Choose BMI2-optimized decompression routine at runtime

This commit is contained in:
Eric Biggers 2016-01-22 23:54:33 -06:00
parent 16f3b420a0
commit e731f4b510
5 changed files with 621 additions and 352 deletions

View File

@ -29,6 +29,10 @@ SUPPORT_NEAR_OPTIMAL_PARSING := yes
# This is faster but ***insecure***! Default to secure.
UNSAFE_DECOMPRESSION := no
# Will the decompressor detect CPU features at runtime in order to run more
# optimized code? This only affects some platforms and architectures.
RUNTIME_CPU_DETECTION := yes
# The compiler and archiver
CC := gcc
AR := ar
@ -62,12 +66,19 @@ ifeq ($(UNSAFE_DECOMPRESSION),yes)
override CFLAGS += -DUNSAFE_DECOMPRESSION=1
endif
ifeq ($(RUNTIME_CPU_DETECTION),yes)
override CFLAGS += -DRUNTIME_CPU_DETECTION=1
endif
SRC := src/aligned_malloc.c
ifeq ($(SUPPORT_COMPRESSION),yes)
SRC += src/deflate_compress.c
endif
ifeq ($(SUPPORT_DECOMPRESSION),yes)
SRC += src/deflate_decompress.c
ifeq ($(RUNTIME_CPU_DETECTION),yes)
SRC += src/x86_cpu_features.c
endif
endif
ifeq ($(SUPPORT_ZLIB),yes)
ifeq ($(SUPPORT_COMPRESSION),yes)

364
src/decompress_impl.h Normal file
View File

@ -0,0 +1,364 @@
/*
* decompress_impl.h
*
* The actual DEFLATE decompression routine, lifted out of deflate_decompress.c
* so that it can be compiled multiple times with different target instruction
* sets.
*/
static bool ATTRIBUTES
FUNCNAME(struct deflate_decompressor * restrict d,
const void * restrict in, size_t in_nbytes,
void * restrict out, size_t out_nbytes)
{
u8 *out_next = out;
u8 * const out_end = out_next + out_nbytes;
const u8 *in_next = in;
const u8 * const in_end = in_next + in_nbytes;
bitbuf_t bitbuf = 0;
unsigned bitsleft = 0;
size_t overrun_count = 0;
unsigned i;
unsigned is_final_block;
unsigned block_type;
u16 len;
u16 nlen;
unsigned num_litlen_syms;
unsigned num_offset_syms;
next_block:
/* Starting to read the next block. */
;
STATIC_ASSERT(CAN_ENSURE(1 + 2 + 5 + 5 + 4));
ENSURE_BITS(1 + 2 + 5 + 5 + 4);
/* BFINAL: 1 bit */
is_final_block = POP_BITS(1);
/* BTYPE: 2 bits */
block_type = POP_BITS(2);
if (block_type == DEFLATE_BLOCKTYPE_DYNAMIC_HUFFMAN) {
/* Dynamic Huffman block. */
/* The order in which precode lengths are stored. */
static const u8 deflate_precode_lens_permutation[DEFLATE_NUM_PRECODE_SYMS] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
unsigned num_explicit_precode_lens;
/* Read the codeword length counts. */
STATIC_ASSERT(DEFLATE_NUM_LITLEN_SYMS == ((1 << 5) - 1) + 257);
num_litlen_syms = POP_BITS(5) + 257;
STATIC_ASSERT(DEFLATE_NUM_OFFSET_SYMS == ((1 << 5) - 1) + 1);
num_offset_syms = POP_BITS(5) + 1;
STATIC_ASSERT(DEFLATE_NUM_PRECODE_SYMS == ((1 << 4) - 1) + 4);
num_explicit_precode_lens = POP_BITS(4) + 4;
/* Read the precode codeword lengths. */
STATIC_ASSERT(DEFLATE_MAX_PRE_CODEWORD_LEN == (1 << 3) - 1);
if (CAN_ENSURE(DEFLATE_NUM_PRECODE_SYMS * 3)) {
ENSURE_BITS(DEFLATE_NUM_PRECODE_SYMS * 3);
for (i = 0; i < num_explicit_precode_lens; i++)
d->precode_lens[deflate_precode_lens_permutation[i]] = POP_BITS(3);
} else {
for (i = 0; i < num_explicit_precode_lens; i++) {
ENSURE_BITS(3);
d->precode_lens[deflate_precode_lens_permutation[i]] = POP_BITS(3);
}
}
for (; i < DEFLATE_NUM_PRECODE_SYMS; i++)
d->precode_lens[deflate_precode_lens_permutation[i]] = 0;
/* Build the decode table for the precode. */
SAFETY_CHECK(build_precode_decode_table(d));
/* Expand the literal/length and offset codeword lengths. */
for (i = 0; i < num_litlen_syms + num_offset_syms; ) {
u32 entry;
unsigned presym;
u8 rep_val;
unsigned rep_count;
ENSURE_BITS(DEFLATE_MAX_PRE_CODEWORD_LEN + 7);
/* (The code below assumes that the precode decode table
* does not have any subtables.) */
STATIC_ASSERT(PRECODE_TABLEBITS == DEFLATE_MAX_PRE_CODEWORD_LEN);
/* Read the next precode symbol. */
entry = d->precode_decode_table[BITS(DEFLATE_MAX_PRE_CODEWORD_LEN)];
REMOVE_BITS(entry & HUFFDEC_LENGTH_MASK);
presym = entry >> HUFFDEC_RESULT_SHIFT;
if (presym < 16) {
/* Explicit codeword length */
d->lens[i++] = presym;
continue;
}
/* Run-length encoded codeword lengths */
/* Note: we don't need verify that the repeat count
* doesn't overflow the number of elements, since we
* have enough extra spaces to allow for the worst-case
* overflow (138 zeroes when only 1 length was
* remaining).
*
* In the case of the small repeat counts (presyms 16
* and 17), it is fastest to always write the maximum
* number of entries. That gets rid of branches that
* would otherwise be required.
*
* It is not just because of the numerical order that
* our checks go in the order 'presym < 16', 'presym ==
* 16', and 'presym == 17'. For typical data this is
* ordered from most frequent to least frequent case.
*/
STATIC_ASSERT(DEFLATE_MAX_LENS_OVERRUN == 138 - 1);
if (presym == 16) {
/* Repeat the previous length 3 - 6 times */
SAFETY_CHECK(i != 0);
rep_val = d->lens[i - 1];
STATIC_ASSERT(3 + ((1 << 2) - 1) == 6);
rep_count = 3 + POP_BITS(2);
d->lens[i + 0] = rep_val;
d->lens[i + 1] = rep_val;
d->lens[i + 2] = rep_val;
d->lens[i + 3] = rep_val;
d->lens[i + 4] = rep_val;
d->lens[i + 5] = rep_val;
i += rep_count;
} else if (presym == 17) {
/* Repeat zero 3 - 10 times */
STATIC_ASSERT(3 + ((1 << 3) - 1) == 10);
rep_count = 3 + POP_BITS(3);
d->lens[i + 0] = 0;
d->lens[i + 1] = 0;
d->lens[i + 2] = 0;
d->lens[i + 3] = 0;
d->lens[i + 4] = 0;
d->lens[i + 5] = 0;
d->lens[i + 6] = 0;
d->lens[i + 7] = 0;
d->lens[i + 8] = 0;
d->lens[i + 9] = 0;
i += rep_count;
} else {
/* Repeat zero 11 - 138 times */
STATIC_ASSERT(11 + ((1 << 7) - 1) == 138);
rep_count = 11 + POP_BITS(7);
memset(&d->lens[i], 0, rep_count * sizeof(d->lens[i]));
i += rep_count;
}
}
} else if (block_type == DEFLATE_BLOCKTYPE_UNCOMPRESSED) {
/* Uncompressed block: copy 'len' bytes literally from the input
* buffer to the output buffer. */
ALIGN_INPUT();
SAFETY_CHECK(in_end - in_next >= 4);
len = READ_U16();
nlen = READ_U16();
SAFETY_CHECK(len == (u16)~nlen);
SAFETY_CHECK(len <= out_end - out_next);
SAFETY_CHECK(len <= in_end - in_next);
memcpy(out_next, in_next, len);
in_next += len;
out_next += len;
goto block_done;
} else {
SAFETY_CHECK(block_type == DEFLATE_BLOCKTYPE_STATIC_HUFFMAN);
/* Static Huffman block: set the static Huffman codeword
* lengths. Then the remainder is the same as decompressing a
* dynamic Huffman block. */
STATIC_ASSERT(DEFLATE_NUM_LITLEN_SYMS == 288);
STATIC_ASSERT(DEFLATE_NUM_OFFSET_SYMS == 32);
for (i = 0; i < 144; i++)
d->lens[i] = 8;
for (; i < 256; i++)
d->lens[i] = 9;
for (; i < 280; i++)
d->lens[i] = 7;
for (; i < 288; i++)
d->lens[i] = 8;
for (; i < 288 + 32; i++)
d->lens[i] = 5;
num_litlen_syms = 288;
num_offset_syms = 32;
}
/* Decompressing a Huffman block (either dynamic or static) */
SAFETY_CHECK(build_offset_decode_table(d, num_litlen_syms, num_offset_syms));
SAFETY_CHECK(build_litlen_decode_table(d, num_litlen_syms, num_offset_syms));
/* The main DEFLATE decode loop */
for (;;) {
u32 entry;
u32 length;
u32 offset;
/* Decode a litlen symbol. */
ENSURE_BITS(DEFLATE_MAX_LITLEN_CODEWORD_LEN);
entry = d->litlen_decode_table[BITS(LITLEN_TABLEBITS)];
if (entry & HUFFDEC_SUBTABLE_POINTER) {
/* Litlen subtable required (uncommon case) */
REMOVE_BITS(LITLEN_TABLEBITS);
entry = d->litlen_decode_table[
((entry >> HUFFDEC_RESULT_SHIFT) & 0xFFFF) +
BITS(entry & HUFFDEC_LENGTH_MASK)];
}
REMOVE_BITS(entry & HUFFDEC_LENGTH_MASK);
if (entry & HUFFDEC_LITERAL) {
/* Literal */
SAFETY_CHECK(out_next < out_end);
*out_next++ = (u8)(entry >> HUFFDEC_RESULT_SHIFT);
continue;
}
/* Match or end-of-block */
entry >>= HUFFDEC_RESULT_SHIFT;
ENSURE_BITS(MAX_ENSURE);
/* Pop the extra length bits and add them to the length base to
* produce the full length. */
length = (entry >> HUFFDEC_LENGTH_BASE_SHIFT) +
POP_BITS(entry & HUFFDEC_EXTRA_LENGTH_BITS_MASK);
/* The match destination must not end after the end of the
* output buffer. For efficiency, combine this check with the
* end-of-block check. We're using 0 for the special
* end-of-block length, so subtract 1 and it turn it into
* SIZE_MAX. */
STATIC_ASSERT(HUFFDEC_END_OF_BLOCK_LENGTH == 0);
if (unlikely((size_t)length - 1 > out_end - out_next)) {
SAFETY_CHECK(length == HUFFDEC_END_OF_BLOCK_LENGTH);
goto block_done;
}
/* Decode the match offset. */
entry = d->offset_decode_table[BITS(OFFSET_TABLEBITS)];
if (entry & HUFFDEC_SUBTABLE_POINTER) {
/* Offset subtable required (uncommon case) */
REMOVE_BITS(OFFSET_TABLEBITS);
entry = d->offset_decode_table[
((entry >> HUFFDEC_RESULT_SHIFT) & 0xFFFF) +
BITS(entry & HUFFDEC_LENGTH_MASK)];
}
REMOVE_BITS(entry & HUFFDEC_LENGTH_MASK);
entry >>= HUFFDEC_RESULT_SHIFT;
STATIC_ASSERT(CAN_ENSURE(DEFLATE_MAX_EXTRA_LENGTH_BITS +
DEFLATE_MAX_OFFSET_CODEWORD_LEN) &&
CAN_ENSURE(DEFLATE_MAX_EXTRA_OFFSET_BITS));
if (!CAN_ENSURE(DEFLATE_MAX_EXTRA_LENGTH_BITS +
DEFLATE_MAX_OFFSET_CODEWORD_LEN +
DEFLATE_MAX_EXTRA_OFFSET_BITS))
ENSURE_BITS(DEFLATE_MAX_EXTRA_OFFSET_BITS);
/* Pop the extra offset bits and add them to the offset base to
* produce the full offset. */
offset = (entry & HUFFDEC_OFFSET_BASE_MASK) +
POP_BITS(entry >> HUFFDEC_EXTRA_OFFSET_BITS_SHIFT);
/* The match source must not begin before the beginning of the
* output buffer. */
SAFETY_CHECK(offset <= out_next - (const u8 *)out);
/* Copy the match: 'length' bytes at 'out_next - offset' to
* 'out_next'. */
if (UNALIGNED_ACCESS_IS_FAST &&
length <= (3 * WORDSIZE) &&
offset >= WORDSIZE &&
length + (3 * WORDSIZE) <= out_end - out_next)
{
/* Fast case: short length, no overlaps if we copy one
* word at a time, and we aren't getting too close to
* the end of the output array. */
copy_word_unaligned(out_next - offset + (0 * WORDSIZE),
out_next + (0 * WORDSIZE));
copy_word_unaligned(out_next - offset + (1 * WORDSIZE),
out_next + (1 * WORDSIZE));
copy_word_unaligned(out_next - offset + (2 * WORDSIZE),
out_next + (2 * WORDSIZE));
} else {
const u8 *src = out_next - offset;
u8 *dst = out_next;
u8 *end = out_next + length;
if (UNALIGNED_ACCESS_IS_FAST &&
likely(out_end - end >= WORDSIZE - 1)) {
if (offset >= WORDSIZE) {
copy_word_unaligned(src, dst);
src += WORDSIZE;
dst += WORDSIZE;
if (dst < end) {
do {
copy_word_unaligned(src, dst);
src += WORDSIZE;
dst += WORDSIZE;
} while (dst < end);
}
} else if (offset == 1) {
machine_word_t v = repeat_byte(*(dst - 1));
do {
store_word_unaligned(v, dst);
src += WORDSIZE;
dst += WORDSIZE;
} while (dst < end);
} else {
*dst++ = *src++;
*dst++ = *src++;
do {
*dst++ = *src++;
} while (dst < end);
}
} else {
*dst++ = *src++;
*dst++ = *src++;
do {
*dst++ = *src++;
} while (dst < end);
}
}
out_next += length;
}
block_done:
/* Finished decoding a block. */
if (!is_final_block)
goto next_block;
/* That was the last block. Return %true if we got all the output we
* expected, otherwise %false. */
return (out_next == out_end);
}

View File

@ -10,8 +10,9 @@
* ---------------------------------------------------------------------------
*
* This is a highly optimized DEFLATE decompressor. On x86_64 it decompresses
* data in about 52% of the time of zlib. On other architectures it should
* still be significantly faster than zlib, but the difference may be smaller.
* data in about 52% of the time of zlib (48% if BMI2 instructions are
* available). On other architectures it should still be significantly faster
* than zlib, but the difference may be smaller.
*
* Why this is faster than zlib's implementation:
*
@ -22,6 +23,8 @@
* - Other optimizations to remove unnecessary branches
* - Only full-buffer decompression is supported, so the code doesn't need to
* support stopping and resuming decompression.
* - On x86_64, compile a version of the decompression routine using BMI2
* instructions and use it automatically at runtime when supported.
*/
#include <stdlib.h>
@ -31,6 +34,7 @@
#include "deflate_constants.h"
#include "unaligned.h"
#include "x86_cpu_features.h"
/* By default, if the expression passed to SAFETY_CHECK() evaluates to false,
* then deflate_decompress() immediately returns false as the compressed data is
@ -793,6 +797,50 @@ copy_word_unaligned(const void *src, void *dst)
* Main decompression routine
*****************************************************************************/
#define FUNCNAME deflate_decompress_default
#define ATTRIBUTES
#include "decompress_impl.h"
#undef FUNCNAME
#undef ATTRIBUTES
#if X86_CPU_FEATURES_ENABLED && !defined(__BMI2__)
# define FUNCNAME deflate_decompress_bmi2
# define ATTRIBUTES __attribute__((target("bmi2")))
# include "decompress_impl.h"
# undef FUNCNAME
# undef ATTRIBUTES
# define DISPATCH_ENABLED 1
#endif
#if DISPATCH_ENABLED
static bool
dispatch(struct deflate_decompressor * restrict d,
const void * restrict in, size_t in_nbytes,
void * restrict out, size_t out_nbytes);
typedef bool (*decompress_func_t)(struct deflate_decompressor * restrict d,
const void * restrict in, size_t in_nbytes,
void * restrict out, size_t out_nbytes);
static decompress_func_t decompress_impl = dispatch;
static bool
dispatch(struct deflate_decompressor * restrict d,
const void * restrict in, size_t in_nbytes,
void * restrict out, size_t out_nbytes)
{
decompress_func_t f = deflate_decompress_default;
#if X86_CPU_FEATURES_ENABLED
if (x86_have_cpu_feature(X86_CPU_FEATURE_BMI2))
f = deflate_decompress_bmi2;
#endif
decompress_impl = f;
return (*f)(d, in, in_nbytes, out, out_nbytes);
}
#endif /* DISPATCH_ENABLED */
/*
* This is the main DEFLATE decompression routine. It decompresses 'in_nbytes'
* bytes of compressed data from the buffer 'in' and writes the uncompressed
@ -801,362 +849,20 @@ copy_word_unaligned(const void *src, void *dst)
* and only if decompression was successful. A return value of %false indicates
* that either the compressed data is invalid or it does not decompress to
* exactly 'out_nbytes' bytes of uncompressed data.
*
* The real code is in decompress_impl.h. The part here just handles calling
* the appropriate implementation depending on the CPU features at runtime.
*/
LIBEXPORT bool
deflate_decompress(struct deflate_decompressor * restrict d,
const void * restrict in, size_t in_nbytes,
void * restrict out, size_t out_nbytes)
{
u8 *out_next = out;
u8 * const out_end = out_next + out_nbytes;
const u8 *in_next = in;
const u8 * const in_end = in_next + in_nbytes;
bitbuf_t bitbuf = 0;
unsigned bitsleft = 0;
size_t overrun_count = 0;
unsigned i;
unsigned is_final_block;
unsigned block_type;
u16 len;
u16 nlen;
unsigned num_litlen_syms;
unsigned num_offset_syms;
next_block:
/* Starting to read the next block. */
;
STATIC_ASSERT(CAN_ENSURE(1 + 2 + 5 + 5 + 4));
ENSURE_BITS(1 + 2 + 5 + 5 + 4);
/* BFINAL: 1 bit */
is_final_block = POP_BITS(1);
/* BTYPE: 2 bits */
block_type = POP_BITS(2);
if (block_type == DEFLATE_BLOCKTYPE_DYNAMIC_HUFFMAN) {
/* Dynamic Huffman block. */
/* The order in which precode lengths are stored. */
static const u8 deflate_precode_lens_permutation[DEFLATE_NUM_PRECODE_SYMS] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
unsigned num_explicit_precode_lens;
/* Read the codeword length counts. */
STATIC_ASSERT(DEFLATE_NUM_LITLEN_SYMS == ((1 << 5) - 1) + 257);
num_litlen_syms = POP_BITS(5) + 257;
STATIC_ASSERT(DEFLATE_NUM_OFFSET_SYMS == ((1 << 5) - 1) + 1);
num_offset_syms = POP_BITS(5) + 1;
STATIC_ASSERT(DEFLATE_NUM_PRECODE_SYMS == ((1 << 4) - 1) + 4);
num_explicit_precode_lens = POP_BITS(4) + 4;
/* Read the precode codeword lengths. */
STATIC_ASSERT(DEFLATE_MAX_PRE_CODEWORD_LEN == (1 << 3) - 1);
if (CAN_ENSURE(DEFLATE_NUM_PRECODE_SYMS * 3)) {
ENSURE_BITS(DEFLATE_NUM_PRECODE_SYMS * 3);
for (i = 0; i < num_explicit_precode_lens; i++)
d->precode_lens[deflate_precode_lens_permutation[i]] = POP_BITS(3);
} else {
for (i = 0; i < num_explicit_precode_lens; i++) {
ENSURE_BITS(3);
d->precode_lens[deflate_precode_lens_permutation[i]] = POP_BITS(3);
}
}
for (; i < DEFLATE_NUM_PRECODE_SYMS; i++)
d->precode_lens[deflate_precode_lens_permutation[i]] = 0;
/* Build the decode table for the precode. */
SAFETY_CHECK(build_precode_decode_table(d));
/* Expand the literal/length and offset codeword lengths. */
for (i = 0; i < num_litlen_syms + num_offset_syms; ) {
u32 entry;
unsigned presym;
u8 rep_val;
unsigned rep_count;
ENSURE_BITS(DEFLATE_MAX_PRE_CODEWORD_LEN + 7);
/* (The code below assumes that the precode decode table
* does not have any subtables.) */
STATIC_ASSERT(PRECODE_TABLEBITS == DEFLATE_MAX_PRE_CODEWORD_LEN);
/* Read the next precode symbol. */
entry = d->precode_decode_table[BITS(DEFLATE_MAX_PRE_CODEWORD_LEN)];
REMOVE_BITS(entry & HUFFDEC_LENGTH_MASK);
presym = entry >> HUFFDEC_RESULT_SHIFT;
if (presym < 16) {
/* Explicit codeword length */
d->lens[i++] = presym;
continue;
}
/* Run-length encoded codeword lengths */
/* Note: we don't need verify that the repeat count
* doesn't overflow the number of elements, since we
* have enough extra spaces to allow for the worst-case
* overflow (138 zeroes when only 1 length was
* remaining).
*
* In the case of the small repeat counts (presyms 16
* and 17), it is fastest to always write the maximum
* number of entries. That gets rid of branches that
* would otherwise be required.
*
* It is not just because of the numerical order that
* our checks go in the order 'presym < 16', 'presym ==
* 16', and 'presym == 17'. For typical data this is
* ordered from most frequent to least frequent case.
*/
STATIC_ASSERT(DEFLATE_MAX_LENS_OVERRUN == 138 - 1);
if (presym == 16) {
/* Repeat the previous length 3 - 6 times */
SAFETY_CHECK(i != 0);
rep_val = d->lens[i - 1];
STATIC_ASSERT(3 + ((1 << 2) - 1) == 6);
rep_count = 3 + POP_BITS(2);
d->lens[i + 0] = rep_val;
d->lens[i + 1] = rep_val;
d->lens[i + 2] = rep_val;
d->lens[i + 3] = rep_val;
d->lens[i + 4] = rep_val;
d->lens[i + 5] = rep_val;
i += rep_count;
} else if (presym == 17) {
/* Repeat zero 3 - 10 times */
STATIC_ASSERT(3 + ((1 << 3) - 1) == 10);
rep_count = 3 + POP_BITS(3);
d->lens[i + 0] = 0;
d->lens[i + 1] = 0;
d->lens[i + 2] = 0;
d->lens[i + 3] = 0;
d->lens[i + 4] = 0;
d->lens[i + 5] = 0;
d->lens[i + 6] = 0;
d->lens[i + 7] = 0;
d->lens[i + 8] = 0;
d->lens[i + 9] = 0;
i += rep_count;
} else {
/* Repeat zero 11 - 138 times */
STATIC_ASSERT(11 + ((1 << 7) - 1) == 138);
rep_count = 11 + POP_BITS(7);
memset(&d->lens[i], 0, rep_count * sizeof(d->lens[i]));
i += rep_count;
}
}
} else if (block_type == DEFLATE_BLOCKTYPE_UNCOMPRESSED) {
/* Uncompressed block: copy 'len' bytes literally from the input
* buffer to the output buffer. */
ALIGN_INPUT();
SAFETY_CHECK(in_end - in_next >= 4);
len = READ_U16();
nlen = READ_U16();
SAFETY_CHECK(len == (u16)~nlen);
SAFETY_CHECK(len <= out_end - out_next);
SAFETY_CHECK(len <= in_end - in_next);
memcpy(out_next, in_next, len);
in_next += len;
out_next += len;
goto block_done;
} else {
SAFETY_CHECK(block_type == DEFLATE_BLOCKTYPE_STATIC_HUFFMAN);
/* Static Huffman block: set the static Huffman codeword
* lengths. Then the remainder is the same as decompressing a
* dynamic Huffman block. */
STATIC_ASSERT(DEFLATE_NUM_LITLEN_SYMS == 288);
STATIC_ASSERT(DEFLATE_NUM_OFFSET_SYMS == 32);
for (i = 0; i < 144; i++)
d->lens[i] = 8;
for (; i < 256; i++)
d->lens[i] = 9;
for (; i < 280; i++)
d->lens[i] = 7;
for (; i < 288; i++)
d->lens[i] = 8;
for (; i < 288 + 32; i++)
d->lens[i] = 5;
num_litlen_syms = 288;
num_offset_syms = 32;
}
/* Decompressing a Huffman block (either dynamic or static) */
SAFETY_CHECK(build_offset_decode_table(d, num_litlen_syms, num_offset_syms));
SAFETY_CHECK(build_litlen_decode_table(d, num_litlen_syms, num_offset_syms));
/* The main DEFLATE decode loop */
for (;;) {
u32 entry;
u32 length;
u32 offset;
/* Decode a litlen symbol. */
ENSURE_BITS(DEFLATE_MAX_LITLEN_CODEWORD_LEN);
entry = d->litlen_decode_table[BITS(LITLEN_TABLEBITS)];
if (entry & HUFFDEC_SUBTABLE_POINTER) {
/* Litlen subtable required (uncommon case) */
REMOVE_BITS(LITLEN_TABLEBITS);
entry = d->litlen_decode_table[
((entry >> HUFFDEC_RESULT_SHIFT) & 0xFFFF) +
BITS(entry & HUFFDEC_LENGTH_MASK)];
}
REMOVE_BITS(entry & HUFFDEC_LENGTH_MASK);
if (entry & HUFFDEC_LITERAL) {
/* Literal */
SAFETY_CHECK(out_next < out_end);
*out_next++ = (u8)(entry >> HUFFDEC_RESULT_SHIFT);
continue;
}
/* Match or end-of-block */
entry >>= HUFFDEC_RESULT_SHIFT;
ENSURE_BITS(MAX_ENSURE);
/* Pop the extra length bits and add them to the length base to
* produce the full length. */
length = (entry >> HUFFDEC_LENGTH_BASE_SHIFT) +
POP_BITS(entry & HUFFDEC_EXTRA_LENGTH_BITS_MASK);
/* The match destination must not end after the end of the
* output buffer. For efficiency, combine this check with the
* end-of-block check. We're using 0 for the special
* end-of-block length, so subtract 1 and it turn it into
* SIZE_MAX. */
STATIC_ASSERT(HUFFDEC_END_OF_BLOCK_LENGTH == 0);
if (unlikely((size_t)length - 1 > out_end - out_next)) {
SAFETY_CHECK(length == HUFFDEC_END_OF_BLOCK_LENGTH);
goto block_done;
}
/* Decode the match offset. */
entry = d->offset_decode_table[BITS(OFFSET_TABLEBITS)];
if (entry & HUFFDEC_SUBTABLE_POINTER) {
/* Offset subtable required (uncommon case) */
REMOVE_BITS(OFFSET_TABLEBITS);
entry = d->offset_decode_table[
((entry >> HUFFDEC_RESULT_SHIFT) & 0xFFFF) +
BITS(entry & HUFFDEC_LENGTH_MASK)];
}
REMOVE_BITS(entry & HUFFDEC_LENGTH_MASK);
entry >>= HUFFDEC_RESULT_SHIFT;
STATIC_ASSERT(CAN_ENSURE(DEFLATE_MAX_EXTRA_LENGTH_BITS +
DEFLATE_MAX_OFFSET_CODEWORD_LEN) &&
CAN_ENSURE(DEFLATE_MAX_EXTRA_OFFSET_BITS));
if (!CAN_ENSURE(DEFLATE_MAX_EXTRA_LENGTH_BITS +
DEFLATE_MAX_OFFSET_CODEWORD_LEN +
DEFLATE_MAX_EXTRA_OFFSET_BITS))
ENSURE_BITS(DEFLATE_MAX_EXTRA_OFFSET_BITS);
/* Pop the extra offset bits and add them to the offset base to
* produce the full offset. */
offset = (entry & HUFFDEC_OFFSET_BASE_MASK) +
POP_BITS(entry >> HUFFDEC_EXTRA_OFFSET_BITS_SHIFT);
/* The match source must not begin before the beginning of the
* output buffer. */
SAFETY_CHECK(offset <= out_next - (const u8 *)out);
/* Copy the match: 'length' bytes at 'out_next - offset' to
* 'out_next'. */
if (UNALIGNED_ACCESS_IS_FAST &&
length <= (3 * WORDSIZE) &&
offset >= WORDSIZE &&
length + (3 * WORDSIZE) <= out_end - out_next)
{
/* Fast case: short length, no overlaps if we copy one
* word at a time, and we aren't getting too close to
* the end of the output array. */
copy_word_unaligned(out_next - offset + (0 * WORDSIZE),
out_next + (0 * WORDSIZE));
copy_word_unaligned(out_next - offset + (1 * WORDSIZE),
out_next + (1 * WORDSIZE));
copy_word_unaligned(out_next - offset + (2 * WORDSIZE),
out_next + (2 * WORDSIZE));
} else {
const u8 *src = out_next - offset;
u8 *dst = out_next;
u8 *end = out_next + length;
if (UNALIGNED_ACCESS_IS_FAST &&
likely(out_end - end >= WORDSIZE - 1)) {
if (offset >= WORDSIZE) {
copy_word_unaligned(src, dst);
src += WORDSIZE;
dst += WORDSIZE;
if (dst < end) {
do {
copy_word_unaligned(src, dst);
src += WORDSIZE;
dst += WORDSIZE;
} while (dst < end);
}
} else if (offset == 1) {
machine_word_t v = repeat_byte(*(dst - 1));
do {
store_word_unaligned(v, dst);
src += WORDSIZE;
dst += WORDSIZE;
} while (dst < end);
} else {
*dst++ = *src++;
*dst++ = *src++;
do {
*dst++ = *src++;
} while (dst < end);
}
} else {
*dst++ = *src++;
*dst++ = *src++;
do {
*dst++ = *src++;
} while (dst < end);
}
}
out_next += length;
}
block_done:
/* Finished decoding a block. */
if (!is_final_block)
goto next_block;
/* That was the last block. Return %true if we got all the output we
* expected, otherwise %false. */
return (out_next == out_end);
#if DISPATCH_ENABLED
return (*decompress_impl)(d, in, in_nbytes, out, out_nbytes);
#else
return deflate_decompress_default(d, in, in_nbytes, out, out_nbytes);
#endif
}
LIBEXPORT struct deflate_decompressor *

145
src/x86_cpu_features.c Normal file
View File

@ -0,0 +1,145 @@
/*
* x86_cpu_features.c - feature detection for x86 processors
*
* Author: Eric Biggers
* Year: 2015
*
* The author dedicates this file to the public domain.
* You can do whatever you want with this file.
*/
#include "x86_cpu_features.h"
#ifdef X86_CPU_FEATURES_ENABLED
#define DEBUG 0
#if DEBUG
# include <stdio.h>
#endif
u32 _x86_cpu_features = 0;
/* With old GCC versions we have to manually save and restore the x86_32 PIC
* register (ebx). See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=47602 */
#if defined(__i386__) && defined(__PIC__)
# define EBX_CONSTRAINT "=r"
#else
# define EBX_CONSTRAINT "=b"
#endif
/* Execute the CPUID instruction. */
static inline void
cpuid(u32 leaf, u32 subleaf, u32 *a, u32 *b, u32 *c, u32 *d)
{
__asm__(".ifnc %%ebx, %1; mov %%ebx, %1; .endif\n"
"cpuid \n"
".ifnc %%ebx, %1; xchg %%ebx, %1; .endif\n"
: "=a" (*a), EBX_CONSTRAINT (*b), "=c" (*c), "=d" (*d)
: "a" (leaf), "c" (subleaf));
}
/* Read an extended control register. */
static inline u64
read_xcr(u32 index)
{
u32 edx, eax;
/* Execute the "xgetbv" instruction. Old versions of binutils do not
* recognize this instruction, so list the raw bytes instead. */
__asm__ (".byte 0x0f, 0x01, 0xd0" : "=d" (edx), "=a" (eax) : "c" (index));
return ((u64)edx << 32) | eax;
}
#define IS_SET(reg, bit) ((reg) & ((u32)1 << (bit)))
/* Initialize _x86_cpu_features with bits for interesting processor features. */
void
x86_setup_cpu_features(void)
{
u32 features = 0;
u32 dummy1, dummy2, dummy3, dummy4;
u32 max_function;
u32 features_1, features_2, features_3, features_4;
bool os_saves_ymm_regs = false;
/* Get maximum supported function */
cpuid(0, 0, &max_function, &dummy2, &dummy3, &dummy4);
if (max_function < 1)
goto out;
/* Standard feature flags */
cpuid(1, 0, &dummy1, &dummy2, &features_2, &features_1);
if (IS_SET(features_1, 25))
features |= X86_CPU_FEATURE_SSE;
if (IS_SET(features_1, 26))
features |= X86_CPU_FEATURE_SSE2;
if (IS_SET(features_2, 0))
features |= X86_CPU_FEATURE_SSE3;
if (IS_SET(features_2, 9))
features |= X86_CPU_FEATURE_SSSE3;
if (IS_SET(features_2, 19))
features |= X86_CPU_FEATURE_SSE4_1;
if (IS_SET(features_2, 20))
features |= X86_CPU_FEATURE_SSE4_2;
if (IS_SET(features_2, 27)) /* OSXSAVE set? */
if ((read_xcr(0) & 0x6) == 0x6)
os_saves_ymm_regs = true;
if (os_saves_ymm_regs && IS_SET(features_2, 28))
features |= X86_CPU_FEATURE_AVX;
if (max_function < 7)
goto out;
/* Extended feature flags */
cpuid(7, 0, &dummy1, &features_3, &features_4, &dummy4);
if (IS_SET(features_3, 3))
features |= X86_CPU_FEATURE_BMI;
if (os_saves_ymm_regs && IS_SET(features_3, 5))
features |= X86_CPU_FEATURE_AVX2;
if (IS_SET(features_3, 8))
features |= X86_CPU_FEATURE_BMI2;
out:
#if DEBUG
printf("Detected x86 CPU features: ");
if (features & X86_CPU_FEATURE_SSE)
printf("SSE ");
if (features & X86_CPU_FEATURE_SSE2)
printf("SSE2 ");
if (features & X86_CPU_FEATURE_SSE3)
printf("SSE3 ");
if (features & X86_CPU_FEATURE_SSSE3)
printf("SSSE3 ");
if (features & X86_CPU_FEATURE_SSE4_1)
printf("SSE4.1 ");
if (features & X86_CPU_FEATURE_SSE4_2)
printf("SSE4.2 ");
if (features & X86_CPU_FEATURE_BMI)
printf("BMI ");
if (features & X86_CPU_FEATURE_AVX)
printf("AVX ");
if (features & X86_CPU_FEATURE_BMI2)
printf("BMI2 ");
if (features & X86_CPU_FEATURE_AVX2)
printf("AVX2 ");
printf("\n");
#endif /* DEBUG */
_x86_cpu_features = features | X86_CPU_FEATURES_KNOWN;
}
#endif /* X86_CPU_FEATURES_ENABLED */

43
src/x86_cpu_features.h Normal file
View File

@ -0,0 +1,43 @@
/*
* x86_cpu_features.h - feature detection for x86 processors
*/
#pragma once
#include "util.h"
#if RUNTIME_CPU_DETECTION && defined(__GNUC__) && defined(__x86_64__)
# define X86_CPU_FEATURES_ENABLED 1
#endif
#if X86_CPU_FEATURES_ENABLED
#define X86_CPU_FEATURE_SSE 0x00000001
#define X86_CPU_FEATURE_SSE2 0x00000002
#define X86_CPU_FEATURE_SSE3 0x00000004
#define X86_CPU_FEATURE_SSSE3 0x00000008
#define X86_CPU_FEATURE_SSE4_1 0x00000010
#define X86_CPU_FEATURE_SSE4_2 0x00000020
#define X86_CPU_FEATURE_AVX 0x00000040
#define X86_CPU_FEATURE_BMI 0x00000080
#define X86_CPU_FEATURE_AVX2 0x00000100
#define X86_CPU_FEATURE_BMI2 0x00000200
#define X86_CPU_FEATURES_KNOWN 0x80000000
extern u32 _x86_cpu_features;
extern void
x86_setup_cpu_features(void);
/* Does the processor have the specified feature? */
static inline bool
x86_have_cpu_feature(u32 feature)
{
if (_x86_cpu_features == 0)
x86_setup_cpu_features();
return _x86_cpu_features & feature;
}
#endif /* X86_CPU_FEATURES_ENABLED */