mirror of
				https://github.com/cuberite/polarssl.git
				synced 2025-11-03 20:22:59 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			872 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			872 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Core bignum functions
 | 
						|
 *
 | 
						|
 *  Copyright The Mbed TLS Contributors
 | 
						|
 *  SPDX-License-Identifier: Apache-2.0
 | 
						|
 *
 | 
						|
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | 
						|
 *  not use this file except in compliance with the License.
 | 
						|
 *  You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 *  http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 *  Unless required by applicable law or agreed to in writing, software
 | 
						|
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | 
						|
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 *  See the License for the specific language governing permissions and
 | 
						|
 *  limitations under the License.
 | 
						|
 */
 | 
						|
 | 
						|
#include "common.h"
 | 
						|
 | 
						|
#if defined(MBEDTLS_BIGNUM_C)
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include "mbedtls/error.h"
 | 
						|
#include "mbedtls/platform_util.h"
 | 
						|
#include "constant_time_internal.h"
 | 
						|
 | 
						|
#include "mbedtls/platform.h"
 | 
						|
 | 
						|
#include "bignum_core.h"
 | 
						|
#include "bn_mul.h"
 | 
						|
#include "constant_time_internal.h"
 | 
						|
 | 
						|
size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a)
 | 
						|
{
 | 
						|
    size_t j;
 | 
						|
    mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
 | 
						|
 | 
						|
    for (j = 0; j < biL; j++) {
 | 
						|
        if (a & mask) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        mask >>= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    return j;
 | 
						|
}
 | 
						|
 | 
						|
size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs)
 | 
						|
{
 | 
						|
    size_t i, j;
 | 
						|
 | 
						|
    if (A_limbs == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = A_limbs - 1; i > 0; i--) {
 | 
						|
        if (A[i] != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    j = biL - mbedtls_mpi_core_clz(A[i]);
 | 
						|
 | 
						|
    return (i * biL) + j;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
 | 
						|
 * into the storage form used by mbedtls_mpi. */
 | 
						|
static mbedtls_mpi_uint mpi_bigendian_to_host_c(mbedtls_mpi_uint a)
 | 
						|
{
 | 
						|
    uint8_t i;
 | 
						|
    unsigned char *a_ptr;
 | 
						|
    mbedtls_mpi_uint tmp = 0;
 | 
						|
 | 
						|
    for (i = 0, a_ptr = (unsigned char *) &a; i < ciL; i++, a_ptr++) {
 | 
						|
        tmp <<= CHAR_BIT;
 | 
						|
        tmp |= (mbedtls_mpi_uint) *a_ptr;
 | 
						|
    }
 | 
						|
 | 
						|
    return tmp;
 | 
						|
}
 | 
						|
 | 
						|
static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a)
 | 
						|
{
 | 
						|
    if (MBEDTLS_IS_BIG_ENDIAN) {
 | 
						|
        /* Nothing to do on bigendian systems. */
 | 
						|
        return a;
 | 
						|
    } else {
 | 
						|
        switch (sizeof(mbedtls_mpi_uint)) {
 | 
						|
            case 4:
 | 
						|
                return (mbedtls_mpi_uint) MBEDTLS_BSWAP32((uint32_t) a);
 | 
						|
            case 8:
 | 
						|
                return (mbedtls_mpi_uint) MBEDTLS_BSWAP64((uint64_t) a);
 | 
						|
        }
 | 
						|
 | 
						|
        /* Fall back to C-based reordering if we don't know the byte order
 | 
						|
         * or we couldn't use a compiler-specific builtin. */
 | 
						|
        return mpi_bigendian_to_host_c(a);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
 | 
						|
                                        size_t A_limbs)
 | 
						|
{
 | 
						|
    mbedtls_mpi_uint *cur_limb_left;
 | 
						|
    mbedtls_mpi_uint *cur_limb_right;
 | 
						|
    if (A_limbs == 0) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Traverse limbs and
 | 
						|
     * - adapt byte-order in each limb
 | 
						|
     * - swap the limbs themselves.
 | 
						|
     * For that, simultaneously traverse the limbs from left to right
 | 
						|
     * and from right to left, as long as the left index is not bigger
 | 
						|
     * than the right index (it's not a problem if limbs is odd and the
 | 
						|
     * indices coincide in the last iteration).
 | 
						|
     */
 | 
						|
    for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1);
 | 
						|
         cur_limb_left <= cur_limb_right;
 | 
						|
         cur_limb_left++, cur_limb_right--) {
 | 
						|
        mbedtls_mpi_uint tmp;
 | 
						|
        /* Note that if cur_limb_left == cur_limb_right,
 | 
						|
         * this code effectively swaps the bytes only once. */
 | 
						|
        tmp             = mpi_bigendian_to_host(*cur_limb_left);
 | 
						|
        *cur_limb_left  = mpi_bigendian_to_host(*cur_limb_right);
 | 
						|
        *cur_limb_right = tmp;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Whether min <= A, in constant time.
 | 
						|
 * A_limbs must be at least 1. */
 | 
						|
unsigned mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
 | 
						|
                                      const mbedtls_mpi_uint *A,
 | 
						|
                                      size_t A_limbs)
 | 
						|
{
 | 
						|
    /* min <= least significant limb? */
 | 
						|
    unsigned min_le_lsl = 1 ^ mbedtls_ct_mpi_uint_lt(A[0], min);
 | 
						|
 | 
						|
    /* limbs other than the least significant one are all zero? */
 | 
						|
    mbedtls_mpi_uint msll_mask = 0;
 | 
						|
    for (size_t i = 1; i < A_limbs; i++) {
 | 
						|
        msll_mask |= A[i];
 | 
						|
    }
 | 
						|
    /* The most significant limbs of A are not all zero iff msll_mask != 0. */
 | 
						|
    unsigned msll_nonzero = mbedtls_ct_mpi_uint_mask(msll_mask) & 1;
 | 
						|
 | 
						|
    /* min <= A iff the lowest limb of A is >= min or the other limbs
 | 
						|
     * are not all zero. */
 | 
						|
    return min_le_lsl | msll_nonzero;
 | 
						|
}
 | 
						|
 | 
						|
void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
 | 
						|
                                  const mbedtls_mpi_uint *A,
 | 
						|
                                  size_t limbs,
 | 
						|
                                  unsigned char assign)
 | 
						|
{
 | 
						|
    if (X == A) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_ct_mpi_uint_cond_assign(limbs, X, A, assign);
 | 
						|
}
 | 
						|
 | 
						|
void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
 | 
						|
                                mbedtls_mpi_uint *Y,
 | 
						|
                                size_t limbs,
 | 
						|
                                unsigned char swap)
 | 
						|
{
 | 
						|
    if (X == Y) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* all-bits 1 if swap is 1, all-bits 0 if swap is 0 */
 | 
						|
    mbedtls_mpi_uint limb_mask = mbedtls_ct_mpi_uint_mask(swap);
 | 
						|
 | 
						|
    for (size_t i = 0; i < limbs; i++) {
 | 
						|
        mbedtls_mpi_uint tmp = X[i];
 | 
						|
        X[i] = (X[i] & ~limb_mask) | (Y[i] & limb_mask);
 | 
						|
        Y[i] = (Y[i] & ~limb_mask) | (tmp & limb_mask);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
 | 
						|
                             size_t X_limbs,
 | 
						|
                             const unsigned char *input,
 | 
						|
                             size_t input_length)
 | 
						|
{
 | 
						|
    const size_t limbs = CHARS_TO_LIMBS(input_length);
 | 
						|
 | 
						|
    if (X_limbs < limbs) {
 | 
						|
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (X != NULL) {
 | 
						|
        memset(X, 0, X_limbs * ciL);
 | 
						|
 | 
						|
        for (size_t i = 0; i < input_length; i++) {
 | 
						|
            size_t offset = ((i % ciL) << 3);
 | 
						|
            X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
 | 
						|
                             size_t X_limbs,
 | 
						|
                             const unsigned char *input,
 | 
						|
                             size_t input_length)
 | 
						|
{
 | 
						|
    const size_t limbs = CHARS_TO_LIMBS(input_length);
 | 
						|
 | 
						|
    if (X_limbs < limbs) {
 | 
						|
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If X_limbs is 0, input_length must also be 0 (from previous test).
 | 
						|
     * Nothing to do. */
 | 
						|
    if (X_limbs == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    memset(X, 0, X_limbs * ciL);
 | 
						|
 | 
						|
    /* memcpy() with (NULL, 0) is undefined behaviour */
 | 
						|
    if (input_length != 0) {
 | 
						|
        size_t overhead = (X_limbs * ciL) - input_length;
 | 
						|
        unsigned char *Xp = (unsigned char *) X;
 | 
						|
        memcpy(Xp + overhead, input, input_length);
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_mpi_core_bigendian_to_host(X, X_limbs);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
 | 
						|
                              size_t A_limbs,
 | 
						|
                              unsigned char *output,
 | 
						|
                              size_t output_length)
 | 
						|
{
 | 
						|
    size_t stored_bytes = A_limbs * ciL;
 | 
						|
    size_t bytes_to_copy;
 | 
						|
 | 
						|
    if (stored_bytes < output_length) {
 | 
						|
        bytes_to_copy = stored_bytes;
 | 
						|
    } else {
 | 
						|
        bytes_to_copy = output_length;
 | 
						|
 | 
						|
        /* The output buffer is smaller than the allocated size of A.
 | 
						|
         * However A may fit if its leading bytes are zero. */
 | 
						|
        for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
 | 
						|
            if (GET_BYTE(A, i) != 0) {
 | 
						|
                return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (size_t i = 0; i < bytes_to_copy; i++) {
 | 
						|
        output[i] = GET_BYTE(A, i);
 | 
						|
    }
 | 
						|
 | 
						|
    if (stored_bytes < output_length) {
 | 
						|
        /* Write trailing 0 bytes */
 | 
						|
        memset(output + stored_bytes, 0, output_length - stored_bytes);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X,
 | 
						|
                              size_t X_limbs,
 | 
						|
                              unsigned char *output,
 | 
						|
                              size_t output_length)
 | 
						|
{
 | 
						|
    size_t stored_bytes;
 | 
						|
    size_t bytes_to_copy;
 | 
						|
    unsigned char *p;
 | 
						|
 | 
						|
    stored_bytes = X_limbs * ciL;
 | 
						|
 | 
						|
    if (stored_bytes < output_length) {
 | 
						|
        /* There is enough space in the output buffer. Write initial
 | 
						|
         * null bytes and record the position at which to start
 | 
						|
         * writing the significant bytes. In this case, the execution
 | 
						|
         * trace of this function does not depend on the value of the
 | 
						|
         * number. */
 | 
						|
        bytes_to_copy = stored_bytes;
 | 
						|
        p = output + output_length - stored_bytes;
 | 
						|
        memset(output, 0, output_length - stored_bytes);
 | 
						|
    } else {
 | 
						|
        /* The output buffer is smaller than the allocated size of X.
 | 
						|
         * However X may fit if its leading bytes are zero. */
 | 
						|
        bytes_to_copy = output_length;
 | 
						|
        p = output;
 | 
						|
        for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
 | 
						|
            if (GET_BYTE(X, i) != 0) {
 | 
						|
                return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (size_t i = 0; i < bytes_to_copy; i++) {
 | 
						|
        p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
 | 
						|
                              size_t count)
 | 
						|
{
 | 
						|
    size_t i, v0, v1;
 | 
						|
    mbedtls_mpi_uint r0 = 0, r1;
 | 
						|
 | 
						|
    v0 = count /  biL;
 | 
						|
    v1 = count & (biL - 1);
 | 
						|
 | 
						|
    if (v0 > limbs || (v0 == limbs && v1 > 0)) {
 | 
						|
        memset(X, 0, limbs * ciL);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * shift by count / limb_size
 | 
						|
     */
 | 
						|
    if (v0 > 0) {
 | 
						|
        for (i = 0; i < limbs - v0; i++) {
 | 
						|
            X[i] = X[i + v0];
 | 
						|
        }
 | 
						|
 | 
						|
        for (; i < limbs; i++) {
 | 
						|
            X[i] = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * shift by count % limb_size
 | 
						|
     */
 | 
						|
    if (v1 > 0) {
 | 
						|
        for (i = limbs; i > 0; i--) {
 | 
						|
            r1 = X[i - 1] << (biL - v1);
 | 
						|
            X[i - 1] >>= v1;
 | 
						|
            X[i - 1] |= r0;
 | 
						|
            r0 = r1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
 | 
						|
                                      const mbedtls_mpi_uint *A,
 | 
						|
                                      const mbedtls_mpi_uint *B,
 | 
						|
                                      size_t limbs)
 | 
						|
{
 | 
						|
    mbedtls_mpi_uint c = 0;
 | 
						|
 | 
						|
    for (size_t i = 0; i < limbs; i++) {
 | 
						|
        mbedtls_mpi_uint t = c + A[i];
 | 
						|
        c = (t < A[i]);
 | 
						|
        t += B[i];
 | 
						|
        c += (t < B[i]);
 | 
						|
        X[i] = t;
 | 
						|
    }
 | 
						|
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
 | 
						|
                                         const mbedtls_mpi_uint *A,
 | 
						|
                                         size_t limbs,
 | 
						|
                                         unsigned cond)
 | 
						|
{
 | 
						|
    mbedtls_mpi_uint c = 0;
 | 
						|
 | 
						|
    /* all-bits 0 if cond is 0, all-bits 1 if cond is non-0 */
 | 
						|
    const mbedtls_mpi_uint mask = mbedtls_ct_mpi_uint_mask(cond);
 | 
						|
 | 
						|
    for (size_t i = 0; i < limbs; i++) {
 | 
						|
        mbedtls_mpi_uint add = mask & A[i];
 | 
						|
        mbedtls_mpi_uint t = c + X[i];
 | 
						|
        c = (t < X[i]);
 | 
						|
        t += add;
 | 
						|
        c += (t < add);
 | 
						|
        X[i] = t;
 | 
						|
    }
 | 
						|
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
 | 
						|
                                      const mbedtls_mpi_uint *A,
 | 
						|
                                      const mbedtls_mpi_uint *B,
 | 
						|
                                      size_t limbs)
 | 
						|
{
 | 
						|
    mbedtls_mpi_uint c = 0;
 | 
						|
 | 
						|
    for (size_t i = 0; i < limbs; i++) {
 | 
						|
        mbedtls_mpi_uint z = (A[i] < c);
 | 
						|
        mbedtls_mpi_uint t = A[i] - c;
 | 
						|
        c = (t < B[i]) + z;
 | 
						|
        X[i] = t - B[i];
 | 
						|
    }
 | 
						|
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len,
 | 
						|
                                      const mbedtls_mpi_uint *s, size_t s_len,
 | 
						|
                                      mbedtls_mpi_uint b)
 | 
						|
{
 | 
						|
    mbedtls_mpi_uint c = 0; /* carry */
 | 
						|
    /*
 | 
						|
     * It is a documented precondition of this function that d_len >= s_len.
 | 
						|
     * If that's not the case, we swap these round: this turns what would be
 | 
						|
     * a buffer overflow into an incorrect result.
 | 
						|
     */
 | 
						|
    if (d_len < s_len) {
 | 
						|
        s_len = d_len;
 | 
						|
    }
 | 
						|
    size_t excess_len = d_len - s_len;
 | 
						|
    size_t steps_x8 = s_len / 8;
 | 
						|
    size_t steps_x1 = s_len & 7;
 | 
						|
 | 
						|
    while (steps_x8--) {
 | 
						|
        MULADDC_X8_INIT
 | 
						|
        MULADDC_X8_CORE
 | 
						|
            MULADDC_X8_STOP
 | 
						|
    }
 | 
						|
 | 
						|
    while (steps_x1--) {
 | 
						|
        MULADDC_X1_INIT
 | 
						|
        MULADDC_X1_CORE
 | 
						|
            MULADDC_X1_STOP
 | 
						|
    }
 | 
						|
 | 
						|
    while (excess_len--) {
 | 
						|
        *d += c;
 | 
						|
        c = (*d < c);
 | 
						|
        d++;
 | 
						|
    }
 | 
						|
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Fast Montgomery initialization (thanks to Tom St Denis).
 | 
						|
 */
 | 
						|
mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N)
 | 
						|
{
 | 
						|
    mbedtls_mpi_uint x = N[0];
 | 
						|
 | 
						|
    x += ((N[0] + 2) & 4) << 1;
 | 
						|
 | 
						|
    for (unsigned int i = biL; i >= 8; i /= 2) {
 | 
						|
        x *= (2 - (N[0] * x));
 | 
						|
    }
 | 
						|
 | 
						|
    return ~x + 1;
 | 
						|
}
 | 
						|
 | 
						|
void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
 | 
						|
                              const mbedtls_mpi_uint *A,
 | 
						|
                              const mbedtls_mpi_uint *B,
 | 
						|
                              size_t B_limbs,
 | 
						|
                              const mbedtls_mpi_uint *N,
 | 
						|
                              size_t AN_limbs,
 | 
						|
                              mbedtls_mpi_uint mm,
 | 
						|
                              mbedtls_mpi_uint *T)
 | 
						|
{
 | 
						|
    memset(T, 0, (2 * AN_limbs + 1) * ciL);
 | 
						|
 | 
						|
    for (size_t i = 0; i < AN_limbs; i++) {
 | 
						|
        /* T = (T + u0*B + u1*N) / 2^biL */
 | 
						|
        mbedtls_mpi_uint u0 = A[i];
 | 
						|
        mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm;
 | 
						|
 | 
						|
        (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0);
 | 
						|
        (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1);
 | 
						|
 | 
						|
        T++;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * The result we want is (T >= N) ? T - N : T.
 | 
						|
     *
 | 
						|
     * For better constant-time properties in this function, we always do the
 | 
						|
     * subtraction, with the result in X.
 | 
						|
     *
 | 
						|
     * We also look to see if there was any carry in the final additions in the
 | 
						|
     * loop above.
 | 
						|
     */
 | 
						|
 | 
						|
    mbedtls_mpi_uint carry  = T[AN_limbs];
 | 
						|
    mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
 | 
						|
     *
 | 
						|
     * T can be in one of 3 ranges:
 | 
						|
     *
 | 
						|
     * 1) T < N      : (carry, borrow) = (0, 1): we want T
 | 
						|
     * 2) N <= T < R : (carry, borrow) = (0, 0): we want X
 | 
						|
     * 3) T >= R     : (carry, borrow) = (1, 1): we want X
 | 
						|
     *
 | 
						|
     * and (carry, borrow) = (1, 0) can't happen.
 | 
						|
     *
 | 
						|
     * So the correct return value is already in X if (carry ^ borrow) = 0,
 | 
						|
     * but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
 | 
						|
     */
 | 
						|
    mbedtls_ct_mpi_uint_cond_assign(AN_limbs, X, T, (unsigned char) (carry ^ borrow));
 | 
						|
}
 | 
						|
 | 
						|
int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
 | 
						|
                                        const mbedtls_mpi *N)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
MBEDTLS_STATIC_TESTABLE
 | 
						|
void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
 | 
						|
                                           const mbedtls_mpi_uint *table,
 | 
						|
                                           size_t limbs,
 | 
						|
                                           size_t count,
 | 
						|
                                           size_t index)
 | 
						|
{
 | 
						|
    for (size_t i = 0; i < count; i++, table += limbs) {
 | 
						|
        unsigned char assign = mbedtls_ct_size_bool_eq(i, index);
 | 
						|
        mbedtls_mpi_core_cond_assign(dest, table, limbs, assign);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Fill X with n_bytes random bytes.
 | 
						|
 * X must already have room for those bytes.
 | 
						|
 * The ordering of the bytes returned from the RNG is suitable for
 | 
						|
 * deterministic ECDSA (see RFC 6979 §3.3 and the specification of
 | 
						|
 * mbedtls_mpi_core_random()).
 | 
						|
 */
 | 
						|
int mbedtls_mpi_core_fill_random(
 | 
						|
    mbedtls_mpi_uint *X, size_t X_limbs,
 | 
						|
    size_t n_bytes,
 | 
						|
    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    const size_t limbs = CHARS_TO_LIMBS(n_bytes);
 | 
						|
    const size_t overhead = (limbs * ciL) - n_bytes;
 | 
						|
 | 
						|
    if (X_limbs < limbs) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    memset(X, 0, overhead);
 | 
						|
    memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL);
 | 
						|
    MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes));
 | 
						|
    mbedtls_mpi_core_bigendian_to_host(X, limbs);
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
 | 
						|
                            mbedtls_mpi_uint min,
 | 
						|
                            const mbedtls_mpi_uint *N,
 | 
						|
                            size_t limbs,
 | 
						|
                            int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                            void *p_rng)
 | 
						|
{
 | 
						|
    unsigned ge_lower = 1, lt_upper = 0;
 | 
						|
    size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs);
 | 
						|
    size_t n_bytes = (n_bits + 7) / 8;
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
 | 
						|
    /*
 | 
						|
     * When min == 0, each try has at worst a probability 1/2 of failing
 | 
						|
     * (the msb has a probability 1/2 of being 0, and then the result will
 | 
						|
     * be < N), so after 30 tries failure probability is a most 2**(-30).
 | 
						|
     *
 | 
						|
     * When N is just below a power of 2, as is the case when generating
 | 
						|
     * a random scalar on most elliptic curves, 1 try is enough with
 | 
						|
     * overwhelming probability. When N is just above a power of 2,
 | 
						|
     * as when generating a random scalar on secp224k1, each try has
 | 
						|
     * a probability of failing that is almost 1/2.
 | 
						|
     *
 | 
						|
     * The probabilities are almost the same if min is nonzero but negligible
 | 
						|
     * compared to N. This is always the case when N is crypto-sized, but
 | 
						|
     * it's convenient to support small N for testing purposes. When N
 | 
						|
     * is small, use a higher repeat count, otherwise the probability of
 | 
						|
     * failure is macroscopic.
 | 
						|
     */
 | 
						|
    int count = (n_bytes > 4 ? 30 : 250);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
 | 
						|
     * when f_rng is a suitably parametrized instance of HMAC_DRBG:
 | 
						|
     * - use the same byte ordering;
 | 
						|
     * - keep the leftmost n_bits bits of the generated octet string;
 | 
						|
     * - try until result is in the desired range.
 | 
						|
     * This also avoids any bias, which is especially important for ECDSA.
 | 
						|
     */
 | 
						|
    do {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs,
 | 
						|
                                                     n_bytes,
 | 
						|
                                                     f_rng, p_rng));
 | 
						|
        mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits);
 | 
						|
 | 
						|
        if (--count == 0) {
 | 
						|
            ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | 
						|
            goto cleanup;
 | 
						|
        }
 | 
						|
 | 
						|
        ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs);
 | 
						|
        lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs);
 | 
						|
    } while (ge_lower == 0 || lt_upper == 0);
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* BEGIN MERGE SLOT 1 */
 | 
						|
 | 
						|
static size_t exp_mod_get_window_size(size_t Ebits)
 | 
						|
{
 | 
						|
    size_t wsize = (Ebits > 671) ? 6 : (Ebits > 239) ? 5 :
 | 
						|
                   (Ebits >  79) ? 4 : 1;
 | 
						|
 | 
						|
#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
 | 
						|
    if (wsize > MBEDTLS_MPI_WINDOW_SIZE) {
 | 
						|
        wsize = MBEDTLS_MPI_WINDOW_SIZE;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    return wsize;
 | 
						|
}
 | 
						|
 | 
						|
size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs)
 | 
						|
{
 | 
						|
    const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
 | 
						|
    const size_t welem = ((size_t) 1) << wsize;
 | 
						|
 | 
						|
    /* How big does each part of the working memory pool need to be? */
 | 
						|
    const size_t table_limbs   = welem * AN_limbs;
 | 
						|
    const size_t select_limbs  = AN_limbs;
 | 
						|
    const size_t temp_limbs    = 2 * AN_limbs + 1;
 | 
						|
 | 
						|
    return table_limbs + select_limbs + temp_limbs;
 | 
						|
}
 | 
						|
 | 
						|
static void exp_mod_precompute_window(const mbedtls_mpi_uint *A,
 | 
						|
                                      const mbedtls_mpi_uint *N,
 | 
						|
                                      size_t AN_limbs,
 | 
						|
                                      mbedtls_mpi_uint mm,
 | 
						|
                                      const mbedtls_mpi_uint *RR,
 | 
						|
                                      size_t welem,
 | 
						|
                                      mbedtls_mpi_uint *Wtable,
 | 
						|
                                      mbedtls_mpi_uint *temp)
 | 
						|
{
 | 
						|
    /* W[0] = 1 (in Montgomery presentation) */
 | 
						|
    memset(Wtable, 0, AN_limbs * ciL);
 | 
						|
    Wtable[0] = 1;
 | 
						|
    mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp);
 | 
						|
 | 
						|
    /* W[1] = A (already in Montgomery presentation) */
 | 
						|
    mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
 | 
						|
    memcpy(W1, A, AN_limbs * ciL);
 | 
						|
 | 
						|
    /* W[i+1] = W[i] * W[1], i >= 2 */
 | 
						|
    mbedtls_mpi_uint *Wprev = W1;
 | 
						|
    for (size_t i = 2; i < welem; i++) {
 | 
						|
        mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
 | 
						|
        mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp);
 | 
						|
        Wprev = Wcur;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Exponentiation: X := A^E mod N.
 | 
						|
 *
 | 
						|
 * A must already be in Montgomery form.
 | 
						|
 *
 | 
						|
 * As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
 | 
						|
 *
 | 
						|
 * RR must contain 2^{2*biL} mod N.
 | 
						|
 *
 | 
						|
 * The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
 | 
						|
 * (The difference is that the body in our loop processes a single bit instead
 | 
						|
 * of a full window.)
 | 
						|
 */
 | 
						|
void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
 | 
						|
                              const mbedtls_mpi_uint *A,
 | 
						|
                              const mbedtls_mpi_uint *N,
 | 
						|
                              size_t AN_limbs,
 | 
						|
                              const mbedtls_mpi_uint *E,
 | 
						|
                              size_t E_limbs,
 | 
						|
                              const mbedtls_mpi_uint *RR,
 | 
						|
                              mbedtls_mpi_uint *T)
 | 
						|
{
 | 
						|
    const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
 | 
						|
    const size_t welem = ((size_t) 1) << wsize;
 | 
						|
 | 
						|
    /* This is how we will use the temporary storage T, which must have space
 | 
						|
     * for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
 | 
						|
    const size_t table_limbs  = welem * AN_limbs;
 | 
						|
    const size_t select_limbs = AN_limbs;
 | 
						|
 | 
						|
    /* Pointers to specific parts of the temporary working memory pool */
 | 
						|
    mbedtls_mpi_uint *const Wtable  = T;
 | 
						|
    mbedtls_mpi_uint *const Wselect = Wtable  +  table_limbs;
 | 
						|
    mbedtls_mpi_uint *const temp    = Wselect + select_limbs;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Window precomputation
 | 
						|
     */
 | 
						|
 | 
						|
    const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N);
 | 
						|
 | 
						|
    /* Set Wtable[i] = A^(2^i) (in Montgomery representation) */
 | 
						|
    exp_mod_precompute_window(A, N, AN_limbs,
 | 
						|
                              mm, RR,
 | 
						|
                              welem, Wtable, temp);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Fixed window exponentiation
 | 
						|
     */
 | 
						|
 | 
						|
    /* X = 1 (in Montgomery presentation) initially */
 | 
						|
    memcpy(X, Wtable, AN_limbs * ciL);
 | 
						|
 | 
						|
    /* We'll process the bits of E from most significant
 | 
						|
     * (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
 | 
						|
     * (limb_index=0, E_bit_index=0). */
 | 
						|
    size_t E_limb_index = E_limbs;
 | 
						|
    size_t E_bit_index = 0;
 | 
						|
    /* At any given time, window contains window_bits bits from E.
 | 
						|
     * window_bits can go up to wsize. */
 | 
						|
    size_t window_bits = 0;
 | 
						|
    mbedtls_mpi_uint window = 0;
 | 
						|
 | 
						|
    do {
 | 
						|
        /* Square */
 | 
						|
        mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp);
 | 
						|
 | 
						|
        /* Move to the next bit of the exponent */
 | 
						|
        if (E_bit_index == 0) {
 | 
						|
            --E_limb_index;
 | 
						|
            E_bit_index = biL - 1;
 | 
						|
        } else {
 | 
						|
            --E_bit_index;
 | 
						|
        }
 | 
						|
        /* Insert next exponent bit into window */
 | 
						|
        ++window_bits;
 | 
						|
        window <<= 1;
 | 
						|
        window |= (E[E_limb_index] >> E_bit_index) & 1;
 | 
						|
 | 
						|
        /* Clear window if it's full. Also clear the window at the end,
 | 
						|
         * when we've finished processing the exponent. */
 | 
						|
        if (window_bits == wsize ||
 | 
						|
            (E_bit_index == 0 && E_limb_index == 0)) {
 | 
						|
            /* Select Wtable[window] without leaking window through
 | 
						|
             * memory access patterns. */
 | 
						|
            mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable,
 | 
						|
                                                  AN_limbs, welem, window);
 | 
						|
            /* Multiply X by the selected element. */
 | 
						|
            mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm,
 | 
						|
                                     temp);
 | 
						|
            window = 0;
 | 
						|
            window_bits = 0;
 | 
						|
        }
 | 
						|
    } while (!(E_bit_index == 0 && E_limb_index == 0));
 | 
						|
}
 | 
						|
 | 
						|
/* END MERGE SLOT 1 */
 | 
						|
 | 
						|
/* BEGIN MERGE SLOT 2 */
 | 
						|
 | 
						|
/* END MERGE SLOT 2 */
 | 
						|
 | 
						|
/* BEGIN MERGE SLOT 3 */
 | 
						|
 | 
						|
mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
 | 
						|
                                          const mbedtls_mpi_uint *A,
 | 
						|
                                          mbedtls_mpi_uint c,  /* doubles as carry */
 | 
						|
                                          size_t limbs)
 | 
						|
{
 | 
						|
    for (size_t i = 0; i < limbs; i++) {
 | 
						|
        mbedtls_mpi_uint s = A[i];
 | 
						|
        mbedtls_mpi_uint t = s - c;
 | 
						|
        c = (t > s);
 | 
						|
        X[i] = t;
 | 
						|
    }
 | 
						|
 | 
						|
    return c;
 | 
						|
}
 | 
						|
 | 
						|
mbedtls_mpi_uint mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
 | 
						|
                                                size_t limbs)
 | 
						|
{
 | 
						|
    mbedtls_mpi_uint bits = 0;
 | 
						|
 | 
						|
    for (size_t i = 0; i < limbs; i++) {
 | 
						|
        bits |= A[i];
 | 
						|
    }
 | 
						|
 | 
						|
    return bits;
 | 
						|
}
 | 
						|
 | 
						|
void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
 | 
						|
                                  const mbedtls_mpi_uint *A,
 | 
						|
                                  const mbedtls_mpi_uint *N,
 | 
						|
                                  size_t AN_limbs,
 | 
						|
                                  mbedtls_mpi_uint mm,
 | 
						|
                                  const mbedtls_mpi_uint *rr,
 | 
						|
                                  mbedtls_mpi_uint *T)
 | 
						|
{
 | 
						|
    mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T);
 | 
						|
}
 | 
						|
 | 
						|
void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
 | 
						|
                                    const mbedtls_mpi_uint *A,
 | 
						|
                                    const mbedtls_mpi_uint *N,
 | 
						|
                                    size_t AN_limbs,
 | 
						|
                                    mbedtls_mpi_uint mm,
 | 
						|
                                    mbedtls_mpi_uint *T)
 | 
						|
{
 | 
						|
    const mbedtls_mpi_uint Rinv = 1;    /* 1/R in Mont. rep => 1 */
 | 
						|
 | 
						|
    mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
 | 
						|
}
 | 
						|
 | 
						|
/* END MERGE SLOT 3 */
 | 
						|
 | 
						|
/* BEGIN MERGE SLOT 4 */
 | 
						|
 | 
						|
/* END MERGE SLOT 4 */
 | 
						|
 | 
						|
/* BEGIN MERGE SLOT 5 */
 | 
						|
 | 
						|
/* END MERGE SLOT 5 */
 | 
						|
 | 
						|
/* BEGIN MERGE SLOT 6 */
 | 
						|
 | 
						|
/* END MERGE SLOT 6 */
 | 
						|
 | 
						|
/* BEGIN MERGE SLOT 7 */
 | 
						|
 | 
						|
/* END MERGE SLOT 7 */
 | 
						|
 | 
						|
/* BEGIN MERGE SLOT 8 */
 | 
						|
 | 
						|
/* END MERGE SLOT 8 */
 | 
						|
 | 
						|
/* BEGIN MERGE SLOT 9 */
 | 
						|
 | 
						|
/* END MERGE SLOT 9 */
 | 
						|
 | 
						|
/* BEGIN MERGE SLOT 10 */
 | 
						|
 | 
						|
/* END MERGE SLOT 10 */
 | 
						|
 | 
						|
#endif /* MBEDTLS_BIGNUM_C */
 |