mirror of
https://github.com/cuberite/libevent.git
synced 2025-09-18 08:49:57 -04:00
On win32, use a hashtable to map sockets to events rather than using an array.
svn:r988
This commit is contained in:
parent
8f5777e692
commit
55bcd7d2f0
@ -58,8 +58,22 @@ struct eventop {
|
||||
enum event_method_feature features;
|
||||
};
|
||||
|
||||
/* used to map multiple events to the same underlying identifier */
|
||||
struct event_map {
|
||||
#ifdef WIN32
|
||||
#define EVMAP_USE_HT
|
||||
#endif
|
||||
|
||||
#ifdef EVMAP_USE_HT
|
||||
#include "ht-internal.h"
|
||||
struct event_map_entry;
|
||||
HT_HEAD(event_io_map, event_map_entry);
|
||||
#else
|
||||
#define event_io_map event_signal_map
|
||||
#endif
|
||||
|
||||
/* Used to map signal numbers to a list of events. If EVMAP_USE_HT is not
|
||||
defined, this is also used as event_io_map, to map fds to a list of events.
|
||||
*/
|
||||
struct event_signal_map {
|
||||
void **entries;
|
||||
int nentries;
|
||||
};
|
||||
@ -85,10 +99,10 @@ struct event_base {
|
||||
int nactivequeues;
|
||||
|
||||
/* for mapping io activity to events */
|
||||
struct event_map io;
|
||||
struct event_io_map io;
|
||||
|
||||
/* for mapping signal activity to events */
|
||||
struct event_map sigmap;
|
||||
struct event_signal_map sigmap;
|
||||
|
||||
struct event_list eventqueue;
|
||||
struct timeval event_tv;
|
||||
|
8
event.c
8
event.c
@ -360,8 +360,8 @@ event_base_free(struct event_base *base)
|
||||
|
||||
assert(TAILQ_EMPTY(&base->eventqueue));
|
||||
|
||||
evmap_clear(&base->io);
|
||||
evmap_clear(&base->sigmap);
|
||||
evmap_io_clear(&base->io);
|
||||
evmap_signal_clear(&base->sigmap);
|
||||
|
||||
mm_free(base);
|
||||
}
|
||||
@ -392,8 +392,8 @@ event_reinit(struct event_base *base)
|
||||
event_errx(1, "%s: could not reinitialize event mechanism",
|
||||
__func__);
|
||||
|
||||
evmap_clear(&base->io);
|
||||
evmap_clear(&base->sigmap);
|
||||
evmap_io_clear(&base->io);
|
||||
evmap_signal_clear(&base->sigmap);
|
||||
|
||||
TAILQ_FOREACH(ev, &base->eventqueue, ev_next) {
|
||||
if (ev->ev_events & (EV_READ|EV_WRITE)) {
|
||||
|
155
evmap.c
155
evmap.c
@ -56,16 +56,102 @@
|
||||
#include "evmap.h"
|
||||
#include "mm-internal.h"
|
||||
|
||||
/** An entry for an evmap_io list: notes all the events that want to read or
|
||||
write on a given fd, and the number of each.
|
||||
*/
|
||||
struct evmap_io {
|
||||
struct event_list events;
|
||||
unsigned int nread;
|
||||
unsigned int nwrite;
|
||||
};
|
||||
|
||||
/* An entry for an evmap_signal list: notes all the events that want to know
|
||||
when a signal triggers. */
|
||||
struct evmap_signal {
|
||||
struct event_list events;
|
||||
};
|
||||
|
||||
/* On some platforms, fds start at 0 and increment by 1 as they are
|
||||
allocated, and old numbers get used. For these platforms, we
|
||||
implement io maps just like signal maps: as an array of pointers to
|
||||
struct evmap_io. But on other platforms (windows), sockets are not
|
||||
0-indexed, not necessarily consecutive, and not necessarily reused.
|
||||
There, we use a hashtable to implement evmap_io.
|
||||
*/
|
||||
#ifdef EVMAP_USE_HT
|
||||
struct event_map_entry {
|
||||
HT_ENTRY(event_map_entry) map_node;
|
||||
evutil_socket_t fd;
|
||||
union { /* This is a union in case we need to make more things that can
|
||||
be in the hashtable. */
|
||||
struct evmap_io evmap_io;
|
||||
} ent;
|
||||
};
|
||||
|
||||
static inline unsigned
|
||||
hashsocket(struct event_map_entry *e)
|
||||
{
|
||||
return (unsigned) e->fd;
|
||||
}
|
||||
|
||||
static inline int
|
||||
eqsocket(struct event_map_entry *e1, struct event_map_entry *e2)
|
||||
{
|
||||
return e1->fd == e2->fd;
|
||||
}
|
||||
|
||||
HT_PROTOTYPE(event_io_map, event_map_entry, map_node, hashsocket, eqsocket);
|
||||
HT_GENERATE(event_io_map, event_map_entry, map_node, hashsocket, eqsocket,
|
||||
0.5, mm_malloc, mm_realloc, mm_free);
|
||||
|
||||
#define GET_IO_SLOT(x, map, slot, type) \
|
||||
do { \
|
||||
struct event_map_entry _key, *_ent; \
|
||||
_key.fd = slot; \
|
||||
_ent = HT_FIND(event_io_map, map, &_key); \
|
||||
(x) = &_ent->ent.type; \
|
||||
} while (0);
|
||||
|
||||
#define GET_IO_SLOT_AND_CTOR(x, map, slot, type, ctor) \
|
||||
do { \
|
||||
struct event_map_entry _key, *_ent; \
|
||||
_key.fd = slot; \
|
||||
_HT_FIND_OR_INSERT(event_io_map, map_node, hashsocket, map, \
|
||||
event_map_entry, &_key, ptr, \
|
||||
{ \
|
||||
_ent = *ptr; \
|
||||
}, \
|
||||
{ \
|
||||
_ent = mm_malloc(sizeof(struct event_map_entry)); \
|
||||
assert(_ent); \
|
||||
_ent->fd = slot; \
|
||||
(ctor)(&_ent->ent.type); \
|
||||
_HT_FOI_INSERT(map_node, map, &_key, _ent, ptr) \
|
||||
}); \
|
||||
(x) = &_ent->ent.type; \
|
||||
} while (0)
|
||||
|
||||
void evmap_io_clear(struct event_io_map *ctx)
|
||||
{
|
||||
struct event_map_entry **ent, **next, *this;
|
||||
for (ent = HT_START(event_io_map, ctx); ent; ent = next) {
|
||||
this = *ent;
|
||||
next = HT_NEXT_RMV(event_io_map, ctx, ent);
|
||||
mm_free(this);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Set the variable 'x' to the field in event_map 'map' with fields of type
|
||||
'struct type *' corresponding to the fd or signal 'slot'. Set 'x' to NULL
|
||||
if there are no entries for 'slot'. Does no bounds-checking. */
|
||||
#define GET_SLOT(x, map, slot, type) \
|
||||
#define GET_SIGNAL_SLOT(x, map, slot, type) \
|
||||
(x) = (struct type *)((map)->entries[slot])
|
||||
/* As GET_SLOT, but construct the entry for 'slot' if it is not present,
|
||||
by allocating enough memory for a 'struct type', and initializing the new
|
||||
value by calling the function 'ctor' on it.
|
||||
*/
|
||||
#define GET_SLOT_AND_CTOR(x, map, slot, type, ctor) \
|
||||
#define GET_SIGNAL_SLOT_AND_CTOR(x, map, slot, type, ctor) \
|
||||
do { \
|
||||
if ((map)->entries[slot] == NULL) { \
|
||||
assert(ctor != NULL); \
|
||||
@ -74,13 +160,27 @@
|
||||
(ctor)((struct type *)(map)->entries[slot]); \
|
||||
} \
|
||||
(x) = (struct type *)((map)->entries[slot]); \
|
||||
} while (0) \
|
||||
} while (0)
|
||||
|
||||
/* If we aren't using hashtables, then define the IO_SLOT macros and functions
|
||||
as thin aliases over the SIGNAL_SLOT versions. */
|
||||
#ifndef EVMAP_USE_HT
|
||||
#define GET_IO_SLOT(x,map,slot,type) GET_SIGNAL_SLOT(x,map,slot,type)
|
||||
#define GET_IO_SLOT_AND_CTOR(x,map,slot,type,ctor) \
|
||||
GET_SIGNAL_SLOT_AND_CTOR(x,map,slot,type,ctor)
|
||||
void
|
||||
evmap_io_clear(struct event_io_map* ctx)
|
||||
{
|
||||
evmap_signal_clear(ctx);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/** Expand 'map' with new entries of width 'msize' until it is big enough
|
||||
to store a value in 'slot'.
|
||||
*/
|
||||
static int
|
||||
evmap_make_space(struct event_map *map, int slot, int msize)
|
||||
evmap_make_space(struct event_signal_map *map, int slot, int msize)
|
||||
{
|
||||
if (map->nentries <= slot) {
|
||||
int nentries = map->nentries ? map->nentries : 32;
|
||||
@ -103,9 +203,8 @@ evmap_make_space(struct event_map *map, int slot, int msize)
|
||||
return (0);
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
evmap_clear(struct event_map *ctx)
|
||||
evmap_signal_clear(struct event_signal_map *ctx)
|
||||
{
|
||||
ctx->nentries = 0;
|
||||
if (ctx->entries != NULL) {
|
||||
@ -119,16 +218,8 @@ evmap_clear(struct event_map *ctx)
|
||||
}
|
||||
}
|
||||
|
||||
/* code specific to file descriptors */
|
||||
|
||||
/** An entry for an evmap_io list: notes all the events that want to read or
|
||||
write on a given fd, and the number of each.
|
||||
*/
|
||||
struct evmap_io {
|
||||
struct event_list events;
|
||||
unsigned int nread;
|
||||
unsigned int nwrite;
|
||||
};
|
||||
/* code specific to file descriptors */
|
||||
|
||||
/** Constructor for struct evmap_io */
|
||||
static void
|
||||
@ -144,7 +235,7 @@ int
|
||||
evmap_io_add(struct event_base *base, int fd, struct event *ev)
|
||||
{
|
||||
const struct eventop *evsel = base->evsel;
|
||||
struct event_map *io = &base->io;
|
||||
struct event_io_map *io = &base->io;
|
||||
struct evmap_io *ctx = NULL;
|
||||
int nread, nwrite;
|
||||
short res = 0, old = 0;
|
||||
@ -153,11 +244,13 @@ evmap_io_add(struct event_base *base, int fd, struct event *ev)
|
||||
/*XXX(nickm) Should we assert that ev is not already inserted, or should
|
||||
* we make this function idempotent? */
|
||||
|
||||
#ifndef EVMAP_USE_HT
|
||||
if (fd >= io->nentries) {
|
||||
if (evmap_make_space(io, fd, sizeof(struct evmap_io)) == -1)
|
||||
return (-1);
|
||||
}
|
||||
GET_SLOT_AND_CTOR(ctx, io, fd, evmap_io, evmap_io_init);
|
||||
#endif
|
||||
GET_IO_SLOT_AND_CTOR(ctx, io, fd, evmap_io, evmap_io_init);
|
||||
|
||||
nread = ctx->nread;
|
||||
nwrite = ctx->nwrite;
|
||||
@ -196,7 +289,7 @@ int
|
||||
evmap_io_del(struct event_base *base, int fd, struct event *ev)
|
||||
{
|
||||
const struct eventop *evsel = base->evsel;
|
||||
struct event_map *io = &base->io;
|
||||
struct event_io_map *io = &base->io;
|
||||
struct evmap_io *ctx;
|
||||
int nread, nwrite;
|
||||
short res = 0, old = 0;
|
||||
@ -205,10 +298,12 @@ evmap_io_del(struct event_base *base, int fd, struct event *ev)
|
||||
/*XXX(nickm) Should we assert that ev is not already inserted, or should
|
||||
* we make this function idempotent? */
|
||||
|
||||
#ifndef EVMAP_USE_HT
|
||||
if (fd >= io->nentries)
|
||||
return (-1);
|
||||
#endif
|
||||
|
||||
GET_SLOT(ctx, io, fd, evmap_io);
|
||||
GET_IO_SLOT(ctx, io, fd, evmap_io);
|
||||
|
||||
nread = ctx->nread;
|
||||
nwrite = ctx->nwrite;
|
||||
@ -244,12 +339,14 @@ evmap_io_del(struct event_base *base, int fd, struct event *ev)
|
||||
void
|
||||
evmap_io_active(struct event_base *base, int fd, short events)
|
||||
{
|
||||
struct event_map *io = &base->io;
|
||||
struct event_io_map *io = &base->io;
|
||||
struct evmap_io *ctx;
|
||||
struct event *ev;
|
||||
|
||||
#ifndef EVMAP_USE_HT
|
||||
assert(fd < io->nentries);
|
||||
GET_SLOT(ctx, io, fd, evmap_io);
|
||||
#endif
|
||||
GET_IO_SLOT(ctx, io, fd, evmap_io);
|
||||
|
||||
assert(ctx);
|
||||
TAILQ_FOREACH(ev, &ctx->events, ev_io_next) {
|
||||
@ -260,10 +357,6 @@ evmap_io_active(struct event_base *base, int fd, short events)
|
||||
|
||||
/* code specific to signals */
|
||||
|
||||
struct evmap_signal {
|
||||
struct event_list events;
|
||||
};
|
||||
|
||||
static void
|
||||
evmap_signal_init(struct evmap_signal *entry)
|
||||
{
|
||||
@ -275,7 +368,7 @@ int
|
||||
evmap_signal_add(struct event_base *base, int sig, struct event *ev)
|
||||
{
|
||||
const struct eventop *evsel = base->evsigsel;
|
||||
struct event_map *map = &base->sigmap;
|
||||
struct event_signal_map *map = &base->sigmap;
|
||||
struct evmap_signal *ctx = NULL;
|
||||
|
||||
if (sig >= map->nentries) {
|
||||
@ -283,7 +376,7 @@ evmap_signal_add(struct event_base *base, int sig, struct event *ev)
|
||||
map, sig, sizeof(struct evmap_signal)) == -1)
|
||||
return (-1);
|
||||
}
|
||||
GET_SLOT_AND_CTOR(ctx, map, sig, evmap_signal, evmap_signal_init);
|
||||
GET_SIGNAL_SLOT_AND_CTOR(ctx, map, sig, evmap_signal, evmap_signal_init);
|
||||
|
||||
if (TAILQ_EMPTY(&ctx->events)) {
|
||||
if (evsel->add(base, EVENT_SIGNAL(ev), 0, EV_SIGNAL) == -1)
|
||||
@ -299,13 +392,13 @@ int
|
||||
evmap_signal_del(struct event_base *base, int sig, struct event *ev)
|
||||
{
|
||||
const struct eventop *evsel = base->evsigsel;
|
||||
struct event_map *map = &base->sigmap;
|
||||
struct event_signal_map *map = &base->sigmap;
|
||||
struct evmap_signal *ctx;
|
||||
|
||||
if (sig >= map->nentries)
|
||||
return (-1);
|
||||
|
||||
GET_SLOT(ctx, map, sig, evmap_signal);
|
||||
GET_SIGNAL_SLOT(ctx, map, sig, evmap_signal);
|
||||
|
||||
if (TAILQ_FIRST(&ctx->events) == TAILQ_LAST(&ctx->events, event_list)) {
|
||||
if (evsel->del(base, EVENT_SIGNAL(ev), 0, EV_SIGNAL) == -1)
|
||||
@ -320,12 +413,12 @@ evmap_signal_del(struct event_base *base, int sig, struct event *ev)
|
||||
void
|
||||
evmap_signal_active(struct event_base *base, int sig, int ncalls)
|
||||
{
|
||||
struct event_map *map = &base->sigmap;
|
||||
struct event_signal_map *map = &base->sigmap;
|
||||
struct evmap_signal *ctx;
|
||||
struct event *ev;
|
||||
|
||||
assert(sig < map->nentries);
|
||||
GET_SLOT(ctx, map, sig, evmap_signal);
|
||||
GET_SIGNAL_SLOT(ctx, map, sig, evmap_signal);
|
||||
|
||||
TAILQ_FOREACH(ev, &ctx->events, ev_signal_next)
|
||||
event_active(ev, EV_SIGNAL, ncalls);
|
||||
|
4
evmap.h
4
evmap.h
@ -34,7 +34,6 @@
|
||||
* inside libevent.
|
||||
**/
|
||||
|
||||
struct event_map;
|
||||
struct event_base;
|
||||
struct event;
|
||||
|
||||
@ -42,7 +41,8 @@ struct event;
|
||||
|
||||
@param ctx the map to clear.
|
||||
*/
|
||||
void evmap_clear(struct event_map* ctx);
|
||||
void evmap_io_clear(struct event_io_map* ctx);
|
||||
void evmap_signal_clear(struct event_signal_map* ctx);
|
||||
|
||||
/** Add an IO event (some combination of EV_READ or EV_WRITE) to an
|
||||
event_base's list of events on a given file descriptor, and tell the
|
||||
|
466
ht-internal.h
Normal file
466
ht-internal.h
Normal file
@ -0,0 +1,466 @@
|
||||
/* Copyright 2002 Christopher Clark */
|
||||
/* Copyright 2005-9 Nick Mathewson */
|
||||
/* See license at end. */
|
||||
|
||||
/* Based on ideas by Christopher Clark and interfaces from Niels Provos. */
|
||||
|
||||
#ifndef _EVENT_HT_H
|
||||
#define _EVENT_HT_H
|
||||
|
||||
#define HT_HEAD(name, type) \
|
||||
struct name { \
|
||||
/* The hash table itself. */ \
|
||||
struct type **hth_table; \
|
||||
/* How long is the hash table? */ \
|
||||
unsigned hth_table_length; \
|
||||
/* How many elements does the table contain? */ \
|
||||
unsigned hth_n_entries; \
|
||||
/* How many elements will we allow in the table before resizing it? */ \
|
||||
unsigned hth_load_limit; \
|
||||
/* Position of hth_table_length in the primes table. */ \
|
||||
int hth_prime_idx; \
|
||||
}
|
||||
|
||||
#define HT_INITIALIZER() \
|
||||
{ NULL, 0, 0, 0, -1 }
|
||||
|
||||
#define HT_ENTRY(type) \
|
||||
struct { \
|
||||
struct type *hte_next; \
|
||||
unsigned hte_hash; \
|
||||
}
|
||||
|
||||
#define HT_EMPTY(head) \
|
||||
((head)->hth_n_entries == 0)
|
||||
|
||||
/* Helper: alias for the bucket containing 'elm'. */
|
||||
#define _HT_BUCKET(head, field, elm) \
|
||||
((head)->hth_table[elm->field.hte_hash % head->hth_table_length])
|
||||
|
||||
/* How many elements in 'head'? */
|
||||
#define HT_SIZE(head) \
|
||||
((head)->hth_n_entries)
|
||||
|
||||
#define HT_FIND(name, head, elm) name##_HT_FIND((head), (elm))
|
||||
#define HT_INSERT(name, head, elm) name##_HT_INSERT((head), (elm))
|
||||
#define HT_REPLACE(name, head, elm) name##_HT_REPLACE((head), (elm))
|
||||
#define HT_REMOVE(name, head, elm) name##_HT_REMOVE((head), (elm))
|
||||
#define HT_START(name, head) name##_HT_START(head)
|
||||
#define HT_NEXT(name, head, elm) name##_HT_NEXT((head), (elm))
|
||||
#define HT_NEXT_RMV(name, head, elm) name##_HT_NEXT_RMV((head), (elm))
|
||||
#define HT_CLEAR(name, head) name##_HT_CLEAR(head)
|
||||
#define HT_INIT(name, head) name##_HT_INIT(head)
|
||||
/* Helper: */
|
||||
static inline unsigned
|
||||
ht_improve_hash(unsigned h)
|
||||
{
|
||||
/* Aim to protect against poor hash functions by adding logic here
|
||||
* - logic taken from java 1.4 hashtable source */
|
||||
h += ~(h << 9);
|
||||
h ^= ((h >> 14) | (h << 18)); /* >>> */
|
||||
h += (h << 4);
|
||||
h ^= ((h >> 10) | (h << 22)); /* >>> */
|
||||
return h;
|
||||
}
|
||||
|
||||
#if 0
|
||||
/** Basic string hash function, from Java standard String.hashCode(). */
|
||||
static inline unsigned
|
||||
ht_string_hash(const char *s)
|
||||
{
|
||||
unsigned h = 0;
|
||||
int m = 1;
|
||||
while (*s) {
|
||||
h += ((signed char)*s++)*m;
|
||||
m = (m<<5)-1; /* m *= 31 */
|
||||
}
|
||||
return h;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** Basic string hash function, from Python's str.__hash__() */
|
||||
static inline unsigned
|
||||
ht_string_hash(const char *s)
|
||||
{
|
||||
unsigned h;
|
||||
const unsigned char *cp = (const unsigned char *)s;
|
||||
h = *cp << 7;
|
||||
while (*cp) {
|
||||
h = (1000003*h) ^ *cp++;
|
||||
}
|
||||
/* This conversion truncates the length of the string, but that's ok. */
|
||||
h ^= (unsigned)(cp-(const unsigned char*)s);
|
||||
return h;
|
||||
}
|
||||
|
||||
#define _HT_SET_HASH(elm, field, hashfn) \
|
||||
(elm)->field.hte_hash = hashfn(elm)
|
||||
|
||||
#define HT_FOREACH(x, name, head) \
|
||||
for ((x) = HT_START(name, head); \
|
||||
(x) != NULL; \
|
||||
(x) = HT_NEXT(name, head, x))
|
||||
|
||||
#define HT_PROTOTYPE(name, type, field, hashfn, eqfn) \
|
||||
int name##_HT_GROW(struct name *ht, unsigned min_capacity); \
|
||||
void name##_HT_CLEAR(struct name *ht); \
|
||||
int _##name##_HT_REP_IS_BAD(const struct name *ht); \
|
||||
static inline void \
|
||||
name##_HT_INIT(struct name *head) { \
|
||||
head->hth_table_length = 0; \
|
||||
head->hth_table = NULL; \
|
||||
head->hth_n_entries = 0; \
|
||||
head->hth_load_limit = 0; \
|
||||
head->hth_prime_idx = -1; \
|
||||
} \
|
||||
/* Helper: returns a pointer to the right location in the table \
|
||||
* 'head' to find or insert the element 'elm'. */ \
|
||||
static inline struct type ** \
|
||||
_##name##_HT_FIND_P(struct name *head, struct type *elm) \
|
||||
{ \
|
||||
struct type **p; \
|
||||
if (!head->hth_table) \
|
||||
return NULL; \
|
||||
p = &_HT_BUCKET(head, field, elm); \
|
||||
while (*p) { \
|
||||
if (eqfn(*p, elm)) \
|
||||
return p; \
|
||||
p = &(*p)->field.hte_next; \
|
||||
} \
|
||||
return p; \
|
||||
} \
|
||||
/* Return a pointer to the element in the table 'head' matching 'elm', \
|
||||
* or NULL if no such element exists */ \
|
||||
static inline struct type * \
|
||||
name##_HT_FIND(const struct name *head, struct type *elm) \
|
||||
{ \
|
||||
struct type **p; \
|
||||
struct name *h = (struct name *) head; \
|
||||
_HT_SET_HASH(elm, field, hashfn); \
|
||||
p = _##name##_HT_FIND_P(h, elm); \
|
||||
return p ? *p : NULL; \
|
||||
} \
|
||||
/* Insert the element 'elm' into the table 'head'. Do not call this \
|
||||
* function if the table might already contain a matching element. */ \
|
||||
static inline void \
|
||||
name##_HT_INSERT(struct name *head, struct type *elm) \
|
||||
{ \
|
||||
struct type **p; \
|
||||
if (!head->hth_table || head->hth_n_entries >= head->hth_load_limit) \
|
||||
name##_HT_GROW(head, head->hth_n_entries+1); \
|
||||
++head->hth_n_entries; \
|
||||
_HT_SET_HASH(elm, field, hashfn); \
|
||||
p = &_HT_BUCKET(head, field, elm); \
|
||||
elm->field.hte_next = *p; \
|
||||
*p = elm; \
|
||||
} \
|
||||
/* Insert the element 'elm' into the table 'head'. If there already \
|
||||
* a matching element in the table, replace that element and return \
|
||||
* it. */ \
|
||||
static inline struct type * \
|
||||
name##_HT_REPLACE(struct name *head, struct type *elm) \
|
||||
{ \
|
||||
struct type **p, *r; \
|
||||
if (!head->hth_table || head->hth_n_entries >= head->hth_load_limit) \
|
||||
name##_HT_GROW(head, head->hth_n_entries+1); \
|
||||
_HT_SET_HASH(elm, field, hashfn); \
|
||||
p = _##name##_HT_FIND_P(head, elm); \
|
||||
r = *p; \
|
||||
*p = elm; \
|
||||
if (r && (r!=elm)) { \
|
||||
elm->field.hte_next = r->field.hte_next; \
|
||||
r->field.hte_next = NULL; \
|
||||
return r; \
|
||||
} else { \
|
||||
++head->hth_n_entries; \
|
||||
return NULL; \
|
||||
} \
|
||||
} \
|
||||
/* Remove any element matching 'elm' from the table 'head'. If such \
|
||||
* an element is found, return it; otherwise return NULL. */ \
|
||||
static inline struct type * \
|
||||
name##_HT_REMOVE(struct name *head, struct type *elm) \
|
||||
{ \
|
||||
struct type **p, *r; \
|
||||
_HT_SET_HASH(elm, field, hashfn); \
|
||||
p = _##name##_HT_FIND_P(head,elm); \
|
||||
if (!p || !*p) \
|
||||
return NULL; \
|
||||
r = *p; \
|
||||
*p = r->field.hte_next; \
|
||||
r->field.hte_next = NULL; \
|
||||
--head->hth_n_entries; \
|
||||
return r; \
|
||||
} \
|
||||
/* Invoke the function 'fn' on every element of the table 'head', \
|
||||
* using 'data' as its second argument. If the function returns \
|
||||
* nonzero, remove the most recently examined element before invoking \
|
||||
* the function again. */ \
|
||||
static inline void \
|
||||
name##_HT_FOREACH_FN(struct name *head, \
|
||||
int (*fn)(struct type *, void *), \
|
||||
void *data) \
|
||||
{ \
|
||||
unsigned idx; \
|
||||
int remove; \
|
||||
struct type **p, **nextp, *next; \
|
||||
if (!head->hth_table) \
|
||||
return; \
|
||||
for (idx=0; idx < head->hth_table_length; ++idx) { \
|
||||
p = &head->hth_table[idx]; \
|
||||
while (*p) { \
|
||||
nextp = &(*p)->field.hte_next; \
|
||||
next = *nextp; \
|
||||
remove = fn(*p, data); \
|
||||
if (remove) { \
|
||||
--head->hth_n_entries; \
|
||||
*p = next; \
|
||||
} else { \
|
||||
p = nextp; \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
/* Return a pointer to the first element in the table 'head', under \
|
||||
* an arbitrary order. This order is stable under remove operations, \
|
||||
* but not under others. If the table is empty, return NULL. */ \
|
||||
static inline struct type ** \
|
||||
name##_HT_START(struct name *head) \
|
||||
{ \
|
||||
unsigned b = 0; \
|
||||
while (b < head->hth_table_length) { \
|
||||
if (head->hth_table[b]) \
|
||||
return &head->hth_table[b]; \
|
||||
++b; \
|
||||
} \
|
||||
return NULL; \
|
||||
} \
|
||||
/* Return the next element in 'head' after 'elm', under the arbitrary \
|
||||
* order used by HT_START. If there are no more elements, return \
|
||||
* NULL. If 'elm' is to be removed from the table, you must call \
|
||||
* this function for the next value before you remove it. \
|
||||
*/ \
|
||||
static inline struct type ** \
|
||||
name##_HT_NEXT(struct name *head, struct type **elm) \
|
||||
{ \
|
||||
if ((*elm)->field.hte_next) { \
|
||||
return &(*elm)->field.hte_next; \
|
||||
} else { \
|
||||
unsigned b = ((*elm)->field.hte_hash % head->hth_table_length)+1; \
|
||||
while (b < head->hth_table_length) { \
|
||||
if (head->hth_table[b]) \
|
||||
return &head->hth_table[b]; \
|
||||
++b; \
|
||||
} \
|
||||
return NULL; \
|
||||
} \
|
||||
} \
|
||||
static inline struct type ** \
|
||||
name##_HT_NEXT_RMV(struct name *head, struct type **elm) \
|
||||
{ \
|
||||
unsigned h = (*elm)->field.hte_hash; \
|
||||
*elm = (*elm)->field.hte_next; \
|
||||
--head->hth_n_entries; \
|
||||
if (*elm) { \
|
||||
return elm; \
|
||||
} else { \
|
||||
unsigned b = (h % head->hth_table_length)+1; \
|
||||
while (b < head->hth_table_length) { \
|
||||
if (head->hth_table[b]) \
|
||||
return &head->hth_table[b]; \
|
||||
++b; \
|
||||
} \
|
||||
return NULL; \
|
||||
} \
|
||||
}
|
||||
|
||||
#define HT_GENERATE(name, type, field, hashfn, eqfn, load, mallocfn, \
|
||||
reallocfn, freefn) \
|
||||
static unsigned name##_PRIMES[] = { \
|
||||
53, 97, 193, 389, \
|
||||
769, 1543, 3079, 6151, \
|
||||
12289, 24593, 49157, 98317, \
|
||||
196613, 393241, 786433, 1572869, \
|
||||
3145739, 6291469, 12582917, 25165843, \
|
||||
50331653, 100663319, 201326611, 402653189, \
|
||||
805306457, 1610612741 \
|
||||
}; \
|
||||
static unsigned name##_N_PRIMES = \
|
||||
(unsigned)(sizeof(name##_PRIMES)/sizeof(name##_PRIMES[0])); \
|
||||
/* Expand the internal table of 'head' until it is large enough to \
|
||||
* hold 'size' elements. Return 0 on success, -1 on allocation \
|
||||
* failure. */ \
|
||||
int \
|
||||
name##_HT_GROW(struct name *head, unsigned size) \
|
||||
{ \
|
||||
unsigned new_len, new_load_limit; \
|
||||
int prime_idx; \
|
||||
struct type **new_table; \
|
||||
if (head->hth_prime_idx == (int)name##_N_PRIMES - 1) \
|
||||
return 0; \
|
||||
if (head->hth_load_limit > size) \
|
||||
return 0; \
|
||||
prime_idx = head->hth_prime_idx; \
|
||||
do { \
|
||||
new_len = name##_PRIMES[++prime_idx]; \
|
||||
new_load_limit = (unsigned)(load*new_len); \
|
||||
} while (new_load_limit <= size && \
|
||||
prime_idx < (int)name##_N_PRIMES); \
|
||||
if ((new_table = mallocfn(new_len*sizeof(struct type*)))) { \
|
||||
unsigned b; \
|
||||
memset(new_table, 0, new_len*sizeof(struct type*)); \
|
||||
for (b = 0; b < head->hth_table_length; ++b) { \
|
||||
struct type *elm, *next; \
|
||||
unsigned b2; \
|
||||
elm = head->hth_table[b]; \
|
||||
while (elm) { \
|
||||
next = elm->field.hte_next; \
|
||||
b2 = elm->field.hte_hash % new_len; \
|
||||
elm->field.hte_next = new_table[b2]; \
|
||||
new_table[b2] = elm; \
|
||||
elm = next; \
|
||||
} \
|
||||
} \
|
||||
if (head->hth_table) \
|
||||
freefn(head->hth_table); \
|
||||
head->hth_table = new_table; \
|
||||
} else { \
|
||||
unsigned b, b2; \
|
||||
new_table = reallocfn(head->hth_table, new_len*sizeof(struct type*)); \
|
||||
if (!new_table) return -1; \
|
||||
memset(new_table + head->hth_table_length, 0, \
|
||||
(new_len - head->hth_table_length)*sizeof(struct type*)); \
|
||||
for (b=0; b < head->hth_table_length; ++b) { \
|
||||
struct type *e, **pE; \
|
||||
for (pE = &new_table[b], e = *pE; e != NULL; e = *pE) { \
|
||||
b2 = e->field.hte_hash % new_len; \
|
||||
if (b2 == b) { \
|
||||
pE = &e->field.hte_next; \
|
||||
} else { \
|
||||
*pE = e->field.hte_next; \
|
||||
e->field.hte_next = new_table[b2]; \
|
||||
new_table[b2] = e; \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
head->hth_table = new_table; \
|
||||
} \
|
||||
head->hth_table_length = new_len; \
|
||||
head->hth_prime_idx = prime_idx; \
|
||||
head->hth_load_limit = new_load_limit; \
|
||||
return 0; \
|
||||
} \
|
||||
/* Free all storage held by 'head'. Does not free 'head' itself, or \
|
||||
* individual elements. */ \
|
||||
void \
|
||||
name##_HT_CLEAR(struct name *head) \
|
||||
{ \
|
||||
if (head->hth_table) \
|
||||
freefn(head->hth_table); \
|
||||
head->hth_table_length = 0; \
|
||||
name##_HT_INIT(head); \
|
||||
} \
|
||||
/* Debugging helper: return false iff the representation of 'head' is \
|
||||
* internally consistent. */ \
|
||||
int \
|
||||
_##name##_HT_REP_IS_BAD(const struct name *head) \
|
||||
{ \
|
||||
unsigned n, i; \
|
||||
struct type *elm; \
|
||||
if (!head->hth_table_length) { \
|
||||
if (!head->hth_table && !head->hth_n_entries && \
|
||||
!head->hth_load_limit && head->hth_prime_idx == -1) \
|
||||
return 0; \
|
||||
else \
|
||||
return 1; \
|
||||
} \
|
||||
if (!head->hth_table || head->hth_prime_idx < 0 || \
|
||||
!head->hth_load_limit) \
|
||||
return 2; \
|
||||
if (head->hth_n_entries > head->hth_load_limit) \
|
||||
return 3; \
|
||||
if (head->hth_table_length != name##_PRIMES[head->hth_prime_idx]) \
|
||||
return 4; \
|
||||
if (head->hth_load_limit != (unsigned)(load*head->hth_table_length)) \
|
||||
return 5; \
|
||||
for (n = i = 0; i < head->hth_table_length; ++i) { \
|
||||
for (elm = head->hth_table[i]; elm; elm = elm->field.hte_next) { \
|
||||
if (elm->field.hte_hash != hashfn(elm)) \
|
||||
return 1000 + i; \
|
||||
if ((elm->field.hte_hash % head->hth_table_length) != i) \
|
||||
return 10000 + i; \
|
||||
++n; \
|
||||
} \
|
||||
} \
|
||||
if (n != head->hth_n_entries) \
|
||||
return 6; \
|
||||
return 0; \
|
||||
}
|
||||
|
||||
/** Implements an over-optimized "find and insert if absent" block;
|
||||
* not meant for direct usage by typical code, or usage outside the critical
|
||||
* path.*/
|
||||
#define _HT_FIND_OR_INSERT(name, field, hashfn, head, eltype, elm, var, y, n) \
|
||||
{ \
|
||||
struct name *_##var##_head = head; \
|
||||
struct eltype **var; \
|
||||
if (!_##var##_head->hth_table || \
|
||||
_##var##_head->hth_n_entries >= _##var##_head->hth_load_limit) \
|
||||
name##_HT_GROW(_##var##_head, _##var##_head->hth_n_entries+1); \
|
||||
_HT_SET_HASH((elm), field, hashfn); \
|
||||
var = _##name##_HT_FIND_P(_##var##_head, (elm)); \
|
||||
if (*var) { \
|
||||
y; \
|
||||
} else { \
|
||||
n; \
|
||||
} \
|
||||
}
|
||||
#define _HT_FOI_INSERT(field, head, elm, newent, var) \
|
||||
{ \
|
||||
newent->field.hte_hash = (elm)->field.hte_hash; \
|
||||
newent->field.hte_next = NULL; \
|
||||
*var = newent; \
|
||||
++((head)->hth_n_entries); \
|
||||
}
|
||||
|
||||
/*
|
||||
* Copyright 2005, Nick Mathewson. Implementation logic is adapted from code
|
||||
* by Cristopher Clark, retrofit to allow drop-in memory management, and to
|
||||
* use the same interface as Niels Provos's HT_H. I'm not sure whether this
|
||||
* is a derived work any more, but whether it is or not, the license below
|
||||
* applies.
|
||||
*
|
||||
* Copyright (c) 2002, Christopher Clark
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
*
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* * Neither the name of the original author; nor the names of any contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#endif
|
||||
|
Loading…
x
Reference in New Issue
Block a user