[EXPERIMENTAL, DO NOT MERGE] adler32-avx-32bit-bytesums

This commit is contained in:
Eric Biggers 2018-12-26 09:57:17 -06:00
parent 166084acaa
commit d2d51dcc0c

View File

@ -33,9 +33,7 @@
* of which halves the vector length, until just one counter remains.
*
* The s1 reductions don't depend on the s2 reductions and vice versa, so for
* efficiency they are interleaved. Also, every other s1 counter is 0 due to
* the 'psadbw' instruction (_mm_sad_epu8) summing groups of 8 bytes rather than
* 4; hence, one of the s1 reductions is skipped when going from 128 => 32 bits.
* efficiency they are interleaved.
*/
#define ADLER32_FINISH_VEC_CHUNK_128(s1, s2, v_s1, v_s2) \
@ -43,6 +41,7 @@
__v4su s1_last = (v_s1), s2_last = (v_s2); \
\
/* 128 => 32 bits */ \
s1_last += (__v4su)_mm_shuffle_epi32((__m128i)s1_last, 0x31); \
s2_last += (__v4su)_mm_shuffle_epi32((__m128i)s2_last, 0x31); \
s1_last += (__v4su)_mm_shuffle_epi32((__m128i)s1_last, 0x02); \
s2_last += (__v4su)_mm_shuffle_epi32((__m128i)s2_last, 0x02); \
@ -108,46 +107,50 @@ adler32_avx512bw_chunk(const __m512i *p, const __m512i *const end,
u32 *s1, u32 *s2)
{
const __m512i zeroes = _mm512_setzero_si512();
const __v64qi multipliers = (__v64qi){
64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49,
48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,
32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
};
const __v32hi ones = (__v32hi)_mm512_set1_epi16(1);
__v16si v_s1 = (__v16si)zeroes;
__v16si v_s1_sums = (__v16si)zeroes;
__v16si v_s2 = (__v16si)zeroes;
__v16si s1_a = (__v16si)zeroes;
__v16si s1_b = (__v16si)zeroes;
__v16si s1_c = (__v16si)zeroes;
__v16si s1_d = (__v16si)zeroes;
__v16si s2_a = (__v16si)zeroes;
__v16si s2_b = (__v16si)zeroes;
__v16si s2_c = (__v16si)zeroes;
__v16si s2_d = (__v16si)zeroes;
do {
/* Load the next 64-byte segment */
__m512i bytes = *p++;
const __m128i *p128 = (const __m128i *)p;
__v16si bytes_a = (__v16si)_mm512_cvtepu8_epi32(p128[0]);
__v16si bytes_b = (__v16si)_mm512_cvtepu8_epi32(p128[1]);
__v16si bytes_c = (__v16si)_mm512_cvtepu8_epi32(p128[2]);
__v16si bytes_d = (__v16si)_mm512_cvtepu8_epi32(p128[3]);
/* Multiply the bytes by 64...1 (the number of times they need
* to be added to s2) and add adjacent products */
__v32hi sums = (__v32hi)_mm512_maddubs_epi16(
bytes, (__m512i)multipliers);
s2_a += s1_a;
s2_b += s1_b;
s2_c += s1_c;
s2_d += s1_d;
/* Keep sum of all previous s1 counters, for adding to s2 later.
* This allows delaying the multiplication by 64 to the end. */
v_s1_sums += v_s1;
s1_a += bytes_a;
s1_b += bytes_b;
s1_c += bytes_c;
s1_d += bytes_d;
} while (++p != end);
/* Add the sum of each group of 8 bytes to the corresponding s1
* counter */
v_s1 += (__v16si)_mm512_sad_epu8(bytes, zeroes);
s2_a += s2_c;
s2_b += s2_d;
s2_a += s2_b;
/* Add the sum of each group of 4 products of the bytes by
* 64...1 to the corresponding s2 counter */
v_s2 += (__v16si)_mm512_madd_epi16((__m512i)sums,
(__m512i)ones);
} while (p != end);
s2_a = (__v16si)_mm512_slli_epi32((__m512i)s2_a, 5);
/* Finish the s2 counters by adding the sum of the s1 values at the
* beginning of each segment, multiplied by the segment size (64) */
v_s2 += (__v16si)_mm512_slli_epi32((__m512i)v_s1_sums, 6);
s2_a += s1_a * (__v16si){64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49};
s2_a += s1_b * (__v16si){48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33};
s2_a += s1_c * (__v16si){32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17};
s2_a += s1_d * (__v16si){16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
s1_a += s1_c;
s1_b += s1_d;
s1_a += s1_b;
/* Add the counters to the real s1 and s2 */
ADLER32_FINISH_VEC_CHUNK_512(s1, s2, v_s1, v_s2);
ADLER32_FINISH_VEC_CHUNK_512(s1, s2, s1_a, s2_a);
}
# include "../adler32_vec_template.h"
#endif /* AVX-512BW implementation */
@ -175,43 +178,67 @@ static forceinline ATTRIBUTES void
adler32_avx2_chunk(const __m256i *p, const __m256i *const end, u32 *s1, u32 *s2)
{
const __m256i zeroes = _mm256_setzero_si256();
const __v32qu multipliers = (__v32qu){
32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17,
16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
__v8su s1_a = (__v8su)zeroes;
__v8su s1_b = (__v8su)zeroes;
__v8su s1_c = (__v8su)zeroes;
__v8su s1_d = (__v8su)zeroes;
__v8su s2_a = (__v8su)zeroes;
__v8su s2_b = (__v8su)zeroes;
__v8su s2_c = (__v8su)zeroes;
__v8su s2_d = (__v8su)zeroes;
const __m256i shuf_a = (__m256i)(__v32qi){
0, -1, -1, -1, 4, -1, -1, -1, 8, -1, -1, -1, 12, -1, -1, -1,
0, -1, -1, -1, 4, -1, -1, -1, 8, -1, -1, -1, 12, -1, -1, -1
};
const __m256i shuf_b = (__m256i)(__v32qi){
1, -1, -1, -1, 5, -1, -1, -1, 9, -1, -1, -1, 13, -1, -1, -1,
1, -1, -1, -1, 5, -1, -1, -1, 9, -1, -1, -1, 13, -1, -1, -1
};
const __m256i shuf_c = (__m256i)(__v32qi){
2, -1, -1, -1, 6, -1, -1, -1, 10, -1, -1, -1, 14, -1, -1, -1,
2, -1, -1, -1, 6, -1, -1, -1, 10, -1, -1, -1, 14, -1, -1, -1
};
const __m256i shuf_d = (__m256i)(__v32qi){
3, -1, -1, -1, 7, -1, -1, -1, 11, -1, -1, -1, 15, -1, -1, -1,
3, -1, -1, -1, 7, -1, -1, -1, 11, -1, -1, -1, 15, -1, -1, -1
};
const __v16hu ones = (__v16hu)_mm256_set1_epi16(1);
__v8su v_s1 = (__v8su)zeroes;
__v8su v_s1_sums = (__v8su)zeroes;
__v8su v_s2 = (__v8su)zeroes;
do {
/* Load the next 32-byte segment */
__m256i bytes = *p++;
__v8su bytes_a = (__v8su)_mm256_shuffle_epi8(bytes, shuf_a);
__v8su bytes_b = (__v8su)_mm256_shuffle_epi8(bytes, shuf_b);
__v8su bytes_c = (__v8su)_mm256_shuffle_epi8(bytes, shuf_c);
__v8su bytes_d = (__v8su)_mm256_shuffle_epi8(bytes, shuf_d);
/* Multiply the bytes by 32...1 (the number of times they need
* to be added to s2) and add adjacent products */
__v16hu sums = (__v16hu)_mm256_maddubs_epi16(
bytes, (__m256i)multipliers);
s2_a += s1_a;
s2_b += s1_b;
s2_c += s1_c;
s2_d += s1_d;
/* Keep sum of all previous s1 counters, for adding to s2 later.
* This allows delaying the multiplication by 32 to the end. */
v_s1_sums += v_s1;
s1_a += bytes_a;
s1_b += bytes_b;
s1_c += bytes_c;
s1_d += bytes_d;
/* Add the sum of each group of 8 bytes to the corresponding s1
* counter */
v_s1 += (__v8su)_mm256_sad_epu8(bytes, zeroes);
/* Add the sum of each group of 4 products of the bytes by
* 32...1 to the corresponding s2 counter */
v_s2 += (__v8su)_mm256_madd_epi16((__m256i)sums, (__m256i)ones);
} while (p != end);
/* Finish the s2 counters by adding the sum of the s1 values at the
* beginning of each segment, multiplied by the segment size (32) */
v_s2 += (__v8su)_mm256_slli_epi32((__m256i)v_s1_sums, 5);
s2_a += s2_c;
s2_b += s2_d;
s2_a += s2_b;
s2_a = (__v8su)_mm256_slli_epi32((__m256i)s2_a, 5);
s2_a += s1_a * (__v8su){ 32, 28, 24, 20, 16, 12, 8, 4 };
s2_a += s1_b * (__v8su){ 31, 27, 23, 19, 15, 11, 7, 3 };
s2_a += s1_c * (__v8su){ 30, 26, 22, 18, 14, 10, 6, 2 };
s2_a += s1_d * (__v8su){ 29, 25, 21, 17, 13, 9, 5, 1 };
s1_a += s1_c;
s1_b += s1_d;
s1_a += s1_b;
/* Add the counters to the real s1 and s2 */
ADLER32_FINISH_VEC_CHUNK_256(s1, s2, v_s1, v_s2);
ADLER32_FINISH_VEC_CHUNK_256(s1, s2, s1_a, s2_a);
}
# include "../adler32_vec_template.h"
#endif /* AVX2 implementation */