mirror of
				https://github.com/cuberite/polarssl.git
				synced 2025-11-04 04:32:24 -05:00 
			
		
		
		
	No security issue, can cause valid signatures to be rejected. Reported by DualTachyon on github.
		
			
				
	
	
		
			350 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			350 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Elliptic curve DSA
 | 
						|
 *
 | 
						|
 *  Copyright (C) 2006-2013, Brainspark B.V.
 | 
						|
 *
 | 
						|
 *  This file is part of PolarSSL (http://www.polarssl.org)
 | 
						|
 *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
 | 
						|
 *
 | 
						|
 *  All rights reserved.
 | 
						|
 *
 | 
						|
 *  This program is free software; you can redistribute it and/or modify
 | 
						|
 *  it under the terms of the GNU General Public License as published by
 | 
						|
 *  the Free Software Foundation; either version 2 of the License, or
 | 
						|
 *  (at your option) any later version.
 | 
						|
 *
 | 
						|
 *  This program is distributed in the hope that it will be useful,
 | 
						|
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 *  GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 *  You should have received a copy of the GNU General Public License along
 | 
						|
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 | 
						|
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * References:
 | 
						|
 *
 | 
						|
 * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
 | 
						|
 */
 | 
						|
 | 
						|
#include "polarssl/config.h"
 | 
						|
 | 
						|
#if defined(POLARSSL_ECDSA_C)
 | 
						|
 | 
						|
#include "polarssl/ecdsa.h"
 | 
						|
#include "polarssl/asn1write.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Derive a suitable integer for group grp from a buffer of length len
 | 
						|
 * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3
 | 
						|
 */
 | 
						|
static int derive_mpi( const ecp_group *grp, mpi *x,
 | 
						|
                       const unsigned char *buf, size_t blen )
 | 
						|
{
 | 
						|
    size_t n_size = (grp->nbits + 7) / 8;
 | 
						|
    return( mpi_read_binary( x, buf, blen > n_size ? n_size : blen ) );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute ECDSA signature of a hashed message (SEC1 4.1.3)
 | 
						|
 * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
 | 
						|
 */
 | 
						|
int ecdsa_sign( ecp_group *grp, mpi *r, mpi *s,
 | 
						|
                const mpi *d, const unsigned char *buf, size_t blen,
 | 
						|
                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
 | 
						|
{
 | 
						|
    int ret, key_tries, sign_tries;
 | 
						|
    ecp_point R;
 | 
						|
    mpi k, e;
 | 
						|
 | 
						|
    ecp_point_init( &R );
 | 
						|
    mpi_init( &k );
 | 
						|
    mpi_init( &e );
 | 
						|
 | 
						|
    sign_tries = 0;
 | 
						|
    do
 | 
						|
    {
 | 
						|
        /*
 | 
						|
         * Steps 1-3: generate a suitable ephemeral keypair
 | 
						|
         * and set r = xR mod n
 | 
						|
         */
 | 
						|
        key_tries = 0;
 | 
						|
        do
 | 
						|
        {
 | 
						|
            MPI_CHK( ecp_gen_keypair( grp, &k, &R, f_rng, p_rng ) );
 | 
						|
            MPI_CHK( mpi_mod_mpi( r, &R.X, &grp->N ) );
 | 
						|
 | 
						|
            if( key_tries++ > 10 )
 | 
						|
            {
 | 
						|
                ret = POLARSSL_ERR_ECP_RANDOM_FAILED;
 | 
						|
                goto cleanup;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        while( mpi_cmp_int( r, 0 ) == 0 );
 | 
						|
 | 
						|
        /*
 | 
						|
         * Step 5: derive MPI from hashed message
 | 
						|
         */
 | 
						|
        MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
 | 
						|
 | 
						|
        /*
 | 
						|
         * Step 6: compute s = (e + r * d) / k mod n
 | 
						|
         */
 | 
						|
        MPI_CHK( mpi_mul_mpi( s, r, d ) );
 | 
						|
        MPI_CHK( mpi_add_mpi( &e, &e, s ) );
 | 
						|
        MPI_CHK( mpi_inv_mod( s, &k, &grp->N ) );
 | 
						|
        MPI_CHK( mpi_mul_mpi( s, s, &e ) );
 | 
						|
        MPI_CHK( mpi_mod_mpi( s, s, &grp->N ) );
 | 
						|
 | 
						|
        if( sign_tries++ > 10 )
 | 
						|
        {
 | 
						|
            ret = POLARSSL_ERR_ECP_RANDOM_FAILED;
 | 
						|
            goto cleanup;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    while( mpi_cmp_int( s, 0 ) == 0 );
 | 
						|
 | 
						|
cleanup:
 | 
						|
    ecp_point_free( &R );
 | 
						|
    mpi_free( &k );
 | 
						|
    mpi_free( &e );
 | 
						|
 | 
						|
    return( ret );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Verify ECDSA signature of hashed message (SEC1 4.1.4)
 | 
						|
 * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
 | 
						|
 */
 | 
						|
int ecdsa_verify( ecp_group *grp,
 | 
						|
                  const unsigned char *buf, size_t blen,
 | 
						|
                  const ecp_point *Q, const mpi *r, const mpi *s)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    mpi e, s_inv, u1, u2;
 | 
						|
    ecp_point R, P;
 | 
						|
 | 
						|
    ecp_point_init( &R ); ecp_point_init( &P );
 | 
						|
    mpi_init( &e ); mpi_init( &s_inv ); mpi_init( &u1 ); mpi_init( &u2 );
 | 
						|
 | 
						|
    /*
 | 
						|
     * Step 1: make sure r and s are in range 1..n-1
 | 
						|
     */
 | 
						|
    if( mpi_cmp_int( r, 1 ) < 0 || mpi_cmp_mpi( r, &grp->N ) >= 0 ||
 | 
						|
        mpi_cmp_int( s, 1 ) < 0 || mpi_cmp_mpi( s, &grp->N ) >= 0 )
 | 
						|
    {
 | 
						|
        ret = POLARSSL_ERR_ECP_VERIFY_FAILED;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Additional precaution: make sure Q is valid
 | 
						|
     */
 | 
						|
    MPI_CHK( ecp_check_pubkey( grp, Q ) );
 | 
						|
 | 
						|
    /*
 | 
						|
     * Step 3: derive MPI from hashed message
 | 
						|
     */
 | 
						|
    MPI_CHK( derive_mpi( grp, &e, buf, blen ) );
 | 
						|
 | 
						|
    /*
 | 
						|
     * Step 4: u1 = e / s mod n, u2 = r / s mod n
 | 
						|
     */
 | 
						|
    MPI_CHK( mpi_inv_mod( &s_inv, s, &grp->N ) );
 | 
						|
 | 
						|
    MPI_CHK( mpi_mul_mpi( &u1, &e, &s_inv ) );
 | 
						|
    MPI_CHK( mpi_mod_mpi( &u1, &u1, &grp->N ) );
 | 
						|
 | 
						|
    MPI_CHK( mpi_mul_mpi( &u2, r, &s_inv ) );
 | 
						|
    MPI_CHK( mpi_mod_mpi( &u2, &u2, &grp->N ) );
 | 
						|
 | 
						|
    /*
 | 
						|
     * Step 5: R = u1 G + u2 Q
 | 
						|
     *
 | 
						|
     * Since we're not using any secret data, no need to pass a RNG to
 | 
						|
     * ecp_mul() for countermesures.
 | 
						|
     */
 | 
						|
    MPI_CHK( ecp_mul( grp, &R, &u1, &grp->G, NULL, NULL ) );
 | 
						|
    MPI_CHK( ecp_mul( grp, &P, &u2, Q, NULL, NULL ) );
 | 
						|
    MPI_CHK( ecp_add( grp, &R, &R, &P ) );
 | 
						|
 | 
						|
    if( ecp_is_zero( &R ) )
 | 
						|
    {
 | 
						|
        ret = POLARSSL_ERR_ECP_VERIFY_FAILED;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Step 6: convert xR to an integer (no-op)
 | 
						|
     * Step 7: reduce xR mod n (gives v)
 | 
						|
     */
 | 
						|
    MPI_CHK( mpi_mod_mpi( &R.X, &R.X, &grp->N ) );
 | 
						|
 | 
						|
    /*
 | 
						|
     * Step 8: check if v (that is, R.X) is equal to r
 | 
						|
     */
 | 
						|
    if( mpi_cmp_mpi( &R.X, r ) != 0 )
 | 
						|
    {
 | 
						|
        ret = POLARSSL_ERR_ECP_VERIFY_FAILED;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    ecp_point_free( &R ); ecp_point_free( &P );
 | 
						|
    mpi_free( &e ); mpi_free( &s_inv ); mpi_free( &u1 ); mpi_free( &u2 );
 | 
						|
 | 
						|
    return( ret );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * RFC 4492 page 20:
 | 
						|
 *
 | 
						|
 *     Ecdsa-Sig-Value ::= SEQUENCE {
 | 
						|
 *         r       INTEGER,
 | 
						|
 *         s       INTEGER
 | 
						|
 *     }
 | 
						|
 *
 | 
						|
 * Size is at most
 | 
						|
 *    1 (tag) + 1 (len) + 1 (initial 0) + ECP_MAX_BYTES for each of r and s,
 | 
						|
 *    twice that + 1 (tag) + 2 (len) for the sequence
 | 
						|
 * (assuming ECP_MAX_BYTES is less than 126 for r and s,
 | 
						|
 * and less than 124 (total len <= 255) for the sequence)
 | 
						|
 */
 | 
						|
#if POLARSSL_ECP_MAX_BYTES > 124
 | 
						|
#error "POLARSSL_ECP_MAX_BYTES bigger than expected, please fix MAX_SIG_LEN"
 | 
						|
#endif
 | 
						|
#define MAX_SIG_LEN ( 3 + 2 * ( 2 + POLARSSL_ECP_MAX_BYTES ) )
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute and write signature
 | 
						|
 */
 | 
						|
int ecdsa_write_signature( ecdsa_context *ctx,
 | 
						|
                           const unsigned char *hash, size_t hlen,
 | 
						|
                           unsigned char *sig, size_t *slen,
 | 
						|
                           int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                           void *p_rng )
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    unsigned char buf[MAX_SIG_LEN];
 | 
						|
    unsigned char *p = buf + sizeof( buf );
 | 
						|
    size_t len = 0;
 | 
						|
 | 
						|
    if( ( ret = ecdsa_sign( &ctx->grp, &ctx->r, &ctx->s, &ctx->d,
 | 
						|
                            hash, hlen, f_rng, p_rng ) ) != 0 )
 | 
						|
    {
 | 
						|
        return( ret );
 | 
						|
    }
 | 
						|
 | 
						|
    ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, &ctx->s ) );
 | 
						|
    ASN1_CHK_ADD( len, asn1_write_mpi( &p, buf, &ctx->r ) );
 | 
						|
 | 
						|
    ASN1_CHK_ADD( len, asn1_write_len( &p, buf, len ) );
 | 
						|
    ASN1_CHK_ADD( len, asn1_write_tag( &p, buf,
 | 
						|
                                       ASN1_CONSTRUCTED | ASN1_SEQUENCE ) );
 | 
						|
 | 
						|
    memcpy( sig, p, len );
 | 
						|
    *slen = len;
 | 
						|
 | 
						|
    return( 0 );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read and check signature
 | 
						|
 */
 | 
						|
int ecdsa_read_signature( ecdsa_context *ctx,
 | 
						|
                          const unsigned char *hash, size_t hlen,
 | 
						|
                          const unsigned char *sig, size_t slen )
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    unsigned char *p = (unsigned char *) sig;
 | 
						|
    const unsigned char *end = sig + slen;
 | 
						|
    size_t len;
 | 
						|
 | 
						|
    if( ( ret = asn1_get_tag( &p, end, &len,
 | 
						|
                    ASN1_CONSTRUCTED | ASN1_SEQUENCE ) ) != 0 )
 | 
						|
    {
 | 
						|
        return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + ret );
 | 
						|
    }
 | 
						|
 | 
						|
    if( p + len != end )
 | 
						|
        return( POLARSSL_ERR_ECP_BAD_INPUT_DATA +
 | 
						|
                POLARSSL_ERR_ASN1_LENGTH_MISMATCH );
 | 
						|
 | 
						|
    if( ( ret = asn1_get_mpi( &p, end, &ctx->r ) ) != 0 ||
 | 
						|
        ( ret = asn1_get_mpi( &p, end, &ctx->s ) ) != 0 )
 | 
						|
        return( POLARSSL_ERR_ECP_BAD_INPUT_DATA + ret );
 | 
						|
 | 
						|
    if( p != end )
 | 
						|
        return( POLARSSL_ERR_ECP_BAD_INPUT_DATA +
 | 
						|
                POLARSSL_ERR_ASN1_LENGTH_MISMATCH );
 | 
						|
 | 
						|
    return( ecdsa_verify( &ctx->grp, hash, hlen, &ctx->Q, &ctx->r, &ctx->s ) );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generate key pair
 | 
						|
 */
 | 
						|
int ecdsa_genkey( ecdsa_context *ctx, ecp_group_id gid,
 | 
						|
                  int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
 | 
						|
{
 | 
						|
    return( ecp_use_known_dp( &ctx->grp, gid ) ||
 | 
						|
            ecp_gen_keypair( &ctx->grp, &ctx->d, &ctx->Q, f_rng, p_rng ) );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set context from an ecp_keypair
 | 
						|
 */
 | 
						|
int ecdsa_from_keypair( ecdsa_context *ctx, const ecp_keypair *key )
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    if( ( ret = ecp_group_copy( &ctx->grp, &key->grp ) ) != 0 ||
 | 
						|
        ( ret = mpi_copy( &ctx->d, &key->d ) ) != 0 ||
 | 
						|
        ( ret = ecp_copy( &ctx->Q, &key->Q ) ) != 0 )
 | 
						|
    {
 | 
						|
        ecdsa_free( ctx );
 | 
						|
    }
 | 
						|
 | 
						|
    return( ret );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize context
 | 
						|
 */
 | 
						|
void ecdsa_init( ecdsa_context *ctx )
 | 
						|
{
 | 
						|
    ecp_group_init( &ctx->grp );
 | 
						|
    mpi_init( &ctx->d );
 | 
						|
    ecp_point_init( &ctx->Q );
 | 
						|
    mpi_init( &ctx->r );
 | 
						|
    mpi_init( &ctx->s );
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free context
 | 
						|
 */
 | 
						|
void ecdsa_free( ecdsa_context *ctx )
 | 
						|
{
 | 
						|
    ecp_group_free( &ctx->grp );
 | 
						|
    mpi_free( &ctx->d );
 | 
						|
    ecp_point_free( &ctx->Q );
 | 
						|
    mpi_free( &ctx->r );
 | 
						|
    mpi_free( &ctx->s );
 | 
						|
}
 | 
						|
 | 
						|
#if defined(POLARSSL_SELF_TEST)
 | 
						|
 | 
						|
/*
 | 
						|
 * Checkup routine
 | 
						|
 */
 | 
						|
int ecdsa_self_test( int verbose )
 | 
						|
{
 | 
						|
    return( verbose++ );
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#endif /* defined(POLARSSL_ECDSA_C) */
 |