mirror of
				https://github.com/cuberite/polarssl.git
				synced 2025-10-30 19:20:40 -04:00 
			
		
		
		
	 f24b4a7316
			
		
	
	
		f24b4a7316
		
	
	
	
	
		
			
			ecp_named_curve_from_grp_id() -> ecp_curve_info_from_grp_id() ecp_grp_id_from_named_curve() -> ecp_curve_info_from_tls_id()
		
			
				
	
	
		
			1693 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1693 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Elliptic curves over GF(p)
 | |
|  *
 | |
|  *  Copyright (C) 2006-2013, Brainspark B.V.
 | |
|  *
 | |
|  *  This file is part of PolarSSL (http://www.polarssl.org)
 | |
|  *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
 | |
|  *
 | |
|  *  All rights reserved.
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or
 | |
|  *  (at your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with this program; if not, write to the Free Software Foundation, Inc.,
 | |
|  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * References:
 | |
|  *
 | |
|  * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
 | |
|  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
 | |
|  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
 | |
|  * RFC 4492 for the related TLS structures and constants
 | |
|  *
 | |
|  * [1] OKEYA, Katsuyuki and TAKAGI, Tsuyoshi. The width-w NAF method provides
 | |
|  *     small memory and fast elliptic scalar multiplications secure against
 | |
|  *     side channel attacks. In : Topics in Cryptology—CT-RSA 2003. Springer
 | |
|  *     Berlin Heidelberg, 2003. p. 328-343.
 | |
|  *     <http://rd.springer.com/chapter/10.1007/3-540-36563-X_23>.
 | |
|  *
 | |
|  * [2] CORON, Jean-Sébastien. Resistance against differential power analysis
 | |
|  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
 | |
|  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
 | |
|  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
 | |
|  */
 | |
| 
 | |
| #include "polarssl/config.h"
 | |
| 
 | |
| #if defined(POLARSSL_ECP_C)
 | |
| 
 | |
| #include "polarssl/ecp.h"
 | |
| 
 | |
| #if defined(POLARSSL_MEMORY_C)
 | |
| #include "polarssl/memory.h"
 | |
| #else
 | |
| #define polarssl_malloc     malloc
 | |
| #define polarssl_free       free
 | |
| #endif
 | |
| 
 | |
| #include <limits.h>
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #if defined(POLARSSL_SELF_TEST)
 | |
| /*
 | |
|  * Counts of point addition and doubling operations.
 | |
|  * Used to test resistance of point multiplication to simple timing attacks.
 | |
|  */
 | |
| unsigned long add_count, dbl_count;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * List of supported curves:
 | |
|  *  - internal ID
 | |
|  *  - TLS NamedCurve ID (RFC 4492 section 5.1.1)
 | |
|  *  - size in bits
 | |
|  *  - readeble name
 | |
|  */
 | |
| const ecp_curve_info ecp_supported_curves[] =
 | |
| {
 | |
| #if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_SECP521R1,    25,     521,    "secp521r1" },
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_SECP384R1,    24,     384,    "secp384r1" },
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_SECP256R1,    23,     256,    "secp256r1" },
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_SECP224R1,    21,     224,    "secp224r1" },
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_SECP192R1,    19,     192,    "secp192r1" },
 | |
| #endif
 | |
|     { POLARSSL_ECP_DP_NONE,          0,     0,      NULL        },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * List of supported curves and associated info
 | |
|  */
 | |
| const ecp_curve_info *ecp_curve_list( void )
 | |
| {
 | |
|     return ecp_supported_curves;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize (the components of) a point
 | |
|  */
 | |
| void ecp_point_init( ecp_point *pt )
 | |
| {
 | |
|     if( pt == NULL )
 | |
|         return;
 | |
| 
 | |
|     mpi_init( &pt->X );
 | |
|     mpi_init( &pt->Y );
 | |
|     mpi_init( &pt->Z );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize (the components of) a group
 | |
|  */
 | |
| void ecp_group_init( ecp_group *grp )
 | |
| {
 | |
|     if( grp == NULL )
 | |
|         return;
 | |
| 
 | |
|     memset( grp, 0, sizeof( ecp_group ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize (the components of) a key pair
 | |
|  */
 | |
| void ecp_keypair_init( ecp_keypair *key )
 | |
| {
 | |
|     if ( key == NULL )
 | |
|         return;
 | |
| 
 | |
|     ecp_group_init( &key->grp );
 | |
|     mpi_init( &key->d );
 | |
|     ecp_point_init( &key->Q );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate (the components of) a point
 | |
|  */
 | |
| void ecp_point_free( ecp_point *pt )
 | |
| {
 | |
|     if( pt == NULL )
 | |
|         return;
 | |
| 
 | |
|     mpi_free( &( pt->X ) );
 | |
|     mpi_free( &( pt->Y ) );
 | |
|     mpi_free( &( pt->Z ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate (the components of) a group
 | |
|  */
 | |
| void ecp_group_free( ecp_group *grp )
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     if( grp == NULL )
 | |
|         return;
 | |
| 
 | |
|     mpi_free( &grp->P );
 | |
|     mpi_free( &grp->B );
 | |
|     ecp_point_free( &grp->G );
 | |
|     mpi_free( &grp->N );
 | |
| 
 | |
|     if( grp->T != NULL )
 | |
|     {
 | |
|         for( i = 0; i < grp->T_size; i++ )
 | |
|             ecp_point_free( &grp->T[i] );
 | |
|         polarssl_free( grp->T );
 | |
|     }
 | |
| 
 | |
|     memset( grp, 0, sizeof( ecp_group ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate (the components of) a key pair
 | |
|  */
 | |
| void ecp_keypair_free( ecp_keypair *key )
 | |
| {
 | |
|     if ( key == NULL )
 | |
|         return;
 | |
| 
 | |
|     ecp_group_free( &key->grp );
 | |
|     mpi_free( &key->d );
 | |
|     ecp_point_free( &key->Q );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set point to zero
 | |
|  */
 | |
| int ecp_set_zero( ecp_point *pt )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     MPI_CHK( mpi_lset( &pt->X , 1 ) );
 | |
|     MPI_CHK( mpi_lset( &pt->Y , 1 ) );
 | |
|     MPI_CHK( mpi_lset( &pt->Z , 0 ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tell if a point is zero
 | |
|  */
 | |
| int ecp_is_zero( ecp_point *pt )
 | |
| {
 | |
|     return( mpi_cmp_int( &pt->Z, 0 ) == 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the contents of Q into P
 | |
|  */
 | |
| int ecp_copy( ecp_point *P, const ecp_point *Q )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     MPI_CHK( mpi_copy( &P->X, &Q->X ) );
 | |
|     MPI_CHK( mpi_copy( &P->Y, &Q->Y ) );
 | |
|     MPI_CHK( mpi_copy( &P->Z, &Q->Z ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the contents of a group object
 | |
|  */
 | |
| int ecp_group_copy( ecp_group *dst, const ecp_group *src )
 | |
| {
 | |
|     return ecp_use_known_dp( dst, src->id );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import a non-zero point from ASCII strings
 | |
|  */
 | |
| int ecp_point_read_string( ecp_point *P, int radix,
 | |
|                            const char *x, const char *y )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     MPI_CHK( mpi_read_string( &P->X, radix, x ) );
 | |
|     MPI_CHK( mpi_read_string( &P->Y, radix, y ) );
 | |
|     MPI_CHK( mpi_lset( &P->Z, 1 ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import an ECP group from ASCII strings
 | |
|  */
 | |
| int ecp_group_read_string( ecp_group *grp, int radix,
 | |
|                            const char *p, const char *b,
 | |
|                            const char *gx, const char *gy, const char *n)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     MPI_CHK( mpi_read_string( &grp->P, radix, p ) );
 | |
|     MPI_CHK( mpi_read_string( &grp->B, radix, b ) );
 | |
|     MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) );
 | |
|     MPI_CHK( mpi_read_string( &grp->N, radix, n ) );
 | |
| 
 | |
|     grp->pbits = mpi_msb( &grp->P );
 | |
|     grp->nbits = mpi_msb( &grp->N );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export a point into unsigned binary data (SEC1 2.3.3)
 | |
|  */
 | |
| int ecp_point_write_binary( const ecp_group *grp, const ecp_point *P,
 | |
|                             int format, size_t *olen,
 | |
|                             unsigned char *buf, size_t buflen )
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t plen;
 | |
| 
 | |
|     if( format != POLARSSL_ECP_PF_UNCOMPRESSED &&
 | |
|         format != POLARSSL_ECP_PF_COMPRESSED )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * Common case: P == 0
 | |
|      */
 | |
|     if( mpi_cmp_int( &P->Z, 0 ) == 0 )
 | |
|     {
 | |
|         if( buflen < 1 )
 | |
|             return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
 | |
| 
 | |
|         buf[0] = 0x00;
 | |
|         *olen = 1;
 | |
| 
 | |
|         return( 0 );
 | |
|     }
 | |
| 
 | |
|     plen = mpi_size( &grp->P );
 | |
| 
 | |
|     if( format == POLARSSL_ECP_PF_UNCOMPRESSED )
 | |
|     {
 | |
|         *olen = 2 * plen + 1;
 | |
| 
 | |
|         if( buflen < *olen )
 | |
|             return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
 | |
| 
 | |
|         buf[0] = 0x04;
 | |
|         MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
 | |
|         MPI_CHK( mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
 | |
|     }
 | |
|     else if( format == POLARSSL_ECP_PF_COMPRESSED )
 | |
|     {
 | |
|         *olen = plen + 1;
 | |
| 
 | |
|         if( buflen < *olen )
 | |
|             return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
 | |
| 
 | |
|         buf[0] = 0x02 + mpi_get_bit( &P->Y, 0 );
 | |
|         MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import a point from unsigned binary data (SEC1 2.3.4)
 | |
|  */
 | |
| int ecp_point_read_binary( const ecp_group *grp, ecp_point *pt,
 | |
|                            const unsigned char *buf, size_t ilen ) {
 | |
|     int ret;
 | |
|     size_t plen;
 | |
| 
 | |
|     if( ilen == 1 && buf[0] == 0x00 )
 | |
|         return( ecp_set_zero( pt ) );
 | |
| 
 | |
|     plen = mpi_size( &grp->P );
 | |
| 
 | |
|     if( ilen != 2 * plen + 1 || buf[0] != 0x04 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     MPI_CHK( mpi_read_binary( &pt->X, buf + 1, plen ) );
 | |
|     MPI_CHK( mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
 | |
|     MPI_CHK( mpi_lset( &pt->Z, 1 ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import a point from a TLS ECPoint record (RFC 4492)
 | |
|  *      struct {
 | |
|  *          opaque point <1..2^8-1>;
 | |
|  *      } ECPoint;
 | |
|  */
 | |
| int ecp_tls_read_point( const ecp_group *grp, ecp_point *pt,
 | |
|                         const unsigned char **buf, size_t buf_len )
 | |
| {
 | |
|     unsigned char data_len;
 | |
|     const unsigned char *buf_start;
 | |
| 
 | |
|     /*
 | |
|      * We must have at least two bytes (1 for length, at least of for data)
 | |
|      */
 | |
|     if( buf_len < 2 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     data_len = *(*buf)++;
 | |
|     if( data_len < 1 || data_len > buf_len - 1 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * Save buffer start for read_binary and update buf
 | |
|      */
 | |
|     buf_start = *buf;
 | |
|     *buf += data_len;
 | |
| 
 | |
|     return ecp_point_read_binary( grp, pt, buf_start, data_len );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export a point as a TLS ECPoint record (RFC 4492)
 | |
|  *      struct {
 | |
|  *          opaque point <1..2^8-1>;
 | |
|  *      } ECPoint;
 | |
|  */
 | |
| int ecp_tls_write_point( const ecp_group *grp, const ecp_point *pt,
 | |
|                          int format, size_t *olen,
 | |
|                          unsigned char *buf, size_t blen )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /*
 | |
|      * buffer length must be at least one, for our length byte
 | |
|      */
 | |
|     if( blen < 1 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( ( ret = ecp_point_write_binary( grp, pt, format,
 | |
|                     olen, buf + 1, blen - 1) ) != 0 )
 | |
|         return( ret );
 | |
| 
 | |
|     /*
 | |
|      * write length to the first byte and update total length
 | |
|      */
 | |
|     buf[0] = *olen;
 | |
|     ++*olen;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper around fast quasi-modp functions, with fall-back to mpi_mod_mpi.
 | |
|  * See the documentation of struct ecp_group.
 | |
|  */
 | |
| static int ecp_modp( mpi *N, const ecp_group *grp )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if( grp->modp == NULL )
 | |
|         return( mpi_mod_mpi( N, N, &grp->P ) );
 | |
| 
 | |
|     if( mpi_cmp_int( N, 0 ) < 0 || mpi_msb( N ) > 2 * grp->pbits )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     MPI_CHK( grp->modp( N ) );
 | |
| 
 | |
|     while( mpi_cmp_int( N, 0 ) < 0 )
 | |
|         MPI_CHK( mpi_add_mpi( N, N, &grp->P ) );
 | |
| 
 | |
|     while( mpi_cmp_mpi( N, &grp->P ) >= 0 )
 | |
|         MPI_CHK( mpi_sub_mpi( N, N, &grp->P ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
 | |
| /*
 | |
|  * 192 bits in terms of t_uint
 | |
|  */
 | |
| #define P192_SIZE_INT   ( 192 / CHAR_BIT / sizeof( t_uint ) )
 | |
| 
 | |
| /*
 | |
|  * Table to get S1, S2, S3 of FIPS 186-3 D.2.1:
 | |
|  * -1 means let this chunk be 0
 | |
|  * a positive value i means A_i.
 | |
|  */
 | |
| #define P192_CHUNKS         3
 | |
| #define P192_CHUNK_CHAR     ( 64 / CHAR_BIT )
 | |
| #define P192_CHUNK_INT      ( P192_CHUNK_CHAR / sizeof( t_uint ) )
 | |
| 
 | |
| const signed char p192_tbl[][P192_CHUNKS] = {
 | |
|     { -1,   3,  3   }, /* S1 */
 | |
|     { 4,    4,  -1  }, /* S2 */
 | |
|     { 5,    5,  5   }, /* S3 */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
 | |
|  */
 | |
| static int ecp_mod_p192( mpi *N )
 | |
| {
 | |
|     int ret;
 | |
|     unsigned char i, j, offset;
 | |
|     signed char chunk;
 | |
|     mpi tmp, acc;
 | |
|     t_uint tmp_p[P192_SIZE_INT], acc_p[P192_SIZE_INT + 1];
 | |
| 
 | |
|     tmp.s = 1;
 | |
|     tmp.n = sizeof( tmp_p ) / sizeof( tmp_p[0] );
 | |
|     tmp.p = tmp_p;
 | |
| 
 | |
|     acc.s = 1;
 | |
|     acc.n = sizeof( acc_p ) / sizeof( acc_p[0] );
 | |
|     acc.p = acc_p;
 | |
| 
 | |
|     MPI_CHK( mpi_grow( N, P192_SIZE_INT * 2 ) );
 | |
| 
 | |
|     /*
 | |
|      * acc = T
 | |
|      */
 | |
|     memset( acc_p, 0, sizeof( acc_p ) );
 | |
|     memcpy( acc_p, N->p, P192_CHUNK_CHAR * P192_CHUNKS );
 | |
| 
 | |
|     for( i = 0; i < sizeof( p192_tbl ) / sizeof( p192_tbl[0] ); i++)
 | |
|     {
 | |
|         /*
 | |
|          * tmp = S_i
 | |
|          */
 | |
|         memset( tmp_p, 0, sizeof( tmp_p ) );
 | |
|         for( j = 0, offset = P192_CHUNKS - 1; j < P192_CHUNKS; j++, offset-- )
 | |
|         {
 | |
|             chunk = p192_tbl[i][j];
 | |
|             if( chunk >= 0 )
 | |
|                 memcpy( tmp_p + offset * P192_CHUNK_INT,
 | |
|                         N->p + chunk * P192_CHUNK_INT,
 | |
|                         P192_CHUNK_CHAR );
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * acc += tmp
 | |
|          */
 | |
|         MPI_CHK( mpi_add_abs( &acc, &acc, &tmp ) );
 | |
|     }
 | |
| 
 | |
|     MPI_CHK( mpi_copy( N, &acc ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| #endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
 | |
| 
 | |
| #if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
 | |
| /*
 | |
|  * Size of p521 in terms of t_uint
 | |
|  */
 | |
| #define P521_SIZE_INT   ( 521 / CHAR_BIT / sizeof( t_uint ) + 1 )
 | |
| 
 | |
| /*
 | |
|  * Bits to keep in the most significant t_uint
 | |
|  */
 | |
| #if defined(POLARSS_HAVE_INT8)
 | |
| #define P521_MASK       0x01
 | |
| #else
 | |
| #define P521_MASK       0x01FF
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
 | |
|  */
 | |
| static int ecp_mod_p521( mpi *N )
 | |
| {
 | |
|     int ret;
 | |
|     t_uint Mp[P521_SIZE_INT];
 | |
|     mpi M;
 | |
| 
 | |
|     if( N->n < P521_SIZE_INT )
 | |
|         return( 0 );
 | |
| 
 | |
|     memset( Mp, 0, P521_SIZE_INT * sizeof( t_uint ) );
 | |
|     memcpy( Mp, N->p, P521_SIZE_INT * sizeof( t_uint ) );
 | |
|     Mp[P521_SIZE_INT - 1] &= P521_MASK;
 | |
| 
 | |
|     M.s = 1;
 | |
|     M.n = P521_SIZE_INT;
 | |
|     M.p = Mp;
 | |
| 
 | |
|     MPI_CHK( mpi_shift_r( N, 521 ) );
 | |
| 
 | |
|     MPI_CHK( mpi_add_abs( N, N, &M ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| #endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
 | |
| 
 | |
| /*
 | |
|  * Domain parameters for secp192r1
 | |
|  */
 | |
| #define SECP192R1_P \
 | |
|     "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF"
 | |
| #define SECP192R1_B \
 | |
|     "64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1"
 | |
| #define SECP192R1_GX \
 | |
|     "188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012"
 | |
| #define SECP192R1_GY \
 | |
|     "07192B95FFC8DA78631011ED6B24CDD573F977A11E794811"
 | |
| #define SECP192R1_N \
 | |
|     "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831"
 | |
| 
 | |
| /*
 | |
|  * Domain parameters for secp224r1
 | |
|  */
 | |
| #define SECP224R1_P \
 | |
|     "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001"
 | |
| #define SECP224R1_B \
 | |
|     "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4"
 | |
| #define SECP224R1_GX \
 | |
|     "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21"
 | |
| #define SECP224R1_GY \
 | |
|     "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34"
 | |
| #define SECP224R1_N \
 | |
|     "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D"
 | |
| 
 | |
| /*
 | |
|  * Domain parameters for secp256r1
 | |
|  */
 | |
| #define SECP256R1_P \
 | |
|     "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF"
 | |
| #define SECP256R1_B \
 | |
|     "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B"
 | |
| #define SECP256R1_GX \
 | |
|     "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296"
 | |
| #define SECP256R1_GY \
 | |
|     "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5"
 | |
| #define SECP256R1_N \
 | |
|     "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551"
 | |
| 
 | |
| /*
 | |
|  * Domain parameters for secp384r1
 | |
|  */
 | |
| #define SECP384R1_P \
 | |
|     "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
 | |
|     "FFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF"
 | |
| #define SECP384R1_B \
 | |
|     "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE814112" \
 | |
|     "0314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF"
 | |
| #define SECP384R1_GX \
 | |
|     "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B98" \
 | |
|     "59F741E082542A385502F25DBF55296C3A545E3872760AB7"
 | |
| #define SECP384R1_GY \
 | |
|     "3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147C" \
 | |
|     "E9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F"
 | |
| #define SECP384R1_N \
 | |
|     "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
 | |
|     "C7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973"
 | |
| 
 | |
| /*
 | |
|  * Domain parameters for secp521r1
 | |
|  */
 | |
| #define SECP521R1_P \
 | |
|     "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
 | |
|     "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
 | |
|     "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
 | |
| #define SECP521R1_B \
 | |
|     "00000051953EB9618E1C9A1F929A21A0B68540EEA2DA725B" \
 | |
|     "99B315F3B8B489918EF109E156193951EC7E937B1652C0BD" \
 | |
|     "3BB1BF073573DF883D2C34F1EF451FD46B503F00"
 | |
| #define SECP521R1_GX \
 | |
|     "000000C6858E06B70404E9CD9E3ECB662395B4429C648139" \
 | |
|     "053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127" \
 | |
|     "A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66"
 | |
| #define SECP521R1_GY \
 | |
|     "0000011839296A789A3BC0045C8A5FB42C7D1BD998F54449" \
 | |
|     "579B446817AFBD17273E662C97EE72995EF42640C550B901" \
 | |
|     "3FAD0761353C7086A272C24088BE94769FD16650"
 | |
| #define SECP521R1_N \
 | |
|     "000001FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" \
 | |
|     "FFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148" \
 | |
|     "F709A5D03BB5C9B8899C47AEBB6FB71E91386409"
 | |
| 
 | |
| /*
 | |
|  * Set a group using well-known domain parameters
 | |
|  */
 | |
| int ecp_use_known_dp( ecp_group *grp, ecp_group_id id )
 | |
| {
 | |
|     grp->id = id;
 | |
| 
 | |
|     switch( id )
 | |
|     {
 | |
| #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
 | |
|         case POLARSSL_ECP_DP_SECP192R1:
 | |
|             grp->modp = ecp_mod_p192;
 | |
|             return( ecp_group_read_string( grp, 16,
 | |
|                         SECP192R1_P, SECP192R1_B,
 | |
|                         SECP192R1_GX, SECP192R1_GY, SECP192R1_N ) );
 | |
| #endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
 | |
| 
 | |
| #if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
 | |
|         case POLARSSL_ECP_DP_SECP224R1:
 | |
|             return( ecp_group_read_string( grp, 16,
 | |
|                         SECP224R1_P, SECP224R1_B,
 | |
|                         SECP224R1_GX, SECP224R1_GY, SECP224R1_N ) );
 | |
| #endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
 | |
| 
 | |
| #if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
 | |
|         case POLARSSL_ECP_DP_SECP256R1:
 | |
|             return( ecp_group_read_string( grp, 16,
 | |
|                         SECP256R1_P, SECP256R1_B,
 | |
|                         SECP256R1_GX, SECP256R1_GY, SECP256R1_N ) );
 | |
| #endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
 | |
| 
 | |
| #if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
 | |
|         case POLARSSL_ECP_DP_SECP384R1:
 | |
|             return( ecp_group_read_string( grp, 16,
 | |
|                         SECP384R1_P, SECP384R1_B,
 | |
|                         SECP384R1_GX, SECP384R1_GY, SECP384R1_N ) );
 | |
| #endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
 | |
| 
 | |
| #if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
 | |
|         case POLARSSL_ECP_DP_SECP521R1:
 | |
|             grp->modp = ecp_mod_p521;
 | |
|             return( ecp_group_read_string( grp, 16,
 | |
|                         SECP521R1_P, SECP521R1_B,
 | |
|                         SECP521R1_GX, SECP521R1_GY, SECP521R1_N ) );
 | |
| #endif /* POLARSSL_ECP_DP_SECP521R1_ENABLED */
 | |
| 
 | |
|         default:
 | |
|             grp->id = POLARSSL_ECP_DP_NONE;
 | |
|             return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a group from an ECParameters record (RFC 4492)
 | |
|  */
 | |
| int ecp_tls_read_group( ecp_group *grp, const unsigned char **buf, size_t len )
 | |
| {
 | |
|     uint16_t tls_id;
 | |
|     const ecp_curve_info *curve_info;
 | |
| 
 | |
|     /*
 | |
|      * We expect at least three bytes (see below)
 | |
|      */
 | |
|     if( len < 3 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * First byte is curve_type; only named_curve is handled
 | |
|      */
 | |
|     if( *(*buf)++ != POLARSSL_ECP_TLS_NAMED_CURVE )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * Next two bytes are the namedcurve value
 | |
|      */
 | |
|     tls_id = *(*buf)++;
 | |
|     tls_id <<= 8;
 | |
|     tls_id |= *(*buf)++;
 | |
| 
 | |
|     if( ( curve_info = ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
 | |
|         return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
 | |
| 
 | |
|     return ecp_use_known_dp( grp, curve_info->grp_id );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write the ECParameters record corresponding to a group (RFC 4492)
 | |
|  */
 | |
| int ecp_tls_write_group( const ecp_group *grp, size_t *olen,
 | |
|                          unsigned char *buf, size_t blen )
 | |
| {
 | |
|     const ecp_curve_info *curve_info;
 | |
| 
 | |
|     if( ( curve_info = ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * We are going to write 3 bytes (see below)
 | |
|      */
 | |
|     *olen = 3;
 | |
|     if( blen < *olen )
 | |
|         return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
 | |
| 
 | |
|     /*
 | |
|      * First byte is curve_type, always named_curve
 | |
|      */
 | |
|     *buf++ = POLARSSL_ECP_TLS_NAMED_CURVE;
 | |
| 
 | |
|     /*
 | |
|      * Next two bytes are the namedcurve value
 | |
|      */
 | |
|     buf[0] = curve_info->tls_id >> 8;
 | |
|     buf[1] = curve_info->tls_id & 0xFF;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the curve info from the TLS identifier
 | |
|  */
 | |
| const ecp_curve_info *ecp_curve_info_from_tls_id( uint16_t tls_id )
 | |
| {
 | |
|     const ecp_curve_info *curve_info;
 | |
| 
 | |
|     for( curve_info = ecp_curve_list();
 | |
|          curve_info->grp_id != POLARSSL_ECP_DP_NONE;
 | |
|          curve_info++ )
 | |
|     {
 | |
|         if( curve_info->tls_id == tls_id )
 | |
|             return( curve_info );
 | |
|     }
 | |
| 
 | |
|     return( NULL );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the curve info for the internal identifer
 | |
|  */
 | |
| const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id )
 | |
| {
 | |
|     const ecp_curve_info *curve_info;
 | |
| 
 | |
|     for( curve_info = ecp_curve_list();
 | |
|          curve_info->grp_id != POLARSSL_ECP_DP_NONE;
 | |
|          curve_info++ )
 | |
|     {
 | |
|         if( curve_info->grp_id == grp_id )
 | |
|             return( curve_info );
 | |
|     }
 | |
| 
 | |
|     return( NULL );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
 | |
|  *
 | |
|  * In order to guarantee that, we need to ensure that operands of
 | |
|  * mpi_mul_mpi are in the 0..p range. So, after each operation we will
 | |
|  * bring the result back to this range.
 | |
|  *
 | |
|  * The following macros are shortcuts for doing that.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi
 | |
|  */
 | |
| #define MOD_MUL( N )    MPI_CHK( ecp_modp( &N, grp ) )
 | |
| 
 | |
| /*
 | |
|  * Reduce a mpi mod p in-place, to use after mpi_sub_mpi
 | |
|  */
 | |
| #define MOD_SUB( N )                                \
 | |
|     while( mpi_cmp_int( &N, 0 ) < 0 )               \
 | |
|         MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) )
 | |
| 
 | |
| /*
 | |
|  * Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int
 | |
|  */
 | |
| #define MOD_ADD( N )                                \
 | |
|     while( mpi_cmp_mpi( &N, &grp->P ) >= 0 )        \
 | |
|         MPI_CHK( mpi_sub_mpi( &N, &N, &grp->P ) )
 | |
| 
 | |
| /*
 | |
|  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
 | |
|  */
 | |
| static int ecp_normalize( const ecp_group *grp, ecp_point *pt )
 | |
| {
 | |
|     int ret;
 | |
|     mpi Zi, ZZi;
 | |
| 
 | |
|     if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
 | |
|         return( 0 );
 | |
| 
 | |
|     mpi_init( &Zi ); mpi_init( &ZZi );
 | |
| 
 | |
|     /*
 | |
|      * X = X / Z^2  mod p
 | |
|      */
 | |
|     MPI_CHK( mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) );
 | |
|     MPI_CHK( mpi_mul_mpi( &ZZi,     &Zi,        &Zi     ) ); MOD_MUL( ZZi );
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->X,   &pt->X,     &ZZi    ) ); MOD_MUL( pt->X );
 | |
| 
 | |
|     /*
 | |
|      * Y = Y / Z^3  mod p
 | |
|      */
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->Y,   &pt->Y,     &ZZi    ) ); MOD_MUL( pt->Y );
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->Y,   &pt->Y,     &Zi     ) ); MOD_MUL( pt->Y );
 | |
| 
 | |
|     /*
 | |
|      * Z = 1
 | |
|      */
 | |
|     MPI_CHK( mpi_lset( &pt->Z, 1 ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mpi_free( &Zi ); mpi_free( &ZZi );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Normalize jacobian coordinates of an array of points,
 | |
|  * using Montgomery's trick to perform only one inversion mod P.
 | |
|  * (See for example Cohen's "A Course in Computational Algebraic Number
 | |
|  * Theory", Algorithm 10.3.4.)
 | |
|  *
 | |
|  * Warning: fails (returning an error) if one of the points is zero!
 | |
|  * This should never happen, see choice of w in ecp_mul().
 | |
|  */
 | |
| static int ecp_normalize_many( const ecp_group *grp,
 | |
|                                ecp_point T[], size_t t_len )
 | |
| {
 | |
|     int ret;
 | |
|     size_t i;
 | |
|     mpi *c, u, Zi, ZZi;
 | |
| 
 | |
|     if( t_len < 2 )
 | |
|         return( ecp_normalize( grp, T ) );
 | |
| 
 | |
|     if( ( c = (mpi *) polarssl_malloc( t_len * sizeof( mpi ) ) ) == NULL )
 | |
|         return( POLARSSL_ERR_ECP_MALLOC_FAILED );
 | |
| 
 | |
|     mpi_init( &u ); mpi_init( &Zi ); mpi_init( &ZZi );
 | |
|     for( i = 0; i < t_len; i++ )
 | |
|         mpi_init( &c[i] );
 | |
| 
 | |
|     /*
 | |
|      * c[i] = Z_0 * ... * Z_i
 | |
|      */
 | |
|     MPI_CHK( mpi_copy( &c[0], &T[0].Z ) );
 | |
|     for( i = 1; i < t_len; i++ )
 | |
|     {
 | |
|         MPI_CHK( mpi_mul_mpi( &c[i], &c[i-1], &T[i].Z ) );
 | |
|         MOD_MUL( c[i] );
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * u = 1 / (Z_0 * ... * Z_n) mod P
 | |
|      */
 | |
|     MPI_CHK( mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );
 | |
| 
 | |
|     for( i = t_len - 1; ; i-- )
 | |
|     {
 | |
|         /*
 | |
|          * Zi = 1 / Z_i mod p
 | |
|          * u = 1 / (Z_0 * ... * Z_i) mod P
 | |
|          */
 | |
|         if( i == 0 ) {
 | |
|             MPI_CHK( mpi_copy( &Zi, &u ) );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             MPI_CHK( mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
 | |
|             MPI_CHK( mpi_mul_mpi( &u,  &u, &T[i].Z ) ); MOD_MUL( u );
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * proceed as in normalize()
 | |
|          */
 | |
|         MPI_CHK( mpi_mul_mpi( &ZZi,    &Zi,     &Zi     ) ); MOD_MUL( ZZi );
 | |
|         MPI_CHK( mpi_mul_mpi( &T[i].X, &T[i].X, &ZZi    ) ); MOD_MUL( T[i].X );
 | |
|         MPI_CHK( mpi_mul_mpi( &T[i].Y, &T[i].Y, &ZZi    ) ); MOD_MUL( T[i].Y );
 | |
|         MPI_CHK( mpi_mul_mpi( &T[i].Y, &T[i].Y, &Zi     ) ); MOD_MUL( T[i].Y );
 | |
|         MPI_CHK( mpi_lset( &T[i].Z, 1 ) );
 | |
| 
 | |
|         if( i == 0 )
 | |
|             break;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mpi_free( &u ); mpi_free( &Zi ); mpi_free( &ZZi );
 | |
|     for( i = 0; i < t_len; i++ )
 | |
|         mpi_free( &c[i] );
 | |
|     polarssl_free( c );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Point doubling R = 2 P, Jacobian coordinates (GECC 3.21)
 | |
|  */
 | |
| static int ecp_double_jac( const ecp_group *grp, ecp_point *R,
 | |
|                            const ecp_point *P )
 | |
| {
 | |
|     int ret;
 | |
|     mpi T1, T2, T3, X, Y, Z;
 | |
| 
 | |
| #if defined(POLARSSL_SELF_TEST)
 | |
|     dbl_count++;
 | |
| #endif
 | |
| 
 | |
|     if( mpi_cmp_int( &P->Z, 0 ) == 0 )
 | |
|         return( ecp_set_zero( R ) );
 | |
| 
 | |
|     mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 );
 | |
|     mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
 | |
| 
 | |
|     MPI_CHK( mpi_mul_mpi( &T1,  &P->Z,  &P->Z ) );  MOD_MUL( T1 );
 | |
|     MPI_CHK( mpi_sub_mpi( &T2,  &P->X,  &T1   ) );  MOD_SUB( T2 );
 | |
|     MPI_CHK( mpi_add_mpi( &T1,  &P->X,  &T1   ) );  MOD_ADD( T1 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T2,  &T2,    &T1   ) );  MOD_MUL( T2 );
 | |
|     MPI_CHK( mpi_mul_int( &T2,  &T2,    3     ) );  MOD_ADD( T2 );
 | |
|     MPI_CHK( mpi_mul_int( &Y,   &P->Y,  2     ) );  MOD_ADD( Y  );
 | |
|     MPI_CHK( mpi_mul_mpi( &Z,   &Y,     &P->Z ) );  MOD_MUL( Z  );
 | |
|     MPI_CHK( mpi_mul_mpi( &Y,   &Y,     &Y    ) );  MOD_MUL( Y  );
 | |
|     MPI_CHK( mpi_mul_mpi( &T3,  &Y,     &P->X ) );  MOD_MUL( T3 );
 | |
|     MPI_CHK( mpi_mul_mpi( &Y,   &Y,     &Y    ) );  MOD_MUL( Y  );
 | |
| 
 | |
|     /*
 | |
|      * For Y = Y / 2 mod p, we must make sure that Y is even before
 | |
|      * using right-shift. No need to reduce mod p afterwards.
 | |
|      */
 | |
|     if( mpi_get_bit( &Y, 0 ) == 1 )
 | |
|         MPI_CHK( mpi_add_mpi( &Y, &Y, &grp->P ) );
 | |
|     MPI_CHK( mpi_shift_r( &Y,   1             ) );
 | |
| 
 | |
|     MPI_CHK( mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  );
 | |
|     MPI_CHK( mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 );
 | |
|     MPI_CHK( mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  );
 | |
|     MPI_CHK( mpi_sub_mpi( &T1,  &T3,    &X    ) );  MOD_SUB( T1 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T1,  &T1,    &T2   ) );  MOD_MUL( T1 );
 | |
|     MPI_CHK( mpi_sub_mpi( &Y,   &T1,    &Y    ) );  MOD_SUB( Y  );
 | |
| 
 | |
|     MPI_CHK( mpi_copy( &R->X, &X ) );
 | |
|     MPI_CHK( mpi_copy( &R->Y, &Y ) );
 | |
|     MPI_CHK( mpi_copy( &R->Z, &Z ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 );
 | |
|     mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Addition or subtraction: R = P + Q or R = P + Q,
 | |
|  * mixed affine-Jacobian coordinates (GECC 3.22)
 | |
|  *
 | |
|  * The coordinates of Q must be normalized (= affine),
 | |
|  * but those of P don't need to. R is not normalized.
 | |
|  *
 | |
|  * If sign >= 0, perform addition, otherwise perform subtraction,
 | |
|  * taking advantage of the fact that, for Q != 0, we have
 | |
|  * -Q = (Q.X, -Q.Y, Q.Z)
 | |
|  */
 | |
| static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
 | |
|                           const ecp_point *P, const ecp_point *Q,
 | |
|                           signed char sign )
 | |
| {
 | |
|     int ret;
 | |
|     mpi T1, T2, T3, T4, X, Y, Z;
 | |
| 
 | |
| #if defined(POLARSSL_SELF_TEST)
 | |
|     add_count++;
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * Trivial cases: P == 0 or Q == 0
 | |
|      * (Check Q first, so that we know Q != 0 when we compute -Q.)
 | |
|      */
 | |
|     if( mpi_cmp_int( &Q->Z, 0 ) == 0 )
 | |
|         return( ecp_copy( R, P ) );
 | |
| 
 | |
|     if( mpi_cmp_int( &P->Z, 0 ) == 0 )
 | |
|     {
 | |
|         ret = ecp_copy( R, Q );
 | |
| 
 | |
|         /*
 | |
|          * -R.Y mod P = P - R.Y unless R.Y == 0
 | |
|          */
 | |
|         if( ret == 0 && sign < 0)
 | |
|             if( mpi_cmp_int( &R->Y, 0 ) != 0 )
 | |
|                 ret = mpi_sub_mpi( &R->Y, &grp->P, &R->Y );
 | |
| 
 | |
|         return( ret );
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Make sure Q coordinates are normalized
 | |
|      */
 | |
|     if( mpi_cmp_int( &Q->Z, 1 ) != 0 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &T4 );
 | |
|     mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
 | |
| 
 | |
|     MPI_CHK( mpi_mul_mpi( &T1,  &P->Z,  &P->Z ) );  MOD_MUL( T1 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T2,  &T1,    &P->Z ) );  MOD_MUL( T2 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T1,  &T1,    &Q->X ) );  MOD_MUL( T1 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T2,  &T2,    &Q->Y ) );  MOD_MUL( T2 );
 | |
| 
 | |
|     /*
 | |
|      * For subtraction, -Q.Y should have been used instead of Q.Y,
 | |
|      * so we replace T2 by -T2, which is P - T2 mod P
 | |
|      */
 | |
|     if( sign < 0 )
 | |
|     {
 | |
|         MPI_CHK( mpi_sub_mpi( &T2, &grp->P, &T2 ) );
 | |
|         MOD_SUB( T2 );
 | |
|     }
 | |
| 
 | |
|     MPI_CHK( mpi_sub_mpi( &T1,  &T1,    &P->X ) );  MOD_SUB( T1 );
 | |
|     MPI_CHK( mpi_sub_mpi( &T2,  &T2,    &P->Y ) );  MOD_SUB( T2 );
 | |
| 
 | |
|     if( mpi_cmp_int( &T1, 0 ) == 0 )
 | |
|     {
 | |
|         if( mpi_cmp_int( &T2, 0 ) == 0 )
 | |
|         {
 | |
|             ret = ecp_double_jac( grp, R, P );
 | |
|             goto cleanup;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             ret = ecp_set_zero( R );
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     MPI_CHK( mpi_mul_mpi( &Z,   &P->Z,  &T1   ) );  MOD_MUL( Z  );
 | |
|     MPI_CHK( mpi_mul_mpi( &T3,  &T1,    &T1   ) );  MOD_MUL( T3 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T4,  &T3,    &T1   ) );  MOD_MUL( T4 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T3,  &T3,    &P->X ) );  MOD_MUL( T3 );
 | |
|     MPI_CHK( mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 );
 | |
|     MPI_CHK( mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  );
 | |
|     MPI_CHK( mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  );
 | |
|     MPI_CHK( mpi_sub_mpi( &X,   &X,     &T4   ) );  MOD_SUB( X  );
 | |
|     MPI_CHK( mpi_sub_mpi( &T3,  &T3,    &X    ) );  MOD_SUB( T3 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T3,  &T3,    &T2   ) );  MOD_MUL( T3 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T4,  &T4,    &P->Y ) );  MOD_MUL( T4 );
 | |
|     MPI_CHK( mpi_sub_mpi( &Y,   &T3,    &T4   ) );  MOD_SUB( Y  );
 | |
| 
 | |
|     MPI_CHK( mpi_copy( &R->X, &X ) );
 | |
|     MPI_CHK( mpi_copy( &R->Y, &Y ) );
 | |
|     MPI_CHK( mpi_copy( &R->Z, &Z ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &T4 );
 | |
|     mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Addition: R = P + Q, result's coordinates normalized
 | |
|  */
 | |
| int ecp_add( const ecp_group *grp, ecp_point *R,
 | |
|              const ecp_point *P, const ecp_point *Q )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     MPI_CHK( ecp_add_mixed( grp, R, P, Q , 1 ) );
 | |
|     MPI_CHK( ecp_normalize( grp, R ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Subtraction: R = P - Q, result's coordinates normalized
 | |
|  */
 | |
| int ecp_sub( const ecp_group *grp, ecp_point *R,
 | |
|              const ecp_point *P, const ecp_point *Q )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     MPI_CHK( ecp_add_mixed( grp, R, P, Q, -1 ) );
 | |
|     MPI_CHK( ecp_normalize( grp, R ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute a modified width-w non-adjacent form (NAF) of a number,
 | |
|  * with a fixed pattern for resistance to simple timing attacks (even SPA),
 | |
|  * see [1]. (The resulting multiplication algorithm can also been seen as a
 | |
|  * modification of 2^w-ary multiplication, with signed coefficients, all of
 | |
|  * them odd.)
 | |
|  *
 | |
|  * Input:
 | |
|  * m must be an odd positive mpi less than w * k bits long
 | |
|  * x must be an array of k elements
 | |
|  * w must be less than a certain maximum (currently 8)
 | |
|  *
 | |
|  * The result is a sequence x[0], ..., x[k-1] with x[i] in the range
 | |
|  * - 2^(width - 1) .. 2^(width - 1) - 1 such that
 | |
|  * m = (2 * x[0] + 1) + 2^width * (2 * x[1] + 1) + ...
 | |
|  *     + 2^((k-1) * width) * (2 * x[k-1] + 1)
 | |
|  *
 | |
|  * Compared to "Algorithm SPA-resistant Width-w NAF with Odd Scalar"
 | |
|  * p. 335 of the cited reference, here we return only u, not d_w since
 | |
|  * it is known that the other d_w[j] will be 0.  Moreover, the returned
 | |
|  * string doesn't actually store u_i but x_i = u_i / 2 since it is known
 | |
|  * that u_i is odd. Also, since we always select a positive value for d
 | |
|  * mod 2^w, we don't need to check the sign of u[i-1] when the reference
 | |
|  * does. Finally, there is an off-by-one error in the reference: the
 | |
|  * last index should be k-1, not k.
 | |
|  */
 | |
| static int ecp_w_naf_fixed( signed char x[], size_t k,
 | |
|                             unsigned char w, const mpi *m )
 | |
| {
 | |
|     int ret;
 | |
|     unsigned int i, u, mask, carry;
 | |
|     mpi M;
 | |
| 
 | |
|     mpi_init( &M );
 | |
| 
 | |
|     MPI_CHK( mpi_copy( &M, m ) );
 | |
|     mask = ( 1 << w ) - 1;
 | |
|     carry = 1 << ( w - 1 );
 | |
| 
 | |
|     for( i = 0; i < k; i++ )
 | |
|     {
 | |
|         u = M.p[0] & mask;
 | |
| 
 | |
|         if( ( u & 1 ) == 0 && i > 0 )
 | |
|             x[i - 1] -= carry;
 | |
| 
 | |
|         x[i] = u >> 1;
 | |
|         mpi_shift_r( &M, w );
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We should have consumed all bits, unless the input value was too big
 | |
|      */
 | |
|     if( mpi_cmp_int( &M, 0 ) != 0 )
 | |
|         ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mpi_free( &M );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Precompute odd multiples of P up to (2 * t_len - 1) P.
 | |
|  * The table is filled with T[i] = (2 * i + 1) P.
 | |
|  */
 | |
| static int ecp_precompute( const ecp_group *grp,
 | |
|                            ecp_point T[], size_t t_len,
 | |
|                            const ecp_point *P )
 | |
| {
 | |
|     int ret;
 | |
|     size_t i;
 | |
|     ecp_point PP;
 | |
| 
 | |
|     ecp_point_init( &PP );
 | |
| 
 | |
|     MPI_CHK( ecp_add( grp, &PP, P, P ) );
 | |
| 
 | |
|     MPI_CHK( ecp_copy( &T[0], P ) );
 | |
| 
 | |
|     for( i = 1; i < t_len; i++ )
 | |
|         MPI_CHK( ecp_add_mixed( grp, &T[i], &T[i-1], &PP, +1 ) );
 | |
| 
 | |
|     /*
 | |
|      * T[0] = P already has normalized coordinates
 | |
|      */
 | |
|     MPI_CHK( ecp_normalize_many( grp, T + 1, t_len - 1 ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     ecp_point_free( &PP );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Randomize jacobian coordinates:
 | |
|  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
 | |
|  * This is sort of the reverse operation of ecp_normalize().
 | |
|  */
 | |
| static int ecp_randomize_coordinates( const ecp_group *grp, ecp_point *pt,
 | |
|                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
 | |
| {
 | |
|     int ret;
 | |
|     mpi l, ll;
 | |
|     size_t p_size = (grp->pbits + 7) / 8;
 | |
|     int count = 0;
 | |
| 
 | |
|     mpi_init( &l ); mpi_init( &ll );
 | |
| 
 | |
|     /* Generate l such that 1 < l < p */
 | |
|     do
 | |
|     {
 | |
|         mpi_fill_random( &l, p_size, f_rng, p_rng );
 | |
| 
 | |
|         while( mpi_cmp_mpi( &l, &grp->P ) >= 0 )
 | |
|             mpi_shift_r( &l, 1 );
 | |
| 
 | |
|         if( count++ > 10 )
 | |
|             return( POLARSSL_ERR_ECP_RANDOM_FAILED );
 | |
|     }
 | |
|     while( mpi_cmp_int( &l, 1 ) <= 0 );
 | |
| 
 | |
|     /* Z = l * Z */
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->Z,   &pt->Z,     &l  ) ); MOD_MUL( pt->Z );
 | |
| 
 | |
|     /* X = l^2 * X */
 | |
|     MPI_CHK( mpi_mul_mpi( &ll,      &l,         &l  ) ); MOD_MUL( ll );
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->X,   &pt->X,     &ll ) ); MOD_MUL( pt->X );
 | |
| 
 | |
|     /* Y = l^3 * Y */
 | |
|     MPI_CHK( mpi_mul_mpi( &ll,      &ll,        &l  ) ); MOD_MUL( ll );
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->Y,   &pt->Y,     &ll ) ); MOD_MUL( pt->Y );
 | |
| 
 | |
| cleanup:
 | |
|     mpi_free( &l ); mpi_free( &ll );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Maximum length of the precomputed table
 | |
|  */
 | |
| #define MAX_PRE_LEN     ( 1 << (POLARSSL_ECP_WINDOW_SIZE - 1) )
 | |
| 
 | |
| /*
 | |
|  * Maximum length of the NAF: ceil( grp->nbits + 1 ) / w
 | |
|  * (that is: grp->nbits / w + 1)
 | |
|  * Allow p_bits + 1 bits in case M = grp->N + 1 is one bit longer than N.
 | |
|  */
 | |
| #define MAX_NAF_LEN     ( POLARSSL_ECP_MAX_BITS / 2 + 1 )
 | |
| 
 | |
| /*
 | |
|  * Integer multiplication: R = m * P
 | |
|  *
 | |
|  * Based on fixed-pattern width-w NAF, see comments of ecp_w_naf_fixed().
 | |
|  *
 | |
|  * This function executes a fixed number of operations for
 | |
|  * random m in the range 0 .. 2^nbits - 1.
 | |
|  *
 | |
|  * As an additional countermeasure against potential timing attacks,
 | |
|  * we randomize coordinates before each addition. This was suggested as a
 | |
|  * countermeasure against DPA in 5.3 of [2] (with the obvious adaptation that
 | |
|  * we use jacobian coordinates, not standard projective coordinates).
 | |
|  */
 | |
| int ecp_mul( ecp_group *grp, ecp_point *R,
 | |
|              const mpi *m, const ecp_point *P,
 | |
|              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
 | |
| {
 | |
|     int ret;
 | |
|     unsigned char w, m_is_odd, p_eq_g;
 | |
|     size_t pre_len, naf_len, i, j;
 | |
|     signed char naf[ MAX_NAF_LEN ];
 | |
|     ecp_point Q, *T = NULL, S[2];
 | |
|     mpi M;
 | |
| 
 | |
|     if( mpi_cmp_int( m, 0 ) < 0 || mpi_msb( m ) > grp->nbits )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     mpi_init( &M );
 | |
|     ecp_point_init( &Q );
 | |
|     ecp_point_init( &S[0] );
 | |
|     ecp_point_init( &S[1] );
 | |
| 
 | |
|     /*
 | |
|      * Check if P == G
 | |
|      */
 | |
|     p_eq_g = ( mpi_cmp_int( &P->Z, 1 ) == 0 &&
 | |
|                mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
 | |
|                mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
 | |
| 
 | |
|     /*
 | |
|      * If P == G, pre-compute a lot of points: this will be re-used later,
 | |
|      * otherwise, choose window size depending on curve size
 | |
|      */
 | |
|     if( p_eq_g )
 | |
|         w = POLARSSL_ECP_WINDOW_SIZE;
 | |
|     else
 | |
|         w = grp->nbits >= 512 ? 6 :
 | |
|             grp->nbits >= 224 ? 5 :
 | |
|                                 4;
 | |
| 
 | |
|     /*
 | |
|      * Make sure w is within the limits.
 | |
|      * The last test ensures that none of the precomputed points is zero,
 | |
|      * which wouldn't be handled correctly by ecp_normalize_many().
 | |
|      * It is only useful for very small curves as used in the test suite.
 | |
|      */
 | |
|     if( w > POLARSSL_ECP_WINDOW_SIZE )
 | |
|         w = POLARSSL_ECP_WINDOW_SIZE;
 | |
|     if( w < 2 || w >= grp->nbits )
 | |
|         w = 2;
 | |
| 
 | |
|     pre_len = 1 << ( w - 1 );
 | |
|     naf_len = grp->nbits / w + 1;
 | |
| 
 | |
|     /*
 | |
|      * Prepare precomputed points: if P == G we want to
 | |
|      * use grp->T if already initialized, or initiliaze it.
 | |
|      */
 | |
|     if( ! p_eq_g || grp->T == NULL )
 | |
|     {
 | |
|         if( ( T = polarssl_malloc( pre_len * sizeof( ecp_point ) ) ) == NULL )
 | |
|         {
 | |
|             ret = POLARSSL_ERR_ECP_MALLOC_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         for( i = 0; i < pre_len; i++ )
 | |
|             ecp_point_init( &T[i] );
 | |
| 
 | |
|         MPI_CHK( ecp_precompute( grp, T, pre_len, P ) );
 | |
| 
 | |
|         if( p_eq_g )
 | |
|         {
 | |
|             grp->T = T;
 | |
|             grp->T_size = pre_len;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         T = grp->T;
 | |
| 
 | |
|         /* Should never happen, but we want to be extra sure */
 | |
|         if( pre_len != grp->T_size )
 | |
|         {
 | |
|             ret = POLARSSL_ERR_ECP_BAD_INPUT_DATA;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Make sure M is odd (M = m + 1 or M = m + 2)
 | |
|      * later we'll get m * P by subtracting P or 2 * P to M * P.
 | |
|      */
 | |
|     m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
 | |
| 
 | |
|     MPI_CHK( mpi_copy( &M, m ) );
 | |
|     MPI_CHK( mpi_add_int( &M, &M, 1 + m_is_odd ) );
 | |
| 
 | |
|     /*
 | |
|      * Compute the fixed-pattern NAF of M
 | |
|      */
 | |
|     MPI_CHK( ecp_w_naf_fixed( naf, naf_len, w, &M ) );
 | |
| 
 | |
|     /*
 | |
|      * Compute M * P, using a variant of left-to-right 2^w-ary multiplication:
 | |
|      * at each step we add (2 * naf[i] + 1) P, then multiply by 2^w.
 | |
|      *
 | |
|      * If naf[i] >= 0, we have (2 * naf[i] + 1) P == T[ naf[i] ]
 | |
|      * Otherwise, (2 * naf[i] + 1) P == - ( 2 * ( - naf[i] - 1 ) + 1) P
 | |
|      *                               == T[ - naf[i] - 1 ]
 | |
|      */
 | |
|     MPI_CHK( ecp_set_zero( &Q ) );
 | |
|     i = naf_len - 1;
 | |
|     while( 1 )
 | |
|     {
 | |
|         /* Countermeasure (see comments above) */
 | |
|         if( f_rng != NULL )
 | |
|             ecp_randomize_coordinates( grp, &Q, f_rng, p_rng );
 | |
| 
 | |
|         if( naf[i] < 0 )
 | |
|         {
 | |
|             MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ - naf[i] - 1 ], -1 ) );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             MPI_CHK( ecp_add_mixed( grp, &Q, &Q, &T[ naf[i] ], +1 ) );
 | |
|         }
 | |
| 
 | |
|         if( i == 0 )
 | |
|             break;
 | |
|         i--;
 | |
| 
 | |
|         for( j = 0; j < w; j++ )
 | |
|         {
 | |
|             MPI_CHK( ecp_double_jac( grp, &Q, &Q ) );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Now get m * P from M * P
 | |
|      */
 | |
|     MPI_CHK( ecp_copy( &S[0], P ) );
 | |
|     MPI_CHK( ecp_add( grp, &S[1], P, P ) );
 | |
|     MPI_CHK( ecp_sub( grp, R, &Q, &S[m_is_odd] ) );
 | |
| 
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if( T != NULL && ! p_eq_g )
 | |
|     {
 | |
|         for( i = 0; i < pre_len; i++ )
 | |
|             ecp_point_free( &T[i] );
 | |
|         polarssl_free( T );
 | |
|     }
 | |
| 
 | |
|     ecp_point_free( &S[1] );
 | |
|     ecp_point_free( &S[0] );
 | |
|     ecp_point_free( &Q );
 | |
|     mpi_free( &M );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that a point is valid as a public key (SEC1 3.2.3.1)
 | |
|  */
 | |
| int ecp_check_pubkey( const ecp_group *grp, const ecp_point *pt )
 | |
| {
 | |
|     int ret;
 | |
|     mpi YY, RHS;
 | |
| 
 | |
|     if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
 | |
|         return( POLARSSL_ERR_ECP_INVALID_KEY );
 | |
| 
 | |
|     /*
 | |
|      * pt coordinates must be normalized for our checks
 | |
|      */
 | |
|     if( mpi_cmp_int( &pt->Z, 1 ) != 0 )
 | |
|         return( POLARSSL_ERR_ECP_INVALID_KEY );
 | |
| 
 | |
|     if( mpi_cmp_int( &pt->X, 0 ) < 0 ||
 | |
|         mpi_cmp_int( &pt->Y, 0 ) < 0 ||
 | |
|         mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
 | |
|         mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
 | |
|         return( POLARSSL_ERR_ECP_INVALID_KEY );
 | |
| 
 | |
|     mpi_init( &YY ); mpi_init( &RHS );
 | |
| 
 | |
|     /*
 | |
|      * YY = Y^2
 | |
|      * RHS = X (X^2 - 3) + B = X^3 - 3X + B
 | |
|      */
 | |
|     MPI_CHK( mpi_mul_mpi( &YY,  &pt->Y,  &pt->Y   ) );  MOD_MUL( YY  );
 | |
|     MPI_CHK( mpi_mul_mpi( &RHS, &pt->X,  &pt->X   ) );  MOD_MUL( RHS );
 | |
|     MPI_CHK( mpi_sub_int( &RHS, &RHS,    3        ) );  MOD_SUB( RHS );
 | |
|     MPI_CHK( mpi_mul_mpi( &RHS, &RHS,    &pt->X   ) );  MOD_MUL( RHS );
 | |
|     MPI_CHK( mpi_add_mpi( &RHS, &RHS,    &grp->B  ) );  MOD_ADD( RHS );
 | |
| 
 | |
|     if( mpi_cmp_mpi( &YY, &RHS ) != 0 )
 | |
|         ret = POLARSSL_ERR_ECP_INVALID_KEY;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mpi_free( &YY ); mpi_free( &RHS );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that an mpi is valid as a private key (SEC1 3.2)
 | |
|  */
 | |
| int ecp_check_privkey( const ecp_group *grp, const mpi *d )
 | |
| {
 | |
|     /* We want 1 <= d <= N-1 */
 | |
|     if ( mpi_cmp_int( d, 1 ) < 0 || mpi_cmp_mpi( d, &grp->N ) >= 0 )
 | |
|         return( POLARSSL_ERR_ECP_INVALID_KEY );
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate a keypair (SEC1 3.2.1)
 | |
|  */
 | |
| int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q,
 | |
|                      int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                      void *p_rng )
 | |
| {
 | |
|     int count = 0;
 | |
|     size_t n_size = (grp->nbits + 7) / 8;
 | |
| 
 | |
|     /*
 | |
|      * Generate d such that 1 <= n < N
 | |
|      */
 | |
|     do
 | |
|     {
 | |
|         mpi_fill_random( d, n_size, f_rng, p_rng );
 | |
| 
 | |
|         while( mpi_cmp_mpi( d, &grp->N ) >= 0 )
 | |
|             mpi_shift_r( d, 1 );
 | |
| 
 | |
|         if( count++ > 10 )
 | |
|             return( POLARSSL_ERR_ECP_RANDOM_FAILED );
 | |
|     }
 | |
|     while( mpi_cmp_int( d, 1 ) < 0 );
 | |
| 
 | |
|     return( ecp_mul( grp, Q, d, &grp->G, f_rng, p_rng ) );
 | |
| }
 | |
| 
 | |
| #if defined(POLARSSL_SELF_TEST)
 | |
| 
 | |
| /*
 | |
|  * Checkup routine
 | |
|  */
 | |
| int ecp_self_test( int verbose )
 | |
| {
 | |
|     int ret;
 | |
|     size_t i;
 | |
|     ecp_group grp;
 | |
|     ecp_point R, P;
 | |
|     mpi m;
 | |
|     unsigned long add_c_prev, dbl_c_prev;
 | |
|     const char *exponents[] =
 | |
|     {
 | |
|         "000000000000000000000000000000000000000000000000", /* zero */
 | |
|         "000000000000000000000000000000000000000000000001", /* one */
 | |
|         "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", /* N */
 | |
|         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
 | |
|         "400000000000000000000000000000000000000000000000",
 | |
|         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
 | |
|         "555555555555555555555555555555555555555555555555",
 | |
|     };
 | |
| 
 | |
|     ecp_group_init( &grp );
 | |
|     ecp_point_init( &R );
 | |
|     ecp_point_init( &P );
 | |
|     mpi_init( &m );
 | |
| 
 | |
| #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
 | |
|     MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP192R1 ) );
 | |
| #else
 | |
| #if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
 | |
|     MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP224R1 ) );
 | |
| #else
 | |
| #if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
 | |
|     MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP256R1 ) );
 | |
| #else
 | |
| #if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
 | |
|     MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP384R1 ) );
 | |
| #else
 | |
| #if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
 | |
|     MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP521R1 ) );
 | |
| #else
 | |
| #error No curves defines
 | |
| #endif /* POLARSSL_ECP_DP_SECP512R1_ENABLED */
 | |
| #endif /* POLARSSL_ECP_DP_SECP384R1_ENABLED */
 | |
| #endif /* POLARSSL_ECP_DP_SECP256R1_ENABLED */
 | |
| #endif /* POLARSSL_ECP_DP_SECP224R1_ENABLED */
 | |
| #endif /* POLARSSL_ECP_DP_SECP192R1_ENABLED */
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         printf( "  ECP test #1 (constant op_count, base point G): " );
 | |
| 
 | |
|     /* Do a dummy multiplication first to trigger precomputation */
 | |
|     MPI_CHK( mpi_lset( &m, 2 ) );
 | |
|     MPI_CHK( ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
 | |
| 
 | |
|     add_count = 0;
 | |
|     dbl_count = 0;
 | |
|     MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
 | |
|     MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
 | |
| 
 | |
|     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
 | |
|     {
 | |
|         add_c_prev = add_count;
 | |
|         dbl_c_prev = dbl_count;
 | |
|         add_count = 0;
 | |
|         dbl_count = 0;
 | |
| 
 | |
|         MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
 | |
|         MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
 | |
| 
 | |
|         if( add_count != add_c_prev || dbl_count != dbl_c_prev )
 | |
|         {
 | |
|             if( verbose != 0 )
 | |
|                 printf( "failed (%zu)\n", i );
 | |
| 
 | |
|             ret = 1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         printf( "passed\n" );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         printf( "  ECP test #2 (constant op_count, other point): " );
 | |
|     /* We computed P = 2G last time, use it */
 | |
| 
 | |
|     add_count = 0;
 | |
|     dbl_count = 0;
 | |
|     MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
 | |
|     MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
 | |
| 
 | |
|     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
 | |
|     {
 | |
|         add_c_prev = add_count;
 | |
|         dbl_c_prev = dbl_count;
 | |
|         add_count = 0;
 | |
|         dbl_count = 0;
 | |
| 
 | |
|         MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
 | |
|         MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
 | |
| 
 | |
|         if( add_count != add_c_prev || dbl_count != dbl_c_prev )
 | |
|         {
 | |
|             if( verbose != 0 )
 | |
|                 printf( "failed (%zu)\n", i );
 | |
| 
 | |
|             ret = 1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         printf( "passed\n" );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if( ret < 0 && verbose != 0 )
 | |
|         printf( "Unexpected error, return code = %08X\n", ret );
 | |
| 
 | |
|     ecp_group_free( &grp );
 | |
|     ecp_point_free( &R );
 | |
|     ecp_point_free( &P );
 | |
|     mpi_free( &m );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         printf( "\n" );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif
 |