libdeflate/lib/deflate_decompress.c
2017-11-20 00:35:24 -08:00

907 lines
34 KiB
C

/*
* deflate_decompress.c - a decompressor for DEFLATE
*
* Originally public domain; changes after 2016-09-07 are copyrighted.
*
* Copyright 2016 Eric Biggers
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* ---------------------------------------------------------------------------
*
* This is a highly optimized DEFLATE decompressor. When compiled with gcc on
* x86_64, it decompresses data in about 52% of the time of zlib (48% if BMI2
* instructions are available). On other architectures it should still be
* significantly faster than zlib, but the difference may be smaller.
*
* Why this is faster than zlib's implementation:
*
* - Word accesses rather than byte accesses when reading input
* - Word accesses rather than byte accesses when copying matches
* - Faster Huffman decoding combined with various DEFLATE-specific tricks
* - Larger bitbuffer variable that doesn't need to be filled as often
* - Other optimizations to remove unnecessary branches
* - Only full-buffer decompression is supported, so the code doesn't need to
* support stopping and resuming decompression.
* - On x86_64, compile a version of the decompression routine using BMI2
* instructions and use it automatically at runtime when supported.
*/
#include <stdlib.h>
#include <string.h>
#include "deflate_constants.h"
#include "unaligned.h"
#include "x86_cpu_features.h"
#include "libdeflate.h"
/*
* If the expression passed to SAFETY_CHECK() evaluates to false, then the
* decompression routine immediately returns LIBDEFLATE_BAD_DATA, indicating the
* compressed data is invalid.
*
* Theoretically, these checks could be disabled for specialized applications
* where all input to the decompressor will be trusted.
*/
#if 0
# pragma message("UNSAFE DECOMPRESSION IS ENABLED. THIS MUST ONLY BE USED IF THE DECOMPRESSOR INPUT WILL ALWAYS BE TRUSTED!")
# define SAFETY_CHECK(expr) (void)(expr)
#else
# define SAFETY_CHECK(expr) if (unlikely(!(expr))) return LIBDEFLATE_BAD_DATA
#endif
/*
* Each TABLEBITS number is the base-2 logarithm of the number of entries in the
* main portion of the corresponding decode table. Each number should be large
* enough to ensure that for typical data, the vast majority of symbols can be
* decoded by a direct lookup of the next TABLEBITS bits of compressed data.
* However, this must be balanced against the fact that a larger table requires
* more memory and requires more time to fill.
*
* Note: you cannot change a TABLEBITS number without also changing the
* corresponding ENOUGH number!
*/
#define PRECODE_TABLEBITS 7
#define LITLEN_TABLEBITS 10
#define OFFSET_TABLEBITS 8
/*
* Each ENOUGH number is the maximum number of decode table entries that may be
* required for the corresponding Huffman code, including the main table and all
* subtables. Each number depends on three parameters:
*
* (1) the maximum number of symbols in the code (DEFLATE_NUM_*_SYMBOLS)
* (2) the number of main table bits (the TABLEBITS numbers defined above)
* (3) the maximum allowed codeword length (DEFLATE_MAX_*_CODEWORD_LEN)
*
* The ENOUGH numbers were computed using the utility program 'enough' from
* zlib. This program enumerates all possible relevant Huffman codes to find
* the worst-case usage of decode table entries.
*/
#define PRECODE_ENOUGH 128 /* enough 19 7 7 */
#define LITLEN_ENOUGH 1334 /* enough 288 10 15 */
#define OFFSET_ENOUGH 402 /* enough 32 8 15 */
/*
* Type for codeword lengths.
*/
typedef u8 len_t;
/*
* The main DEFLATE decompressor structure. Since this implementation only
* supports full buffer decompression, this structure does not store the entire
* decompression state, but rather only some arrays that are too large to
* comfortably allocate on the stack.
*/
struct libdeflate_decompressor {
/*
* The arrays aren't all needed at the same time. 'precode_lens' and
* 'precode_decode_table' are unneeded after 'lens' has been filled.
* Furthermore, 'lens' need not be retained after building the litlen
* and offset decode tables. In fact, 'lens' can be in union with
* 'litlen_decode_table' provided that 'offset_decode_table' is separate
* and is built first.
*/
union {
len_t precode_lens[DEFLATE_NUM_PRECODE_SYMS];
struct {
len_t lens[DEFLATE_NUM_LITLEN_SYMS +
DEFLATE_NUM_OFFSET_SYMS +
DEFLATE_MAX_LENS_OVERRUN];
u32 precode_decode_table[PRECODE_ENOUGH];
} l;
u32 litlen_decode_table[LITLEN_ENOUGH];
} u;
u32 offset_decode_table[OFFSET_ENOUGH];
u16 working_space[2 * (DEFLATE_MAX_CODEWORD_LEN + 1) +
DEFLATE_MAX_NUM_SYMS];
};
/*****************************************************************************
* Input bitstream *
*****************************************************************************/
/*
* The state of the "input bitstream" consists of the following variables:
*
* - in_next: pointer to the next unread byte in the input buffer
*
* - in_end: pointer just past the end of the input buffer
*
* - bitbuf: a word-sized variable containing bits that have been read from
* the input buffer. The buffered bits are right-aligned
* (they're the low-order bits).
*
* - bitsleft: number of bits in 'bitbuf' that are valid.
*
* To make it easier for the compiler to optimize the code by keeping variables
* in registers, these are declared as normal variables and manipulated using
* macros.
*/
/*
* The type for the bitbuffer variable ('bitbuf' described above). For best
* performance, this should have size equal to a machine word.
*
* 64-bit platforms have a significant advantage: they get a bigger bitbuffer
* which they have to fill less often.
*/
typedef machine_word_t bitbuf_t;
/*
* Number of bits the bitbuffer variable can hold.
*/
#define BITBUF_NBITS (8 * sizeof(bitbuf_t))
/*
* The maximum number of bits that can be requested to be in the bitbuffer
* variable. This is the maximum value of 'n' that can be passed
* ENSURE_BITS(n).
*
* This not equal to BITBUF_NBITS because we never read less than one byte at a
* time. If the bitbuffer variable contains more than (BITBUF_NBITS - 8) bits,
* then we can't read another byte without first consuming some bits. So the
* maximum count we can ensure is (BITBUF_NBITS - 7).
*/
#define MAX_ENSURE (BITBUF_NBITS - 7)
/*
* Evaluates to true if 'n' is a valid argument to ENSURE_BITS(n), or false if
* 'n' is too large to be passed to ENSURE_BITS(n). Note: if 'n' is a compile
* time constant, then this expression will be a compile-type constant.
* Therefore, CAN_ENSURE() can be used choose between alternative
* implementations at compile time.
*/
#define CAN_ENSURE(n) ((n) <= MAX_ENSURE)
/*
* Fill the bitbuffer variable, reading one byte at a time.
*
* If we would overread the input buffer, we just don't read anything, leaving
* the bits zeroed but marking them filled. This simplifies the decompressor
* because it removes the need to distinguish between real overreads and
* overreads that occur only because of the decompressor's own lookahead.
*
* The disadvantage is that real overreads are not detected immediately.
* However, this is safe because the decompressor is still guaranteed to make
* forward progress when presented never-ending 0 bits. In an existing block
* output will be getting generated, whereas new blocks can only be uncompressed
* (since the type code for uncompressed blocks is 0), for which we check for
* previous overread. But even if we didn't check, uncompressed blocks would
* fail to validate because LEN would not equal ~NLEN. So the decompressor will
* eventually either detect that the output buffer is full, or detect invalid
* input, or finish the final block.
*/
#define FILL_BITS_BYTEWISE() \
do { \
if (likely(in_next != in_end)) \
bitbuf |= (bitbuf_t)*in_next++ << bitsleft; \
else \
overrun_count++; \
bitsleft += 8; \
} while (bitsleft <= BITBUF_NBITS - 8)
/*
* Fill the bitbuffer variable by reading the next word from the input buffer.
* This can be significantly faster than FILL_BITS_BYTEWISE(). However, for
* this to work correctly, the word must be interpreted in little-endian format.
* In addition, the memory access may be unaligned. Therefore, this method is
* most efficient on little-endian architectures that support fast unaligned
* access, such as x86 and x86_64.
*/
#define FILL_BITS_WORDWISE() \
do { \
bitbuf |= get_unaligned_leword(in_next) << bitsleft; \
in_next += (BITBUF_NBITS - bitsleft) >> 3; \
bitsleft += (BITBUF_NBITS - bitsleft) & ~7; \
} while (0)
/*
* Does the bitbuffer variable currently contain at least 'n' bits?
*/
#define HAVE_BITS(n) (bitsleft >= (n))
/*
* Load more bits from the input buffer until the specified number of bits is
* present in the bitbuffer variable. 'n' cannot be too large; see MAX_ENSURE
* and CAN_ENSURE().
*/
#define ENSURE_BITS(n) \
if (!HAVE_BITS(n)) { \
if (CPU_IS_LITTLE_ENDIAN() && \
UNALIGNED_ACCESS_IS_FAST && \
likely(in_end - in_next >= sizeof(bitbuf_t))) \
FILL_BITS_WORDWISE(); \
else \
FILL_BITS_BYTEWISE(); \
}
/*
* Return the next 'n' bits from the bitbuffer variable without removing them.
*/
#define BITS(n) ((u32)bitbuf & (((u32)1 << (n)) - 1))
/*
* Remove the next 'n' bits from the bitbuffer variable.
*/
#define REMOVE_BITS(n) (bitbuf >>= (n), bitsleft -= (n))
/*
* Remove and return the next 'n' bits from the bitbuffer variable.
*/
#define POP_BITS(n) (tmp32 = BITS(n), REMOVE_BITS(n), tmp32)
/*
* Verify that the input buffer hasn't been overread, then align the input to
* the next byte boundary, discarding any remaining bits in the current byte.
*
* Note that if the bitbuffer variable currently contains more than 7 bits, then
* we must rewind 'in_next', effectively putting those bits back. Only the bits
* in what would be the "current" byte if we were reading one byte at a time can
* be actually discarded.
*/
#define ALIGN_INPUT() \
do { \
SAFETY_CHECK(overrun_count <= (bitsleft >> 3)); \
in_next -= (bitsleft >> 3) - overrun_count; \
overrun_count = 0; \
bitbuf = 0; \
bitsleft = 0; \
} while(0)
/*
* Read a 16-bit value from the input. This must have been preceded by a call
* to ALIGN_INPUT(), and the caller must have already checked for overrun.
*/
#define READ_U16() (tmp16 = get_unaligned_le16(in_next), in_next += 2, tmp16)
/*****************************************************************************
* Huffman decoding *
*****************************************************************************/
/*
* A decode table for order TABLEBITS consists of a main table of (1 <<
* TABLEBITS) entries followed by a variable number of subtables.
*
* The decoding algorithm takes the next TABLEBITS bits of compressed data and
* uses them as an index into the decode table. The resulting entry is either a
* "direct entry", meaning that it contains the value desired, or a "subtable
* pointer", meaning that the entry references a subtable that must be indexed
* using more bits of the compressed data to decode the symbol.
*
* Each decode table (a main table along with with its subtables, if any) is
* associated with a Huffman code. Logically, the result of a decode table
* lookup is a symbol from the alphabet from which the corresponding Huffman
* code was constructed. A symbol with codeword length n <= TABLEBITS is
* associated with 2**(TABLEBITS - n) direct entries in the table, whereas a
* symbol with codeword length n > TABLEBITS is associated with one or more
* subtable entries.
*
* On top of this basic design, we implement several optimizations:
*
* - We store the length of each codeword directly in each of its decode table
* entries. This allows the codeword length to be produced without indexing
* an additional table.
*
* - When beneficial, we don't store the Huffman symbol itself, but instead data
* generated from it. For example, when decoding an offset symbol in DEFLATE,
* it's more efficient if we can decode the offset base and number of extra
* offset bits directly rather than decoding the offset symbol and then
* looking up both of those values in an additional table or tables.
*
* The size of each decode table entry is 32 bits, which provides slightly
* better performance than 16-bit entries on 32 and 64 bit processers, provided
* that the table doesn't get so large that it takes up too much memory and
* starts generating cache misses. The bits of each decode table entry are
* defined as follows:
*
* - Bits 30 -- 31: flags (see below)
* - Bits 8 -- 29: decode result: a Huffman symbol or related data
* - Bits 0 -- 7: codeword length
*/
/*
* This flag is set in all main decode table entries that represent subtable
* pointers.
*/
#define HUFFDEC_SUBTABLE_POINTER 0x80000000
/*
* This flag is set in all entries in the litlen decode table that represent
* literals.
*/
#define HUFFDEC_LITERAL 0x40000000
/* Mask for extracting the codeword length from a decode table entry. */
#define HUFFDEC_LENGTH_MASK 0xFF
/* Shift to extract the decode result from a decode table entry. */
#define HUFFDEC_RESULT_SHIFT 8
/* The decode result for each precode symbol. There is no special optimization
* for the precode; the decode result is simply the symbol value. */
static const u32 precode_decode_results[DEFLATE_NUM_PRECODE_SYMS] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
};
/* The decode result for each litlen symbol. For literals, this is the literal
* value itself and the HUFFDEC_LITERAL flag. For lengths, this is the length
* base and the number of extra length bits. */
static const u32 litlen_decode_results[DEFLATE_NUM_LITLEN_SYMS] = {
#define ENTRY(literal) ((HUFFDEC_LITERAL >> HUFFDEC_RESULT_SHIFT) | (literal))
/* Literals */
ENTRY(0) , ENTRY(1) , ENTRY(2) , ENTRY(3) ,
ENTRY(4) , ENTRY(5) , ENTRY(6) , ENTRY(7) ,
ENTRY(8) , ENTRY(9) , ENTRY(10) , ENTRY(11) ,
ENTRY(12) , ENTRY(13) , ENTRY(14) , ENTRY(15) ,
ENTRY(16) , ENTRY(17) , ENTRY(18) , ENTRY(19) ,
ENTRY(20) , ENTRY(21) , ENTRY(22) , ENTRY(23) ,
ENTRY(24) , ENTRY(25) , ENTRY(26) , ENTRY(27) ,
ENTRY(28) , ENTRY(29) , ENTRY(30) , ENTRY(31) ,
ENTRY(32) , ENTRY(33) , ENTRY(34) , ENTRY(35) ,
ENTRY(36) , ENTRY(37) , ENTRY(38) , ENTRY(39) ,
ENTRY(40) , ENTRY(41) , ENTRY(42) , ENTRY(43) ,
ENTRY(44) , ENTRY(45) , ENTRY(46) , ENTRY(47) ,
ENTRY(48) , ENTRY(49) , ENTRY(50) , ENTRY(51) ,
ENTRY(52) , ENTRY(53) , ENTRY(54) , ENTRY(55) ,
ENTRY(56) , ENTRY(57) , ENTRY(58) , ENTRY(59) ,
ENTRY(60) , ENTRY(61) , ENTRY(62) , ENTRY(63) ,
ENTRY(64) , ENTRY(65) , ENTRY(66) , ENTRY(67) ,
ENTRY(68) , ENTRY(69) , ENTRY(70) , ENTRY(71) ,
ENTRY(72) , ENTRY(73) , ENTRY(74) , ENTRY(75) ,
ENTRY(76) , ENTRY(77) , ENTRY(78) , ENTRY(79) ,
ENTRY(80) , ENTRY(81) , ENTRY(82) , ENTRY(83) ,
ENTRY(84) , ENTRY(85) , ENTRY(86) , ENTRY(87) ,
ENTRY(88) , ENTRY(89) , ENTRY(90) , ENTRY(91) ,
ENTRY(92) , ENTRY(93) , ENTRY(94) , ENTRY(95) ,
ENTRY(96) , ENTRY(97) , ENTRY(98) , ENTRY(99) ,
ENTRY(100) , ENTRY(101) , ENTRY(102) , ENTRY(103) ,
ENTRY(104) , ENTRY(105) , ENTRY(106) , ENTRY(107) ,
ENTRY(108) , ENTRY(109) , ENTRY(110) , ENTRY(111) ,
ENTRY(112) , ENTRY(113) , ENTRY(114) , ENTRY(115) ,
ENTRY(116) , ENTRY(117) , ENTRY(118) , ENTRY(119) ,
ENTRY(120) , ENTRY(121) , ENTRY(122) , ENTRY(123) ,
ENTRY(124) , ENTRY(125) , ENTRY(126) , ENTRY(127) ,
ENTRY(128) , ENTRY(129) , ENTRY(130) , ENTRY(131) ,
ENTRY(132) , ENTRY(133) , ENTRY(134) , ENTRY(135) ,
ENTRY(136) , ENTRY(137) , ENTRY(138) , ENTRY(139) ,
ENTRY(140) , ENTRY(141) , ENTRY(142) , ENTRY(143) ,
ENTRY(144) , ENTRY(145) , ENTRY(146) , ENTRY(147) ,
ENTRY(148) , ENTRY(149) , ENTRY(150) , ENTRY(151) ,
ENTRY(152) , ENTRY(153) , ENTRY(154) , ENTRY(155) ,
ENTRY(156) , ENTRY(157) , ENTRY(158) , ENTRY(159) ,
ENTRY(160) , ENTRY(161) , ENTRY(162) , ENTRY(163) ,
ENTRY(164) , ENTRY(165) , ENTRY(166) , ENTRY(167) ,
ENTRY(168) , ENTRY(169) , ENTRY(170) , ENTRY(171) ,
ENTRY(172) , ENTRY(173) , ENTRY(174) , ENTRY(175) ,
ENTRY(176) , ENTRY(177) , ENTRY(178) , ENTRY(179) ,
ENTRY(180) , ENTRY(181) , ENTRY(182) , ENTRY(183) ,
ENTRY(184) , ENTRY(185) , ENTRY(186) , ENTRY(187) ,
ENTRY(188) , ENTRY(189) , ENTRY(190) , ENTRY(191) ,
ENTRY(192) , ENTRY(193) , ENTRY(194) , ENTRY(195) ,
ENTRY(196) , ENTRY(197) , ENTRY(198) , ENTRY(199) ,
ENTRY(200) , ENTRY(201) , ENTRY(202) , ENTRY(203) ,
ENTRY(204) , ENTRY(205) , ENTRY(206) , ENTRY(207) ,
ENTRY(208) , ENTRY(209) , ENTRY(210) , ENTRY(211) ,
ENTRY(212) , ENTRY(213) , ENTRY(214) , ENTRY(215) ,
ENTRY(216) , ENTRY(217) , ENTRY(218) , ENTRY(219) ,
ENTRY(220) , ENTRY(221) , ENTRY(222) , ENTRY(223) ,
ENTRY(224) , ENTRY(225) , ENTRY(226) , ENTRY(227) ,
ENTRY(228) , ENTRY(229) , ENTRY(230) , ENTRY(231) ,
ENTRY(232) , ENTRY(233) , ENTRY(234) , ENTRY(235) ,
ENTRY(236) , ENTRY(237) , ENTRY(238) , ENTRY(239) ,
ENTRY(240) , ENTRY(241) , ENTRY(242) , ENTRY(243) ,
ENTRY(244) , ENTRY(245) , ENTRY(246) , ENTRY(247) ,
ENTRY(248) , ENTRY(249) , ENTRY(250) , ENTRY(251) ,
ENTRY(252) , ENTRY(253) , ENTRY(254) , ENTRY(255) ,
#undef ENTRY
#define HUFFDEC_EXTRA_LENGTH_BITS_MASK 0xFF
#define HUFFDEC_LENGTH_BASE_SHIFT 8
#define HUFFDEC_END_OF_BLOCK_LENGTH 0
#define ENTRY(length_base, num_extra_bits) \
(((u32)(length_base) << HUFFDEC_LENGTH_BASE_SHIFT) | (num_extra_bits))
/* End of block */
ENTRY(HUFFDEC_END_OF_BLOCK_LENGTH, 0),
/* Lengths */
ENTRY(3 , 0) , ENTRY(4 , 0) , ENTRY(5 , 0) , ENTRY(6 , 0),
ENTRY(7 , 0) , ENTRY(8 , 0) , ENTRY(9 , 0) , ENTRY(10 , 0),
ENTRY(11 , 1) , ENTRY(13 , 1) , ENTRY(15 , 1) , ENTRY(17 , 1),
ENTRY(19 , 2) , ENTRY(23 , 2) , ENTRY(27 , 2) , ENTRY(31 , 2),
ENTRY(35 , 3) , ENTRY(43 , 3) , ENTRY(51 , 3) , ENTRY(59 , 3),
ENTRY(67 , 4) , ENTRY(83 , 4) , ENTRY(99 , 4) , ENTRY(115, 4),
ENTRY(131, 5) , ENTRY(163, 5) , ENTRY(195, 5) , ENTRY(227, 5),
ENTRY(258, 0) , ENTRY(258, 0) , ENTRY(258, 0) ,
#undef ENTRY
};
/* The decode result for each offset symbol. This is the offset base and the
* number of extra offset bits. */
static const u32 offset_decode_results[DEFLATE_NUM_OFFSET_SYMS] = {
#define HUFFDEC_EXTRA_OFFSET_BITS_SHIFT 16
#define HUFFDEC_OFFSET_BASE_MASK (((u32)1 << HUFFDEC_EXTRA_OFFSET_BITS_SHIFT) - 1)
#define ENTRY(offset_base, num_extra_bits) \
((offset_base) | ((u32)(num_extra_bits) << HUFFDEC_EXTRA_OFFSET_BITS_SHIFT))
ENTRY(1 , 0) , ENTRY(2 , 0) , ENTRY(3 , 0) , ENTRY(4 , 0) ,
ENTRY(5 , 1) , ENTRY(7 , 1) , ENTRY(9 , 2) , ENTRY(13 , 2) ,
ENTRY(17 , 3) , ENTRY(25 , 3) , ENTRY(33 , 4) , ENTRY(49 , 4) ,
ENTRY(65 , 5) , ENTRY(97 , 5) , ENTRY(129 , 6) , ENTRY(193 , 6) ,
ENTRY(257 , 7) , ENTRY(385 , 7) , ENTRY(513 , 8) , ENTRY(769 , 8) ,
ENTRY(1025 , 9) , ENTRY(1537 , 9) , ENTRY(2049 , 10) , ENTRY(3073 , 10) ,
ENTRY(4097 , 11) , ENTRY(6145 , 11) , ENTRY(8193 , 12) , ENTRY(12289 , 12) ,
ENTRY(16385 , 13) , ENTRY(24577 , 13) , ENTRY(32769 , 14) , ENTRY(49153 , 14) ,
#undef ENTRY
};
/* Construct a decode table entry from a decode result and codeword length. */
static forceinline u32
make_decode_table_entry(u32 result, u32 length)
{
return (result << HUFFDEC_RESULT_SHIFT) | length;
}
/*
* Build a table for fast decoding of symbols from a Huffman code. As input,
* this function takes the codeword length of each symbol which may be used in
* the code. As output, it produces a decode table for the canonical Huffman
* code described by the codeword lengths. The decode table is built with the
* assumption that it will be indexed with "bit-reversed" codewords, where the
* low-order bit is the first bit of the codeword. This format is used for all
* Huffman codes in DEFLATE.
*
* @decode_table
* The array in which the decode table will be generated. This array must
* have sufficient length; see the definition of the ENOUGH numbers.
* @lens
* An array which provides, for each symbol, the length of the
* corresponding codeword in bits, or 0 if the symbol is unused. This may
* alias @decode_table, since nothing is written to @decode_table until all
* @lens have been consumed. All codeword lengths are assumed to be <=
* @max_codeword_len but are otherwise considered untrusted. If they do
* not form a valid Huffman code, then the decode table is not built and
* %false is returned.
* @num_syms
* The number of symbols in the code, including all unused symbols.
* @decode_results
* An array which provides, for each symbol, the actual value to store into
* the decode table. This value will be directly produced as the result of
* decoding that symbol, thereby moving the indirection out of the decode
* loop and into the table initialization.
* @table_bits
* The log base-2 of the number of main table entries to use.
* @max_codeword_len
* The maximum allowed codeword length for this Huffman code.
* @working_space
* A temporary array of length '2 * (@max_codeword_len + 1) + @num_syms'.
*
* Returns %true if successful; %false if the codeword lengths do not form a
* valid Huffman code.
*/
static bool
build_decode_table(u32 decode_table[],
const len_t lens[],
const unsigned num_syms,
const u32 decode_results[],
const unsigned table_bits,
const unsigned max_codeword_len,
u16 working_space[])
{
u16 * const len_counts = &working_space[0];
u16 * const offsets = &working_space[1 * (max_codeword_len + 1)];
u16 * const sorted_syms = &working_space[2 * (max_codeword_len + 1)];
unsigned len;
unsigned sym;
s32 remainder;
unsigned sym_idx;
unsigned codeword_len;
unsigned codeword_reversed = 0;
unsigned cur_codeword_prefix = -1;
unsigned cur_table_start = 0;
unsigned cur_table_bits = table_bits;
unsigned num_dropped_bits = 0;
const unsigned table_mask = (1U << table_bits) - 1;
/* Count how many symbols have each codeword length, including 0. */
for (len = 0; len <= max_codeword_len; len++)
len_counts[len] = 0;
for (sym = 0; sym < num_syms; sym++)
len_counts[lens[sym]]++;
/* Sort the symbols primarily by increasing codeword length and
* secondarily by increasing symbol value. */
/* Initialize 'offsets' so that offsets[len] is the number of codewords
* shorter than 'len' bits, including length 0. */
offsets[0] = 0;
for (len = 0; len < max_codeword_len; len++)
offsets[len + 1] = offsets[len] + len_counts[len];
/* Use the 'offsets' array to sort the symbols. */
for (sym = 0; sym < num_syms; sym++)
sorted_syms[offsets[lens[sym]]++] = sym;
/* It is already guaranteed that all lengths are <= max_codeword_len,
* but it cannot be assumed they form a complete prefix code. A
* codeword of length n should require a proportion of the codespace
* equaling (1/2)^n. The code is complete if and only if, by this
* measure, the codespace is exactly filled by the lengths. */
remainder = 1;
for (len = 1; len <= max_codeword_len; len++) {
remainder <<= 1;
remainder -= len_counts[len];
if (unlikely(remainder < 0)) {
/* The lengths overflow the codespace; that is, the code
* is over-subscribed. */
return false;
}
}
if (unlikely(remainder != 0)) {
/* The lengths do not fill the codespace; that is, they form an
* incomplete code. */
/* Initialize the table entries to default values. When
* decompressing a well-formed stream, these default values will
* never be used. But since a malformed stream might contain
* any bits at all, these entries need to be set anyway. */
u32 entry = make_decode_table_entry(decode_results[0], 1);
for (sym = 0; sym < (1U << table_bits); sym++)
decode_table[sym] = entry;
/* A completely empty code is permitted. */
if (remainder == (1U << max_codeword_len))
return true;
/* The code is nonempty and incomplete. Proceed only if there
* is a single used symbol and its codeword has length 1. The
* DEFLATE RFC is somewhat unclear regarding this case. What
* zlib's decompressor does is permit this case for
* literal/length and offset codes and assume the codeword is 0
* rather than 1. We do the same except we allow this case for
* precodes too. */
if (remainder != (1U << (max_codeword_len - 1)) ||
len_counts[1] != 1)
return false;
}
/* Generate the decode table entries. Since we process codewords from
* shortest to longest, the main portion of the decode table is filled
* first; then the subtables are filled. Note that it's already been
* verified that the code is nonempty and not over-subscribed. */
/* Start with the smallest codeword length and the smallest-valued
* symbol which has that codeword length. */
sym_idx = offsets[0];
codeword_len = 1;
while (len_counts[codeword_len] == 0)
codeword_len++;
for (;;) { /* For each used symbol and its codeword... */
unsigned sym;
u32 entry;
unsigned i;
unsigned end;
unsigned increment;
unsigned bit;
/* Get the next symbol. */
sym = sorted_syms[sym_idx];
/* Start a new subtable if the codeword is long enough to
* require a subtable, *and* the first 'table_bits' bits of the
* codeword don't match the prefix for the previous subtable if
* any. */
if (codeword_len > table_bits &&
(codeword_reversed & table_mask) != cur_codeword_prefix) {
cur_codeword_prefix = (codeword_reversed & table_mask);
cur_table_start += 1U << cur_table_bits;
/* Calculate the subtable length. If the codeword
* length exceeds 'table_bits' by n, the subtable needs
* at least 2**n entries. But it may need more; if
* there are fewer than 2**n codewords of length
* 'table_bits + n' remaining, then n will need to be
* incremented to bring in longer codewords until the
* subtable can be filled completely. Note that it
* always will, eventually, be possible to fill the
* subtable, since the only case where we may have an
* incomplete code is a single codeword of length 1,
* and that never requires any subtables. */
cur_table_bits = codeword_len - table_bits;
remainder = (s32)1 << cur_table_bits;
for (;;) {
remainder -= len_counts[table_bits +
cur_table_bits];
if (remainder <= 0)
break;
cur_table_bits++;
remainder <<= 1;
}
/* Create the entry that points from the main table to
* the subtable. This entry contains the index of the
* start of the subtable and the number of bits with
* which the subtable is indexed (the log base 2 of the
* number of entries it contains). */
decode_table[cur_codeword_prefix] =
HUFFDEC_SUBTABLE_POINTER |
make_decode_table_entry(cur_table_start,
cur_table_bits);
/* Now that we're filling a subtable, we need to drop
* the first 'table_bits' bits of the codewords. */
num_dropped_bits = table_bits;
}
/* Create the decode table entry, which packs the decode result
* and the codeword length (minus 'table_bits' for subtables)
* together. */
entry = make_decode_table_entry(decode_results[sym],
codeword_len - num_dropped_bits);
/* Fill in as many copies of the decode table entry as are
* needed. The number of entries to fill is a power of 2 and
* depends on the codeword length; it could be as few as 1 or as
* large as half the size of the table. Since the codewords are
* bit-reversed, the indices to fill are those with the codeword
* in its low bits; it's the high bits that vary. */
i = cur_table_start + (codeword_reversed >> num_dropped_bits);
end = cur_table_start + (1U << cur_table_bits);
increment = 1U << (codeword_len - num_dropped_bits);
do {
decode_table[i] = entry;
i += increment;
} while (i < end);
/* Advance to the next codeword by incrementing it. But since
* our codewords are bit-reversed, we must manipulate the bits
* ourselves rather than simply adding 1. */
bit = 1U << (codeword_len - 1);
while (codeword_reversed & bit)
bit >>= 1;
codeword_reversed &= bit - 1;
codeword_reversed |= bit;
/* Advance to the next symbol. This will either increase the
* codeword length, or keep the same codeword length but
* increase the symbol value. Note: since we are using
* bit-reversed codewords, we don't need to explicitly append
* zeroes to the codeword when the codeword length increases. */
if (++sym_idx == num_syms)
return true;
len_counts[codeword_len]--;
while (len_counts[codeword_len] == 0)
codeword_len++;
}
}
/* Build the decode table for the precode. */
static bool
build_precode_decode_table(struct libdeflate_decompressor *d)
{
/* When you change TABLEBITS, you must change ENOUGH, and vice versa! */
STATIC_ASSERT(PRECODE_TABLEBITS == 7 && PRECODE_ENOUGH == 128);
return build_decode_table(d->u.l.precode_decode_table,
d->u.precode_lens,
DEFLATE_NUM_PRECODE_SYMS,
precode_decode_results,
PRECODE_TABLEBITS,
DEFLATE_MAX_PRE_CODEWORD_LEN,
d->working_space);
}
/* Build the decode table for the literal/length code. */
static bool
build_litlen_decode_table(struct libdeflate_decompressor *d,
unsigned num_litlen_syms, unsigned num_offset_syms)
{
/* When you change TABLEBITS, you must change ENOUGH, and vice versa! */
STATIC_ASSERT(LITLEN_TABLEBITS == 10 && LITLEN_ENOUGH == 1334);
return build_decode_table(d->u.litlen_decode_table,
d->u.l.lens,
num_litlen_syms,
litlen_decode_results,
LITLEN_TABLEBITS,
DEFLATE_MAX_LITLEN_CODEWORD_LEN,
d->working_space);
}
/* Build the decode table for the offset code. */
static bool
build_offset_decode_table(struct libdeflate_decompressor *d,
unsigned num_litlen_syms, unsigned num_offset_syms)
{
/* When you change TABLEBITS, you must change ENOUGH, and vice versa! */
STATIC_ASSERT(OFFSET_TABLEBITS == 8 && OFFSET_ENOUGH == 402);
return build_decode_table(d->offset_decode_table,
d->u.l.lens + num_litlen_syms,
num_offset_syms,
offset_decode_results,
OFFSET_TABLEBITS,
DEFLATE_MAX_OFFSET_CODEWORD_LEN,
d->working_space);
}
static forceinline machine_word_t
repeat_byte(u8 b)
{
machine_word_t v;
STATIC_ASSERT(WORDBITS == 32 || WORDBITS == 64);
v = b;
v |= v << 8;
v |= v << 16;
v |= v << ((WORDBITS == 64) ? 32 : 0);
return v;
}
static forceinline void
copy_word_unaligned(const void *src, void *dst)
{
store_word_unaligned(load_word_unaligned(src), dst);
}
/*****************************************************************************
* Main decompression routine
*****************************************************************************/
#define FUNCNAME deflate_decompress_default
#define ATTRIBUTES
#include "decompress_impl.h"
#undef FUNCNAME
#undef ATTRIBUTES
#if X86_CPU_FEATURES_ENABLED && \
COMPILER_SUPPORTS_BMI2_TARGET && !defined(__BMI2__)
# define FUNCNAME deflate_decompress_bmi2
# define ATTRIBUTES __attribute__((target("bmi2")))
# include "decompress_impl.h"
# undef FUNCNAME
# undef ATTRIBUTES
# define DISPATCH_ENABLED 1
#else
# define DISPATCH_ENABLED 0
#endif
#if DISPATCH_ENABLED
static enum libdeflate_result
dispatch(struct libdeflate_decompressor * restrict d,
const void * restrict in, size_t in_nbytes,
void * restrict out, size_t out_nbytes_avail,
size_t *actual_in_nbytes_ret, size_t *actual_out_nbytes_ret);
typedef enum libdeflate_result (*decompress_func_t)
(struct libdeflate_decompressor * restrict d,
const void * restrict in, size_t in_nbytes,
void * restrict out, size_t out_nbytes_avail,
size_t *actual_in_nbytes_ret, size_t *actual_out_nbytes_ret);
static decompress_func_t decompress_impl = dispatch;
static enum libdeflate_result
dispatch(struct libdeflate_decompressor * restrict d,
const void * restrict in, size_t in_nbytes,
void * restrict out, size_t out_nbytes_avail,
size_t *actual_in_nbytes_ret, size_t *actual_out_nbytes_ret)
{
decompress_func_t f = deflate_decompress_default;
#if X86_CPU_FEATURES_ENABLED
if (x86_have_cpu_features(X86_CPU_FEATURE_BMI2))
f = deflate_decompress_bmi2;
#endif
decompress_impl = f;
return (*f)(d, in, in_nbytes, out, out_nbytes_avail,
actual_in_nbytes_ret, actual_out_nbytes_ret);
}
#endif /* DISPATCH_ENABLED */
/*
* This is the main DEFLATE decompression routine. See libdeflate.h for the
* documentation.
*
* Note that the real code is in decompress_impl.h. The part here just handles
* calling the appropriate implementation depending on the CPU features at
* runtime.
*/
LIBDEFLATEAPI enum libdeflate_result
libdeflate_deflate_decompress_ex(struct libdeflate_decompressor * restrict d,
const void * restrict in, size_t in_nbytes,
void * restrict out, size_t out_nbytes_avail,
size_t *actual_in_nbytes_ret,
size_t *actual_out_nbytes_ret)
{
#if DISPATCH_ENABLED
return (*decompress_impl)(d, in, in_nbytes, out, out_nbytes_avail,
actual_in_nbytes_ret, actual_out_nbytes_ret);
#else
return deflate_decompress_default(d, in, in_nbytes,
out, out_nbytes_avail,
actual_in_nbytes_ret,
actual_out_nbytes_ret);
#endif
}
LIBDEFLATEAPI enum libdeflate_result
libdeflate_deflate_decompress(struct libdeflate_decompressor * restrict d,
const void * restrict in, size_t in_nbytes,
void * restrict out, size_t out_nbytes_avail,
size_t *actual_out_nbytes_ret)
{
return libdeflate_deflate_decompress_ex(d, in, in_nbytes,
out, out_nbytes_avail,
NULL, actual_out_nbytes_ret);
}
LIBDEFLATEAPI struct libdeflate_decompressor *
libdeflate_alloc_decompressor(void)
{
return malloc(sizeof(struct libdeflate_decompressor));
}
LIBDEFLATEAPI void
libdeflate_free_decompressor(struct libdeflate_decompressor *d)
{
free(d);
}