put_u64(mut s.b8, value)
} else {
little_endian_put_u64(mut s.b8, value)
}
s.b << s.b8
}
@[inline]
fn (mut s EncodeState) put_u32(value u32) {
if s.big_endian {
big_endian_put_u32(mut s.b4, value)
} else {
little_endian_put_u32(mut s.b4, value)
}
s.b << s.b4
}
@[inline]
fn (mut s EncodeState) put_u16(value u16) {
if s.big_endian {
big_endian_put_u16(mut s.b2, value)
} else {
little_endian_put_u16(mut s.b2, value)
}
s.b << s.b2
}
@[inline]
fn (mut s EncodeState) put_u8(value u8) {
s.b << value
}