mirror of
				https://github.com/cuberite/polarssl.git
				synced 2025-10-31 03:30:35 -04:00 
			
		
		
		
	 bdefff1dde
			
		
	
	
		bdefff1dde
		
	
	
	
	
		
			
			Make input arguments constant and adapt the implementation to use a temporary instead of in-place operations.
		
			
				
	
	
		
			2702 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2702 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  The RSA public-key cryptosystem
 | |
|  *
 | |
|  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | |
|  *  SPDX-License-Identifier: Apache-2.0
 | |
|  *
 | |
|  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | |
|  *  not use this file except in compliance with the License.
 | |
|  *  You may obtain a copy of the License at
 | |
|  *
 | |
|  *  http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  *  Unless required by applicable law or agreed to in writing, software
 | |
|  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | |
|  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  *  See the License for the specific language governing permissions and
 | |
|  *  limitations under the License.
 | |
|  *
 | |
|  *  This file is part of mbed TLS (https://tls.mbed.org)
 | |
|  */
 | |
| /*
 | |
|  *  The following sources were referenced in the design of this implementation
 | |
|  *  of the RSA algorithm:
 | |
|  *
 | |
|  *  [1] A method for obtaining digital signatures and public-key cryptosystems
 | |
|  *      R Rivest, A Shamir, and L Adleman
 | |
|  *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
 | |
|  *
 | |
|  *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
 | |
|  *      Menezes, van Oorschot and Vanstone
 | |
|  *
 | |
|  *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
 | |
|  *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
 | |
|  *      Stefan Mangard
 | |
|  *      https://arxiv.org/abs/1702.08719v2
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #if !defined(MBEDTLS_CONFIG_FILE)
 | |
| #include "mbedtls/config.h"
 | |
| #else
 | |
| #include MBEDTLS_CONFIG_FILE
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_RSA_C)
 | |
| 
 | |
| #include "mbedtls/rsa.h"
 | |
| #include "mbedtls/oid.h"
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| #include "mbedtls/md.h"
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__)
 | |
| #include <stdlib.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_PLATFORM_C)
 | |
| #include "mbedtls/platform.h"
 | |
| #else
 | |
| #include <stdio.h>
 | |
| #define mbedtls_printf printf
 | |
| #define mbedtls_calloc calloc
 | |
| #define mbedtls_free   free
 | |
| #endif
 | |
| 
 | |
| /* Implementation that should never be optimized out by the compiler */
 | |
| static void mbedtls_zeroize( void *v, size_t n ) {
 | |
|     volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Context-independent RSA helper functions.
 | |
|  *
 | |
|  * There are two classes of helper functions:
 | |
|  * (1) Parameter-generating helpers. These are:
 | |
|  *     - mbedtls_rsa_deduce_moduli
 | |
|  *     - mbedtls_rsa_deduce_private
 | |
|  *     - mbedtls_rsa_deduce_crt
 | |
|  *      Each of these functions takes a set of core RSA parameters
 | |
|  *      and generates some other, or CRT related parameters.
 | |
|  * (2) Parameter-checking helpers. These are:
 | |
|  *     - mbedtls_rsa_validate_params
 | |
|  *     - mbedtls_rsa_validate_crt
 | |
|  *     They take a set of core or CRT related RSA parameters
 | |
|  *     and check their validity.
 | |
|  *
 | |
|  * The helper functions do not use the RSA context structure
 | |
|  * and therefore do not need to be replaced when providing
 | |
|  * an alternative RSA implementation.
 | |
|  *
 | |
|  * Their main purpose is to provide common MPI operations in the context
 | |
|  * of RSA that can be easily shared across multiple implementations.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * Given the modulus N=PQ and a pair of public and private
 | |
|  * exponents E and D, respectively, factor N.
 | |
|  *
 | |
|  * Setting F := lcm(P-1,Q-1), the idea is as follows:
 | |
|  *
 | |
|  * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
 | |
|  *     is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
 | |
|  *     square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
 | |
|  *     possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
 | |
|  *     or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
 | |
|  *     factors of N.
 | |
|  *
 | |
|  * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
 | |
|  *     construction still applies since (-)^K is the identity on the set of
 | |
|  *     roots of 1 in Z/NZ.
 | |
|  *
 | |
|  * The public and private key primitives (-)^E and (-)^D are mutually inverse
 | |
|  * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
 | |
|  * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
 | |
|  * Splitting L = 2^t * K with K odd, we have
 | |
|  *
 | |
|  *   DE - 1 = FL = (F/2) * (2^(t+1)) * K,
 | |
|  *
 | |
|  * so (F / 2) * K is among the numbers
 | |
|  *
 | |
|  *   (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
 | |
|  *
 | |
|  * where ord is the order of 2 in (DE - 1).
 | |
|  * We can therefore iterate through these numbers apply the construction
 | |
|  * of (a) and (b) above to attempt to factor N.
 | |
|  *
 | |
|  */
 | |
| int mbedtls_rsa_deduce_moduli( mbedtls_mpi const *N,
 | |
|                      mbedtls_mpi const *D, mbedtls_mpi const *E,
 | |
|                      int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
 | |
|                      mbedtls_mpi *P, mbedtls_mpi *Q )
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     uint16_t attempt;  /* Number of current attempt  */
 | |
|     uint16_t iter;     /* Number of squares computed in the current attempt */
 | |
| 
 | |
|     uint16_t bitlen_half; /* Half the bitsize of the modulus N */
 | |
|     uint16_t order;       /* Order of 2 in DE - 1 */
 | |
| 
 | |
|     mbedtls_mpi T;  /* Holds largest odd divisor of DE - 1 */
 | |
|     mbedtls_mpi K;  /* During factorization attempts, stores a random integer
 | |
|                      * in the range of [0,..,N] */
 | |
| 
 | |
|     if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 ||
 | |
|         mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
 | |
|         mbedtls_mpi_cmp_mpi( D, N ) >= 0 ||
 | |
|         mbedtls_mpi_cmp_int( E, 1 ) <= 0 ||
 | |
|         mbedtls_mpi_cmp_mpi( E, N ) >= 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Initializations and temporary changes
 | |
|      */
 | |
| 
 | |
|     mbedtls_mpi_init( &K );
 | |
|     mbedtls_mpi_init( &T );
 | |
| 
 | |
|     /* T := DE - 1 */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D,  E ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) );
 | |
| 
 | |
|     if( ( order = mbedtls_mpi_lsb( &T ) ) == 0 )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /* After this operation, T holds the largest odd divisor of DE - 1. */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) );
 | |
| 
 | |
|     /* This is used to generate a few numbers around N / 2
 | |
|      * if no PRNG is provided. */
 | |
|     if( f_rng == NULL )
 | |
|         bitlen_half = mbedtls_mpi_bitlen( N ) / 2;
 | |
| 
 | |
|     /*
 | |
|      * Actual work
 | |
|      */
 | |
| 
 | |
|     for( attempt = 0; attempt < 30; ++attempt )
 | |
|     {
 | |
|         /* Generate some number in [0,N], either randomly
 | |
|          * if a PRNG is given, or try numbers around N/2 */
 | |
|         if( f_rng != NULL )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &K,
 | |
|                                         mbedtls_mpi_size( N ),
 | |
|                                         f_rng, p_rng ) );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &K, 1 ) ) ;
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &K, bitlen_half ) ) ;
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, attempt + 1 ) );
 | |
|         }
 | |
| 
 | |
|         /* Check if gcd(K,N) = 1 */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
 | |
|         if( mbedtls_mpi_cmp_int( P, 1 ) != 0 )
 | |
|             continue;
 | |
| 
 | |
|         /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
 | |
|          * and check whether they have nontrivial GCD with N. */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N,
 | |
|                              Q /* temporarily use Q for storing Montgomery
 | |
|                                 * multiplication helper values */ ) );
 | |
| 
 | |
|         for( iter = 1; iter < order; ++iter )
 | |
|         {
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) );
 | |
| 
 | |
|             if( mbedtls_mpi_cmp_int( P, 1 ) ==  1 &&
 | |
|                 mbedtls_mpi_cmp_mpi( P, N ) == -1 )
 | |
|             {
 | |
|                 /*
 | |
|                  * Have found a nontrivial divisor P of N.
 | |
|                  * Set Q := N / P.
 | |
|                  */
 | |
| 
 | |
|                 MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) );
 | |
|                 goto cleanup;
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) );
 | |
|             MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &K );
 | |
|     mbedtls_mpi_free( &T );
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given P, Q and the public exponent E, deduce D.
 | |
|  * This is essentially a modular inversion.
 | |
|  */
 | |
| 
 | |
| int mbedtls_rsa_deduce_private( mbedtls_mpi const *P,
 | |
|                                 mbedtls_mpi const *Q,
 | |
|                                 mbedtls_mpi const *E,
 | |
|                                 mbedtls_mpi *D )
 | |
| {
 | |
|     int ret = 0;
 | |
|     mbedtls_mpi K, L;
 | |
| 
 | |
|     if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 )
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
 | |
|         mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ||
 | |
|         mbedtls_mpi_cmp_int( E, 0 ) == 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_init( &K );
 | |
|     mbedtls_mpi_init( &L );
 | |
| 
 | |
|     /* Temporarily put K := P-1 and L := Q-1 */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
 | |
| 
 | |
|     /* Temporarily put D := gcd(P-1, Q-1) */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) );
 | |
| 
 | |
|     /* K := LCM(P-1, Q-1) */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) );
 | |
| 
 | |
|     /* Compute modular inverse of E in LCM(P-1, Q-1) */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &K );
 | |
|     mbedtls_mpi_free( &L );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that RSA CRT parameters are in accordance with core parameters.
 | |
|  */
 | |
| 
 | |
| int mbedtls_rsa_validate_crt( const mbedtls_mpi *P,  const mbedtls_mpi *Q,
 | |
|                               const mbedtls_mpi *D,  const mbedtls_mpi *DP,
 | |
|                               const mbedtls_mpi *DQ, const mbedtls_mpi *QP )
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     mbedtls_mpi K, L;
 | |
|     mbedtls_mpi_init( &K );
 | |
|     mbedtls_mpi_init( &L );
 | |
| 
 | |
|     /* Check that DP - P == 0 mod P - 1 */
 | |
|     if( DP != NULL )
 | |
|     {
 | |
|         if( P == NULL )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
 | |
| 
 | |
|         if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
 | |
|         {
 | |
|             return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check that DQ - Q == 0 mod Q - 1 */
 | |
|     if( DQ != NULL )
 | |
|     {
 | |
|         if( Q == NULL )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) );
 | |
| 
 | |
|         if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 )
 | |
|         {
 | |
|             return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Check that QP * P - 1 == 0 mod P */
 | |
|     if( QP != NULL )
 | |
|     {
 | |
|         if( P == NULL || Q == NULL )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) );
 | |
|         if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
 | |
|         {
 | |
|             return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     /* Wrap MPI error codes by RSA check failure error code */
 | |
|     if( ret != 0 &&
 | |
|         ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
 | |
|         ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
 | |
|     {
 | |
|         ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| 
 | |
|     mbedtls_mpi_free( &K );
 | |
|     mbedtls_mpi_free( &L );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that core RSA parameters are sane.
 | |
|  */
 | |
| 
 | |
| int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P,
 | |
|                                  const mbedtls_mpi *Q, const mbedtls_mpi *D,
 | |
|                                  const mbedtls_mpi *E,
 | |
|                                  int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                  void *p_rng )
 | |
| {
 | |
|     int ret = 0;
 | |
|     mbedtls_mpi K, L;
 | |
| 
 | |
|     mbedtls_mpi_init( &K );
 | |
|     mbedtls_mpi_init( &L );
 | |
| 
 | |
|     /*
 | |
|      * Step 1: If PRNG provided, check that P and Q are prime
 | |
|      */
 | |
| 
 | |
| #if defined(MBEDTLS_GENPRIME)
 | |
|     if( f_rng != NULL && P != NULL &&
 | |
|         ( ret = mbedtls_mpi_is_prime( P, f_rng, p_rng ) ) != 0 )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if( f_rng != NULL && Q != NULL &&
 | |
|         ( ret = mbedtls_mpi_is_prime( Q, f_rng, p_rng ) ) != 0 )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| #else
 | |
|     ((void) f_rng);
 | |
|     ((void) p_rng);
 | |
| #endif /* MBEDTLS_GENPRIME */
 | |
| 
 | |
|     /*
 | |
|      * Step 2: Check that N = PQ
 | |
|      */
 | |
| 
 | |
|     if( P != NULL && Q != NULL && N != NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) );
 | |
|         if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 ||
 | |
|             mbedtls_mpi_cmp_mpi( &K, N ) != 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Step 3: Check that D, E are inverse modulo P-1 and Q-1
 | |
|      */
 | |
| 
 | |
|     if( P != NULL && Q != NULL && D != NULL && E != NULL )
 | |
|     {
 | |
|         if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 ||
 | |
|             mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ||
 | |
|             mbedtls_mpi_cmp_int( D, 1 ) <= 0 ||
 | |
|             mbedtls_mpi_cmp_int( E, 1 ) <= 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         /* Compute DE-1 mod P-1 */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
 | |
|         if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         /* Compute DE-1 mod Q-1 */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) );
 | |
|         if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 )
 | |
|         {
 | |
|             ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &K );
 | |
|     mbedtls_mpi_free( &L );
 | |
| 
 | |
|     /* Wrap MPI error codes by RSA check failure error code */
 | |
|     if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED )
 | |
|     {
 | |
|         ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
 | |
|     }
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q,
 | |
|                             const mbedtls_mpi *D, mbedtls_mpi *DP,
 | |
|                             mbedtls_mpi *DQ, mbedtls_mpi *QP )
 | |
| {
 | |
|     int ret = 0;
 | |
|     mbedtls_mpi K;
 | |
|     mbedtls_mpi_init( &K );
 | |
| 
 | |
|     /* DP = D mod P-1 */
 | |
|     if( DP != NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1  ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) );
 | |
|     }
 | |
| 
 | |
|     /* DQ = D mod Q-1 */
 | |
|     if( DQ != NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1  ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) );
 | |
|     }
 | |
| 
 | |
|     /* QP = Q^{-1} mod P */
 | |
|     if( QP != NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) );
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free( &K );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Default RSA interface implementation
 | |
|  */
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_ALT)
 | |
| 
 | |
| int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
 | |
|                         const mbedtls_mpi *N,
 | |
|                         const mbedtls_mpi *P, const mbedtls_mpi *Q,
 | |
|                         const mbedtls_mpi *D, const mbedtls_mpi *E )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if( ( N != NULL && ( ret = mbedtls_mpi_copy( &ctx->N, N ) ) != 0 ) ||
 | |
|         ( P != NULL && ( ret = mbedtls_mpi_copy( &ctx->P, P ) ) != 0 ) ||
 | |
|         ( Q != NULL && ( ret = mbedtls_mpi_copy( &ctx->Q, Q ) ) != 0 ) ||
 | |
|         ( D != NULL && ( ret = mbedtls_mpi_copy( &ctx->D, D ) ) != 0 ) ||
 | |
|         ( E != NULL && ( ret = mbedtls_mpi_copy( &ctx->E, E ) ) != 0 ) )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
 | |
|     }
 | |
| 
 | |
|     if( N != NULL )
 | |
|         ctx->len = mbedtls_mpi_size( &ctx->N );
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
 | |
|                             unsigned char *N, size_t N_len,
 | |
|                             unsigned char *P, size_t P_len,
 | |
|                             unsigned char *Q, size_t Q_len,
 | |
|                             unsigned char *D, size_t D_len,
 | |
|                             unsigned char *E, size_t E_len )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if( N != NULL )
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) );
 | |
|         ctx->len = mbedtls_mpi_size( &ctx->N );
 | |
|     }
 | |
| 
 | |
|     if( P != NULL )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) );
 | |
| 
 | |
|     if( Q != NULL )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) );
 | |
| 
 | |
|     if( D != NULL )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) );
 | |
| 
 | |
|     if( E != NULL )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if( ret != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| int mbedtls_rsa_complete( mbedtls_rsa_context *ctx,
 | |
|                           int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                           void *p_rng )
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     const int have_N = ( mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 );
 | |
|     const int have_P = ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 );
 | |
|     const int have_Q = ( mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 );
 | |
|     const int have_D = ( mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 );
 | |
|     const int have_E = ( mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0 );
 | |
| 
 | |
|     /*
 | |
|      * Check whether provided parameters are enough
 | |
|      * to deduce all others. The following incomplete
 | |
|      * parameter sets for private keys are supported:
 | |
|      *
 | |
|      * (1) P, Q missing.
 | |
|      * (2) D and potentially N missing.
 | |
|      *
 | |
|      */
 | |
| 
 | |
|     const int n_missing  =              have_P &&  have_Q &&  have_D && have_E;
 | |
|     const int pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
 | |
|     const int d_missing  =              have_P &&  have_Q && !have_D && have_E;
 | |
|     const int is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
 | |
| 
 | |
|     /* These three alternatives are mutually exclusive */
 | |
|     const int is_priv = n_missing || pq_missing || d_missing;
 | |
| 
 | |
|     if( !is_priv && !is_pub )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * Step 1: Deduce N if P, Q are provided.
 | |
|      */
 | |
| 
 | |
|     if( !have_N && have_P && have_Q )
 | |
|     {
 | |
|         if( ( ret = mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P,
 | |
|                                          &ctx->Q ) ) != 0 )
 | |
|         {
 | |
|             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
 | |
|         }
 | |
| 
 | |
|         ctx->len = mbedtls_mpi_size( &ctx->N );
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Step 2: Deduce and verify all remaining core parameters.
 | |
|      */
 | |
| 
 | |
|     if( pq_missing )
 | |
|     {
 | |
|         /* This includes sanity checking of core parameters,
 | |
|          * so no further checks necessary. */
 | |
|         ret = mbedtls_rsa_deduce_moduli( &ctx->N, &ctx->D, &ctx->E,
 | |
|                                          f_rng, p_rng,
 | |
|                                          &ctx->P, &ctx->Q );
 | |
|         if( ret != 0 )
 | |
|             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
 | |
| 
 | |
|     }
 | |
|     else if( d_missing )
 | |
|     {
 | |
| #if defined(MBEDTLS_GENPRIME)
 | |
|         /* If a PRNG is provided, check if P, Q are prime. */
 | |
|         if( f_rng != NULL  &&
 | |
|             ( ( ret = mbedtls_mpi_is_prime( &ctx->P, f_rng, p_rng ) ) != 0 ||
 | |
|               ( ret = mbedtls_mpi_is_prime( &ctx->Q, f_rng, p_rng ) ) != 0 ) )
 | |
|         {
 | |
|             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
 | |
|         }
 | |
| #endif /* MBEDTLS_GENPRIME */
 | |
| 
 | |
|         /* Deduce private exponent. This includes double-checking of the result,
 | |
|          * so together with the primality test above all core parameters are
 | |
|          * guaranteed to be sane if this call succeeds. */
 | |
|         if( ( ret = mbedtls_rsa_deduce_private( &ctx->P, &ctx->Q,
 | |
|                                                 &ctx->E, &ctx->D ) ) != 0 )
 | |
|         {
 | |
|             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* In the remaining case of a public key, there's nothing to check for. */
 | |
| 
 | |
|     /*
 | |
|      * Step 3: Deduce all additional parameters specific
 | |
|      *         to our current RSA implementaiton.
 | |
|      */
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     if( is_priv )
 | |
|     {
 | |
|         ret = mbedtls_rsa_deduce_crt( &ctx->P,  &ctx->Q,  &ctx->D,
 | |
|                                       &ctx->DP, &ctx->DQ, &ctx->QP );
 | |
|         if( ret != 0 )
 | |
|             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
 | |
|     }
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
|     /*
 | |
|      * Step 3: Double check
 | |
|      */
 | |
| 
 | |
|     if( is_priv )
 | |
|     {
 | |
|         if( ( ret = mbedtls_rsa_check_privkey( ctx ) ) != 0 )
 | |
|             return( ret );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if( ( ret = mbedtls_rsa_check_pubkey( ctx ) ) != 0 )
 | |
|             return( ret );
 | |
|     }
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if CRT parameters match RSA context.
 | |
|  * This has to be implemented even if CRT is not used,
 | |
|  * in order to be able to validate DER encoded RSA keys,
 | |
|  * which always contain CRT parameters.
 | |
|  */
 | |
| int mbedtls_rsa_check_crt( const mbedtls_rsa_context *ctx,
 | |
|                            mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     /* Check if key is private or public */
 | |
|     const int is_priv =
 | |
|         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
 | |
| 
 | |
|     if( !is_priv )
 | |
|     {
 | |
|         /* Checking optional parameters only makes sense for private keys. */
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
|     }
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     if( ( DP != NULL && mbedtls_mpi_cmp_mpi( DP, &ctx->DP ) != 0 ) ||
 | |
|         ( DQ != NULL && mbedtls_mpi_cmp_mpi( DQ, &ctx->DQ ) != 0 ) ||
 | |
|         ( QP != NULL && mbedtls_mpi_cmp_mpi( QP, &ctx->QP ) != 0 ) )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
|     }
 | |
| #else /* MBEDTLS_RSA_NO_CRT */
 | |
|     if( ( ret = mbedtls_rsa_validate_crt( &ctx->P, &ctx->Q, &ctx->D,
 | |
|                                           DP, DQ, QP ) ) != 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if( ret != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
 | |
|                             unsigned char *N, size_t N_len,
 | |
|                             unsigned char *P, size_t P_len,
 | |
|                             unsigned char *Q, size_t Q_len,
 | |
|                             unsigned char *D, size_t D_len,
 | |
|                             unsigned char *E, size_t E_len )
 | |
| {
 | |
|     int ret = 0;
 | |
| 
 | |
|     /* Check if key is private or public */
 | |
|     const int is_priv =
 | |
|         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
 | |
| 
 | |
|     if( !is_priv )
 | |
|     {
 | |
|         /* If we're trying to export private parameters for a public key,
 | |
|          * something must be wrong. */
 | |
|         if( P != NULL || Q != NULL || D != NULL )
 | |
|             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if( N != NULL )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) );
 | |
| 
 | |
|     if( P != NULL )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) );
 | |
| 
 | |
|     if( Q != NULL )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) );
 | |
| 
 | |
|     if( D != NULL )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) );
 | |
| 
 | |
|     if( E != NULL )
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
 | |
|                         mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
 | |
|                         mbedtls_mpi *D, mbedtls_mpi *E )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /* Check if key is private or public */
 | |
|     int is_priv =
 | |
|         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
 | |
| 
 | |
|     if( !is_priv )
 | |
|     {
 | |
|         /* If we're trying to export private parameters for a public key,
 | |
|          * something must be wrong. */
 | |
|         if( P != NULL || Q != NULL || D != NULL )
 | |
|             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     }
 | |
| 
 | |
|     /* Export all requested core parameters. */
 | |
| 
 | |
|     if( ( N != NULL && ( ret = mbedtls_mpi_copy( N, &ctx->N ) ) != 0 ) ||
 | |
|         ( P != NULL && ( ret = mbedtls_mpi_copy( P, &ctx->P ) ) != 0 ) ||
 | |
|         ( Q != NULL && ( ret = mbedtls_mpi_copy( Q, &ctx->Q ) ) != 0 ) ||
 | |
|         ( D != NULL && ( ret = mbedtls_mpi_copy( D, &ctx->D ) ) != 0 ) ||
 | |
|         ( E != NULL && ( ret = mbedtls_mpi_copy( E, &ctx->E ) ) != 0 ) )
 | |
|     {
 | |
|         return( ret );
 | |
|     }
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export CRT parameters
 | |
|  * This must also be implemented if CRT is not used, for being able to
 | |
|  * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
 | |
|  * can be used in this case.
 | |
|  */
 | |
| int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
 | |
|                             mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /* Check if key is private or public */
 | |
|     int is_priv =
 | |
|         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
 | |
|         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
 | |
| 
 | |
|     if( !is_priv )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     /* Export all requested blinding parameters. */
 | |
|     if( ( DP != NULL && ( ret = mbedtls_mpi_copy( DP, &ctx->DP ) ) != 0 ) ||
 | |
|         ( DQ != NULL && ( ret = mbedtls_mpi_copy( DQ, &ctx->DQ ) ) != 0 ) ||
 | |
|         ( QP != NULL && ( ret = mbedtls_mpi_copy( QP, &ctx->QP ) ) != 0 ) )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
 | |
|     }
 | |
| #else
 | |
|     if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
 | |
|                                         DP, DQ, QP ) ) != 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA + ret );
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize an RSA context
 | |
|  */
 | |
| void mbedtls_rsa_init( mbedtls_rsa_context *ctx,
 | |
|                int padding,
 | |
|                int hash_id )
 | |
| {
 | |
|     memset( ctx, 0, sizeof( mbedtls_rsa_context ) );
 | |
| 
 | |
|     mbedtls_rsa_set_padding( ctx, padding, hash_id );
 | |
| 
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     mbedtls_mutex_init( &ctx->mutex );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set padding for an existing RSA context
 | |
|  */
 | |
| void mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding, int hash_id )
 | |
| {
 | |
|     ctx->padding = padding;
 | |
|     ctx->hash_id = hash_id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get length in bytes of RSA modulus
 | |
|  */
 | |
| 
 | |
| size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
 | |
| {
 | |
|     return( ctx->len );
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(MBEDTLS_GENPRIME)
 | |
| 
 | |
| /*
 | |
|  * Generate an RSA keypair
 | |
|  */
 | |
| int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
 | |
|                  int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                  void *p_rng,
 | |
|                  unsigned int nbits, int exponent )
 | |
| {
 | |
|     int ret;
 | |
|     mbedtls_mpi H, G;
 | |
| 
 | |
|     if( f_rng == NULL || nbits < 128 || exponent < 3 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( nbits % 2 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     mbedtls_mpi_init( &H );
 | |
|     mbedtls_mpi_init( &G );
 | |
| 
 | |
|     /*
 | |
|      * find primes P and Q with Q < P so that:
 | |
|      * GCD( E, (P-1)*(Q-1) ) == 1
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1, 0,
 | |
|                                                 f_rng, p_rng ) );
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1, 0,
 | |
|                                                 f_rng, p_rng ) );
 | |
| 
 | |
|         if( mbedtls_mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )
 | |
|             continue;
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
 | |
|         if( mbedtls_mpi_bitlen( &ctx->N ) != nbits )
 | |
|             continue;
 | |
| 
 | |
|         if( mbedtls_mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
 | |
|             mbedtls_mpi_swap( &ctx->P, &ctx->Q );
 | |
| 
 | |
|         /* Temporarily replace P,Q by P-1, Q-1 */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H  ) );
 | |
|     }
 | |
|     while( mbedtls_mpi_cmp_int( &G, 1 ) != 0 );
 | |
| 
 | |
|     /* Restore P,Q */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P,  &ctx->P, 1 ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q,  &ctx->Q, 1 ) );
 | |
| 
 | |
|     ctx->len = mbedtls_mpi_size( &ctx->N );
 | |
| 
 | |
|     /*
 | |
|      * D  = E^-1 mod ((P-1)*(Q-1))
 | |
|      * DP = D mod (P - 1)
 | |
|      * DQ = D mod (Q - 1)
 | |
|      * QP = Q^-1 mod P
 | |
|      */
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &H  ) );
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
 | |
|                                              &ctx->DP, &ctx->DQ, &ctx->QP ) );
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
|     /* Double-check */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free( &H );
 | |
|     mbedtls_mpi_free( &G );
 | |
| 
 | |
|     if( ret != 0 )
 | |
|     {
 | |
|         mbedtls_rsa_free( ctx );
 | |
|         return( MBEDTLS_ERR_RSA_KEY_GEN_FAILED + ret );
 | |
|     }
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_GENPRIME */
 | |
| 
 | |
| /*
 | |
|  * Check a public RSA key
 | |
|  */
 | |
| int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
 | |
| {
 | |
|     if( !ctx->N.p || !ctx->E.p )
 | |
|         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
| 
 | |
|     if( ctx->len != mbedtls_mpi_size( &ctx->N ) )
 | |
|         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
| 
 | |
|     if( ( ctx->N.p[0] & 1 ) == 0 ||
 | |
|         ( ctx->E.p[0] & 1 ) == 0 )
 | |
|         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
| 
 | |
|     if( mbedtls_mpi_bitlen( &ctx->N ) < 128 ||
 | |
|         mbedtls_mpi_bitlen( &ctx->N ) > MBEDTLS_MPI_MAX_BITS )
 | |
|         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
| 
 | |
|     if( mbedtls_mpi_bitlen( &ctx->E ) < 2 ||
 | |
|         mbedtls_mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
 | |
|         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check a private RSA key
 | |
|  */
 | |
| int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
 | |
| {
 | |
|     if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
 | |
|         mbedtls_rsa_validate_params( &ctx->N, &ctx->P, &ctx->Q,
 | |
|                                      &ctx->D, &ctx->E, NULL, NULL ) != 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
|     }
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     else if( mbedtls_rsa_validate_crt( &ctx->P, &ctx->Q, &ctx->D,
 | |
|                                        &ctx->DP, &ctx->DQ, &ctx->QP ) != 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if contexts holding a public and private key match
 | |
|  */
 | |
| int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub, const mbedtls_rsa_context *prv )
 | |
| {
 | |
|     if( mbedtls_rsa_check_pubkey( pub ) != 0 ||
 | |
|         mbedtls_rsa_check_privkey( prv ) != 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
|     }
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_mpi( &pub->N, &prv->N ) != 0 ||
 | |
|         mbedtls_mpi_cmp_mpi( &pub->E, &prv->E ) != 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
 | |
|     }
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Do an RSA public key operation
 | |
|  */
 | |
| int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
 | |
|                 const unsigned char *input,
 | |
|                 unsigned char *output )
 | |
| {
 | |
|     int ret;
 | |
|     size_t olen;
 | |
|     mbedtls_mpi T;
 | |
| 
 | |
|     mbedtls_mpi_init( &T );
 | |
| 
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
 | |
|         return( ret );
 | |
| #endif
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
 | |
| 
 | |
|     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     olen = ctx->len;
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
 | |
| 
 | |
| cleanup:
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
 | |
|         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
 | |
| #endif
 | |
| 
 | |
|     mbedtls_mpi_free( &T );
 | |
| 
 | |
|     if( ret != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_PUBLIC_FAILED + ret );
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate or update blinding values, see section 10 of:
 | |
|  *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
 | |
|  *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
 | |
|  *  Berlin Heidelberg, 1996. p. 104-113.
 | |
|  */
 | |
| static int rsa_prepare_blinding( mbedtls_rsa_context *ctx,
 | |
|                  int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
 | |
| {
 | |
|     int ret, count = 0;
 | |
| 
 | |
|     if( ctx->Vf.p != NULL )
 | |
|     {
 | |
|         /* We already have blinding values, just update them by squaring */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
 | |
| 
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /* Unblinding value: Vf = random number, invertible mod N */
 | |
|     do {
 | |
|         if( count++ > 10 )
 | |
|             return( MBEDTLS_ERR_RSA_RNG_FAILED );
 | |
| 
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &ctx->Vi, &ctx->Vf, &ctx->N ) );
 | |
|     } while( mbedtls_mpi_cmp_int( &ctx->Vi, 1 ) != 0 );
 | |
| 
 | |
|     /* Blinding value: Vi =  Vf^(-e) mod N */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->Vi, &ctx->Vf, &ctx->N ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
 | |
| 
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Exponent blinding supposed to prevent side-channel attacks using multiple
 | |
|  * traces of measurements to recover the RSA key. The more collisions are there,
 | |
|  * the more bits of the key can be recovered. See [3].
 | |
|  *
 | |
|  * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
 | |
|  * observations on avarage.
 | |
|  *
 | |
|  * For example with 28 byte blinding to achieve 2 collisions the adversary has
 | |
|  * to make 2^112 observations on avarage.
 | |
|  *
 | |
|  * (With the currently (as of 2017 April) known best algorithms breaking 2048
 | |
|  * bit RSA requires approximately as much time as trying out 2^112 random keys.
 | |
|  * Thus in this sense with 28 byte blinding the security is not reduced by
 | |
|  * side-channel attacks like the one in [3])
 | |
|  *
 | |
|  * This countermeasure does not help if the key recovery is possible with a
 | |
|  * single trace.
 | |
|  */
 | |
| #define RSA_EXPONENT_BLINDING 28
 | |
| 
 | |
| /*
 | |
|  * Do an RSA private key operation
 | |
|  */
 | |
| int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
 | |
|                  int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                  void *p_rng,
 | |
|                  const unsigned char *input,
 | |
|                  unsigned char *output )
 | |
| {
 | |
|     int ret;
 | |
|     size_t olen;
 | |
|     mbedtls_mpi T, T1, T2;
 | |
|     mbedtls_mpi P1, Q1, R;
 | |
| #if defined(MBEDTLS_RSA_NO_CRT)
 | |
|     mbedtls_mpi D_blind;
 | |
|     mbedtls_mpi *D = &ctx->D;
 | |
| #else
 | |
|     mbedtls_mpi DP_blind, DQ_blind;
 | |
|     mbedtls_mpi *DP = &ctx->DP;
 | |
|     mbedtls_mpi *DQ = &ctx->DQ;
 | |
| #endif
 | |
| 
 | |
|     /* Sanity-check that all relevant fields are at least set,
 | |
|      * but don't perform a full keycheck. */
 | |
|     if( mbedtls_mpi_cmp_int( &ctx->N, 0 ) == 0 ||
 | |
|         mbedtls_mpi_cmp_int( &ctx->P, 0 ) == 0 ||
 | |
|         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) == 0 ||
 | |
|         mbedtls_mpi_cmp_int( &ctx->D, 0 ) == 0 ||
 | |
|         mbedtls_mpi_cmp_int( &ctx->E, 0 ) == 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
|     }
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     if( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) == 0 ||
 | |
|         mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) == 0 ||
 | |
|         mbedtls_mpi_cmp_int( &ctx->QP, 0 ) == 0 )
 | |
|     {
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
|     }
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
|     mbedtls_mpi_init( &T ); mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 );
 | |
|     mbedtls_mpi_init( &P1 ); mbedtls_mpi_init( &Q1 ); mbedtls_mpi_init( &R );
 | |
| 
 | |
|     if( f_rng != NULL )
 | |
|     {
 | |
| #if defined(MBEDTLS_RSA_NO_CRT)
 | |
|         mbedtls_mpi_init( &D_blind );
 | |
| #else
 | |
|         mbedtls_mpi_init( &DP_blind );
 | |
|         mbedtls_mpi_init( &DQ_blind );
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| 
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
 | |
|         return( ret );
 | |
| #endif
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
 | |
|     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if( f_rng != NULL )
 | |
|     {
 | |
|         /*
 | |
|          * Blinding
 | |
|          * T = T * Vi mod N
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
 | |
| 
 | |
|         /*
 | |
|          * Exponent blinding
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) );
 | |
| 
 | |
| #if defined(MBEDTLS_RSA_NO_CRT)
 | |
|         /*
 | |
|          * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
 | |
|                          f_rng, p_rng ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
 | |
| 
 | |
|         D = &D_blind;
 | |
| #else
 | |
|         /*
 | |
|          * DP_blind = ( P - 1 ) * R + DP
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
 | |
|                          f_rng, p_rng ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind,
 | |
|                     &ctx->DP ) );
 | |
| 
 | |
|         DP = &DP_blind;
 | |
| 
 | |
|         /*
 | |
|          * DQ_blind = ( Q - 1 ) * R + DQ
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
 | |
|                          f_rng, p_rng ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind,
 | |
|                     &ctx->DQ ) );
 | |
| 
 | |
|         DQ = &DQ_blind;
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_RSA_NO_CRT)
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
 | |
| #else
 | |
|     /*
 | |
|      * Faster decryption using the CRT
 | |
|      *
 | |
|      * T1 = input ^ dP mod P
 | |
|      * T2 = input ^ dQ mod Q
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T1, &T, DP, &ctx->P, &ctx->RP ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T2, &T, DQ, &ctx->Q, &ctx->RQ ) );
 | |
| 
 | |
|     /*
 | |
|      * T = (T1 - T2) * (Q^-1 mod P) mod P
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T1, &T2 ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &T, &ctx->QP ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T1, &ctx->P ) );
 | |
| 
 | |
|     /*
 | |
|      * T = T2 + T * Q
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &T, &ctx->Q ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &T2, &T1 ) );
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
|     if( f_rng != NULL )
 | |
|     {
 | |
|         /*
 | |
|          * Unblind
 | |
|          * T = T * Vf mod N
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) );
 | |
|         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
 | |
|     }
 | |
| 
 | |
|     olen = ctx->len;
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
 | |
| 
 | |
| cleanup:
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
 | |
|         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
 | |
| #endif
 | |
| 
 | |
|     mbedtls_mpi_free( &T ); mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 );
 | |
|     mbedtls_mpi_free( &P1 ); mbedtls_mpi_free( &Q1 ); mbedtls_mpi_free( &R );
 | |
| 
 | |
|     if( f_rng != NULL )
 | |
|     {
 | |
| #if defined(MBEDTLS_RSA_NO_CRT)
 | |
|         mbedtls_mpi_free( &D_blind );
 | |
| #else
 | |
|         mbedtls_mpi_free( &DP_blind );
 | |
|         mbedtls_mpi_free( &DQ_blind );
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if( ret != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_PRIVATE_FAILED + ret );
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| /**
 | |
|  * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
 | |
|  *
 | |
|  * \param dst       buffer to mask
 | |
|  * \param dlen      length of destination buffer
 | |
|  * \param src       source of the mask generation
 | |
|  * \param slen      length of the source buffer
 | |
|  * \param md_ctx    message digest context to use
 | |
|  */
 | |
| static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
 | |
|                       size_t slen, mbedtls_md_context_t *md_ctx )
 | |
| {
 | |
|     unsigned char mask[MBEDTLS_MD_MAX_SIZE];
 | |
|     unsigned char counter[4];
 | |
|     unsigned char *p;
 | |
|     unsigned int hlen;
 | |
|     size_t i, use_len;
 | |
| 
 | |
|     memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
 | |
|     memset( counter, 0, 4 );
 | |
| 
 | |
|     hlen = mbedtls_md_get_size( md_ctx->md_info );
 | |
| 
 | |
|     /* Generate and apply dbMask */
 | |
|     p = dst;
 | |
| 
 | |
|     while( dlen > 0 )
 | |
|     {
 | |
|         use_len = hlen;
 | |
|         if( dlen < hlen )
 | |
|             use_len = dlen;
 | |
| 
 | |
|         mbedtls_md_starts( md_ctx );
 | |
|         mbedtls_md_update( md_ctx, src, slen );
 | |
|         mbedtls_md_update( md_ctx, counter, 4 );
 | |
|         mbedtls_md_finish( md_ctx, mask );
 | |
| 
 | |
|         for( i = 0; i < use_len; ++i )
 | |
|             *p++ ^= mask[i];
 | |
| 
 | |
|         counter[3]++;
 | |
| 
 | |
|         dlen -= use_len;
 | |
|     }
 | |
| 
 | |
|     mbedtls_zeroize( mask, sizeof( mask ) );
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V21 */
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
 | |
|  */
 | |
| int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
 | |
|                             int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                             void *p_rng,
 | |
|                             int mode,
 | |
|                             const unsigned char *label, size_t label_len,
 | |
|                             size_t ilen,
 | |
|                             const unsigned char *input,
 | |
|                             unsigned char *output )
 | |
| {
 | |
|     size_t olen;
 | |
|     int ret;
 | |
|     unsigned char *p = output;
 | |
|     unsigned int hlen;
 | |
|     const mbedtls_md_info_t *md_info;
 | |
|     mbedtls_md_context_t md_ctx;
 | |
| 
 | |
|     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( f_rng == NULL )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
 | |
|     if( md_info == NULL )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     olen = ctx->len;
 | |
|     hlen = mbedtls_md_get_size( md_info );
 | |
| 
 | |
|     /* first comparison checks for overflow */
 | |
|     if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     memset( output, 0, olen );
 | |
| 
 | |
|     *p++ = 0;
 | |
| 
 | |
|     /* Generate a random octet string seed */
 | |
|     if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
 | |
| 
 | |
|     p += hlen;
 | |
| 
 | |
|     /* Construct DB */
 | |
|     mbedtls_md( md_info, label, label_len, p );
 | |
|     p += hlen;
 | |
|     p += olen - 2 * hlen - 2 - ilen;
 | |
|     *p++ = 1;
 | |
|     memcpy( p, input, ilen );
 | |
| 
 | |
|     mbedtls_md_init( &md_ctx );
 | |
|     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
 | |
|     {
 | |
|         mbedtls_md_free( &md_ctx );
 | |
|         return( ret );
 | |
|     }
 | |
| 
 | |
|     /* maskedDB: Apply dbMask to DB */
 | |
|     mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
 | |
|                &md_ctx );
 | |
| 
 | |
|     /* maskedSeed: Apply seedMask to seed */
 | |
|     mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
 | |
|                &md_ctx );
 | |
| 
 | |
|     mbedtls_md_free( &md_ctx );
 | |
| 
 | |
|     return( ( mode == MBEDTLS_RSA_PUBLIC )
 | |
|             ? mbedtls_rsa_public(  ctx, output, output )
 | |
|             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V21 */
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
 | |
|  */
 | |
| int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
 | |
|                                  int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                  void *p_rng,
 | |
|                                  int mode, size_t ilen,
 | |
|                                  const unsigned char *input,
 | |
|                                  unsigned char *output )
 | |
| {
 | |
|     size_t nb_pad, olen;
 | |
|     int ret;
 | |
|     unsigned char *p = output;
 | |
| 
 | |
|     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     // We don't check p_rng because it won't be dereferenced here
 | |
|     if( f_rng == NULL || input == NULL || output == NULL )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     olen = ctx->len;
 | |
| 
 | |
|     /* first comparison checks for overflow */
 | |
|     if( ilen + 11 < ilen || olen < ilen + 11 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     nb_pad = olen - 3 - ilen;
 | |
| 
 | |
|     *p++ = 0;
 | |
|     if( mode == MBEDTLS_RSA_PUBLIC )
 | |
|     {
 | |
|         *p++ = MBEDTLS_RSA_CRYPT;
 | |
| 
 | |
|         while( nb_pad-- > 0 )
 | |
|         {
 | |
|             int rng_dl = 100;
 | |
| 
 | |
|             do {
 | |
|                 ret = f_rng( p_rng, p, 1 );
 | |
|             } while( *p == 0 && --rng_dl && ret == 0 );
 | |
| 
 | |
|             /* Check if RNG failed to generate data */
 | |
|             if( rng_dl == 0 || ret != 0 )
 | |
|                 return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
 | |
| 
 | |
|             p++;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         *p++ = MBEDTLS_RSA_SIGN;
 | |
| 
 | |
|         while( nb_pad-- > 0 )
 | |
|             *p++ = 0xFF;
 | |
|     }
 | |
| 
 | |
|     *p++ = 0;
 | |
|     memcpy( p, input, ilen );
 | |
| 
 | |
|     return( ( mode == MBEDTLS_RSA_PUBLIC )
 | |
|             ? mbedtls_rsa_public(  ctx, output, output )
 | |
|             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
| 
 | |
| /*
 | |
|  * Add the message padding, then do an RSA operation
 | |
|  */
 | |
| int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
 | |
|                        int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                        void *p_rng,
 | |
|                        int mode, size_t ilen,
 | |
|                        const unsigned char *input,
 | |
|                        unsigned char *output )
 | |
| {
 | |
|     switch( ctx->padding )
 | |
|     {
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
|         case MBEDTLS_RSA_PKCS_V15:
 | |
|             return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen,
 | |
|                                                 input, output );
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
|         case MBEDTLS_RSA_PKCS_V21:
 | |
|             return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0,
 | |
|                                            ilen, input, output );
 | |
| #endif
 | |
| 
 | |
|         default:
 | |
|             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
 | |
|  */
 | |
| int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
 | |
|                             int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                             void *p_rng,
 | |
|                             int mode,
 | |
|                             const unsigned char *label, size_t label_len,
 | |
|                             size_t *olen,
 | |
|                             const unsigned char *input,
 | |
|                             unsigned char *output,
 | |
|                             size_t output_max_len )
 | |
| {
 | |
|     int ret;
 | |
|     size_t ilen, i, pad_len;
 | |
|     unsigned char *p, bad, pad_done;
 | |
|     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
 | |
|     unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
 | |
|     unsigned int hlen;
 | |
|     const mbedtls_md_info_t *md_info;
 | |
|     mbedtls_md_context_t md_ctx;
 | |
| 
 | |
|     /*
 | |
|      * Parameters sanity checks
 | |
|      */
 | |
|     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     ilen = ctx->len;
 | |
| 
 | |
|     if( ilen < 16 || ilen > sizeof( buf ) )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
 | |
|     if( md_info == NULL )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     hlen = mbedtls_md_get_size( md_info );
 | |
| 
 | |
|     // checking for integer underflow
 | |
|     if( 2 * hlen + 2 > ilen )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * RSA operation
 | |
|      */
 | |
|     ret = ( mode == MBEDTLS_RSA_PUBLIC )
 | |
|           ? mbedtls_rsa_public(  ctx, input, buf )
 | |
|           : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
 | |
| 
 | |
|     if( ret != 0 )
 | |
|         goto cleanup;
 | |
| 
 | |
|     /*
 | |
|      * Unmask data and generate lHash
 | |
|      */
 | |
|     mbedtls_md_init( &md_ctx );
 | |
|     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
 | |
|     {
 | |
|         mbedtls_md_free( &md_ctx );
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* Generate lHash */
 | |
|     mbedtls_md( md_info, label, label_len, lhash );
 | |
| 
 | |
|     /* seed: Apply seedMask to maskedSeed */
 | |
|     mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
 | |
|                &md_ctx );
 | |
| 
 | |
|     /* DB: Apply dbMask to maskedDB */
 | |
|     mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
 | |
|                &md_ctx );
 | |
| 
 | |
|     mbedtls_md_free( &md_ctx );
 | |
| 
 | |
|     /*
 | |
|      * Check contents, in "constant-time"
 | |
|      */
 | |
|     p = buf;
 | |
|     bad = 0;
 | |
| 
 | |
|     bad |= *p++; /* First byte must be 0 */
 | |
| 
 | |
|     p += hlen; /* Skip seed */
 | |
| 
 | |
|     /* Check lHash */
 | |
|     for( i = 0; i < hlen; i++ )
 | |
|         bad |= lhash[i] ^ *p++;
 | |
| 
 | |
|     /* Get zero-padding len, but always read till end of buffer
 | |
|      * (minus one, for the 01 byte) */
 | |
|     pad_len = 0;
 | |
|     pad_done = 0;
 | |
|     for( i = 0; i < ilen - 2 * hlen - 2; i++ )
 | |
|     {
 | |
|         pad_done |= p[i];
 | |
|         pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
 | |
|     }
 | |
| 
 | |
|     p += pad_len;
 | |
|     bad |= *p++ ^ 0x01;
 | |
| 
 | |
|     /*
 | |
|      * The only information "leaked" is whether the padding was correct or not
 | |
|      * (eg, no data is copied if it was not correct). This meets the
 | |
|      * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
 | |
|      * the different error conditions.
 | |
|      */
 | |
|     if( bad != 0 )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if( ilen - ( p - buf ) > output_max_len )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     *olen = ilen - (p - buf);
 | |
|     memcpy( output, p, *olen );
 | |
|     ret = 0;
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_zeroize( buf, sizeof( buf ) );
 | |
|     mbedtls_zeroize( lhash, sizeof( lhash ) );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V21 */
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
 | |
|  */
 | |
| int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
 | |
|                                  int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                  void *p_rng,
 | |
|                                  int mode, size_t *olen,
 | |
|                                  const unsigned char *input,
 | |
|                                  unsigned char *output,
 | |
|                                  size_t output_max_len)
 | |
| {
 | |
|     int ret;
 | |
|     size_t ilen, pad_count = 0, i;
 | |
|     unsigned char *p, bad, pad_done = 0;
 | |
|     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
 | |
| 
 | |
|     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     ilen = ctx->len;
 | |
| 
 | |
|     if( ilen < 16 || ilen > sizeof( buf ) )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     ret = ( mode == MBEDTLS_RSA_PUBLIC )
 | |
|           ? mbedtls_rsa_public(  ctx, input, buf )
 | |
|           : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
 | |
| 
 | |
|     if( ret != 0 )
 | |
|         goto cleanup;
 | |
| 
 | |
|     p = buf;
 | |
|     bad = 0;
 | |
| 
 | |
|     /*
 | |
|      * Check and get padding len in "constant-time"
 | |
|      */
 | |
|     bad |= *p++; /* First byte must be 0 */
 | |
| 
 | |
|     /* This test does not depend on secret data */
 | |
|     if( mode == MBEDTLS_RSA_PRIVATE )
 | |
|     {
 | |
|         bad |= *p++ ^ MBEDTLS_RSA_CRYPT;
 | |
| 
 | |
|         /* Get padding len, but always read till end of buffer
 | |
|          * (minus one, for the 00 byte) */
 | |
|         for( i = 0; i < ilen - 3; i++ )
 | |
|         {
 | |
|             pad_done  |= ((p[i] | (unsigned char)-p[i]) >> 7) ^ 1;
 | |
|             pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
 | |
|         }
 | |
| 
 | |
|         p += pad_count;
 | |
|         bad |= *p++; /* Must be zero */
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         bad |= *p++ ^ MBEDTLS_RSA_SIGN;
 | |
| 
 | |
|         /* Get padding len, but always read till end of buffer
 | |
|          * (minus one, for the 00 byte) */
 | |
|         for( i = 0; i < ilen - 3; i++ )
 | |
|         {
 | |
|             pad_done |= ( p[i] != 0xFF );
 | |
|             pad_count += ( pad_done == 0 );
 | |
|         }
 | |
| 
 | |
|         p += pad_count;
 | |
|         bad |= *p++; /* Must be zero */
 | |
|     }
 | |
| 
 | |
|     bad |= ( pad_count < 8 );
 | |
| 
 | |
|     if( bad )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if( ilen - ( p - buf ) > output_max_len )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     *olen = ilen - (p - buf);
 | |
|     memcpy( output, p, *olen );
 | |
|     ret = 0;
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_zeroize( buf, sizeof( buf ) );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
| 
 | |
| /*
 | |
|  * Do an RSA operation, then remove the message padding
 | |
|  */
 | |
| int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
 | |
|                        int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                        void *p_rng,
 | |
|                        int mode, size_t *olen,
 | |
|                        const unsigned char *input,
 | |
|                        unsigned char *output,
 | |
|                        size_t output_max_len)
 | |
| {
 | |
|     switch( ctx->padding )
 | |
|     {
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
|         case MBEDTLS_RSA_PKCS_V15:
 | |
|             return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen,
 | |
|                                                 input, output, output_max_len );
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
|         case MBEDTLS_RSA_PKCS_V21:
 | |
|             return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0,
 | |
|                                            olen, input, output,
 | |
|                                            output_max_len );
 | |
| #endif
 | |
| 
 | |
|         default:
 | |
|             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
 | |
|  */
 | |
| int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
 | |
|                          int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                          void *p_rng,
 | |
|                          int mode,
 | |
|                          mbedtls_md_type_t md_alg,
 | |
|                          unsigned int hashlen,
 | |
|                          const unsigned char *hash,
 | |
|                          unsigned char *sig )
 | |
| {
 | |
|     size_t olen;
 | |
|     unsigned char *p = sig;
 | |
|     unsigned char salt[MBEDTLS_MD_MAX_SIZE];
 | |
|     unsigned int slen, hlen, offset = 0;
 | |
|     int ret;
 | |
|     size_t msb;
 | |
|     const mbedtls_md_info_t *md_info;
 | |
|     mbedtls_md_context_t md_ctx;
 | |
| 
 | |
|     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( f_rng == NULL )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     olen = ctx->len;
 | |
| 
 | |
|     if( md_alg != MBEDTLS_MD_NONE )
 | |
|     {
 | |
|         /* Gather length of hash to sign */
 | |
|         md_info = mbedtls_md_info_from_type( md_alg );
 | |
|         if( md_info == NULL )
 | |
|             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|         hashlen = mbedtls_md_get_size( md_info );
 | |
|     }
 | |
| 
 | |
|     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
 | |
|     if( md_info == NULL )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     hlen = mbedtls_md_get_size( md_info );
 | |
|     slen = hlen;
 | |
| 
 | |
|     if( olen < hlen + slen + 2 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     memset( sig, 0, olen );
 | |
| 
 | |
|     /* Generate salt of length slen */
 | |
|     if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_RNG_FAILED + ret );
 | |
| 
 | |
|     /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
 | |
|     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
 | |
|     p += olen - hlen * 2 - 2;
 | |
|     *p++ = 0x01;
 | |
|     memcpy( p, salt, slen );
 | |
|     p += slen;
 | |
| 
 | |
|     mbedtls_md_init( &md_ctx );
 | |
|     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
 | |
|     {
 | |
|         mbedtls_md_free( &md_ctx );
 | |
|         /* No need to zeroize salt: we didn't use it. */
 | |
|         return( ret );
 | |
|     }
 | |
| 
 | |
|     /* Generate H = Hash( M' ) */
 | |
|     mbedtls_md_starts( &md_ctx );
 | |
|     mbedtls_md_update( &md_ctx, p, 8 );
 | |
|     mbedtls_md_update( &md_ctx, hash, hashlen );
 | |
|     mbedtls_md_update( &md_ctx, salt, slen );
 | |
|     mbedtls_md_finish( &md_ctx, p );
 | |
|     mbedtls_zeroize( salt, sizeof( salt ) );
 | |
| 
 | |
|     /* Compensate for boundary condition when applying mask */
 | |
|     if( msb % 8 == 0 )
 | |
|         offset = 1;
 | |
| 
 | |
|     /* maskedDB: Apply dbMask to DB */
 | |
|     mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );
 | |
| 
 | |
|     mbedtls_md_free( &md_ctx );
 | |
| 
 | |
|     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
 | |
|     sig[0] &= 0xFF >> ( olen * 8 - msb );
 | |
| 
 | |
|     p += hlen;
 | |
|     *p++ = 0xBC;
 | |
| 
 | |
|     return( ( mode == MBEDTLS_RSA_PUBLIC )
 | |
|             ? mbedtls_rsa_public(  ctx, sig, sig )
 | |
|             : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig ) );
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V21 */
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
 | |
|  */
 | |
| /*
 | |
|  * Do an RSA operation to sign the message digest
 | |
|  */
 | |
| int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
 | |
|                                int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                void *p_rng,
 | |
|                                int mode,
 | |
|                                mbedtls_md_type_t md_alg,
 | |
|                                unsigned int hashlen,
 | |
|                                const unsigned char *hash,
 | |
|                                unsigned char *sig )
 | |
| {
 | |
|     size_t nb_pad, olen, oid_size = 0;
 | |
|     unsigned char *p = sig;
 | |
|     const char *oid = NULL;
 | |
|     unsigned char *sig_try = NULL, *verif = NULL;
 | |
|     size_t i;
 | |
|     unsigned char diff;
 | |
|     volatile unsigned char diff_no_optimize;
 | |
|     int ret;
 | |
| 
 | |
|     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     olen = ctx->len;
 | |
|     nb_pad = olen - 3;
 | |
| 
 | |
|     if( md_alg != MBEDTLS_MD_NONE )
 | |
|     {
 | |
|         const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_alg );
 | |
|         if( md_info == NULL )
 | |
|             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|         if( mbedtls_oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
 | |
|             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|         nb_pad -= 10 + oid_size;
 | |
| 
 | |
|         hashlen = mbedtls_md_get_size( md_info );
 | |
|     }
 | |
| 
 | |
|     nb_pad -= hashlen;
 | |
| 
 | |
|     if( ( nb_pad < 8 ) || ( nb_pad > olen ) )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     *p++ = 0;
 | |
|     *p++ = MBEDTLS_RSA_SIGN;
 | |
|     memset( p, 0xFF, nb_pad );
 | |
|     p += nb_pad;
 | |
|     *p++ = 0;
 | |
| 
 | |
|     if( md_alg == MBEDTLS_MD_NONE )
 | |
|     {
 | |
|         memcpy( p, hash, hashlen );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         /*
 | |
|          * DigestInfo ::= SEQUENCE {
 | |
|          *   digestAlgorithm DigestAlgorithmIdentifier,
 | |
|          *   digest Digest }
 | |
|          *
 | |
|          * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
 | |
|          *
 | |
|          * Digest ::= OCTET STRING
 | |
|          */
 | |
|         *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
 | |
|         *p++ = (unsigned char) ( 0x08 + oid_size + hashlen );
 | |
|         *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
 | |
|         *p++ = (unsigned char) ( 0x04 + oid_size );
 | |
|         *p++ = MBEDTLS_ASN1_OID;
 | |
|         *p++ = oid_size & 0xFF;
 | |
|         memcpy( p, oid, oid_size );
 | |
|         p += oid_size;
 | |
|         *p++ = MBEDTLS_ASN1_NULL;
 | |
|         *p++ = 0x00;
 | |
|         *p++ = MBEDTLS_ASN1_OCTET_STRING;
 | |
|         *p++ = hashlen;
 | |
|         memcpy( p, hash, hashlen );
 | |
|     }
 | |
| 
 | |
|     if( mode == MBEDTLS_RSA_PUBLIC )
 | |
|         return( mbedtls_rsa_public(  ctx, sig, sig ) );
 | |
| 
 | |
|     /*
 | |
|      * In order to prevent Lenstra's attack, make the signature in a
 | |
|      * temporary buffer and check it before returning it.
 | |
|      */
 | |
|     sig_try = mbedtls_calloc( 1, ctx->len );
 | |
|     if( sig_try == NULL )
 | |
|         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
 | |
| 
 | |
|     verif   = mbedtls_calloc( 1, ctx->len );
 | |
|     if( verif == NULL )
 | |
|     {
 | |
|         mbedtls_free( sig_try );
 | |
|         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
 | |
| 
 | |
|     /* Compare in constant time just in case */
 | |
|     for( diff = 0, i = 0; i < ctx->len; i++ )
 | |
|         diff |= verif[i] ^ sig[i];
 | |
|     diff_no_optimize = diff;
 | |
| 
 | |
|     if( diff_no_optimize != 0 )
 | |
|     {
 | |
|         ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     memcpy( sig, sig_try, ctx->len );
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_free( sig_try );
 | |
|     mbedtls_free( verif );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
| 
 | |
| /*
 | |
|  * Do an RSA operation to sign the message digest
 | |
|  */
 | |
| int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
 | |
|                     int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                     void *p_rng,
 | |
|                     int mode,
 | |
|                     mbedtls_md_type_t md_alg,
 | |
|                     unsigned int hashlen,
 | |
|                     const unsigned char *hash,
 | |
|                     unsigned char *sig )
 | |
| {
 | |
|     switch( ctx->padding )
 | |
|     {
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
|         case MBEDTLS_RSA_PKCS_V15:
 | |
|             return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, md_alg,
 | |
|                                               hashlen, hash, sig );
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
|         case MBEDTLS_RSA_PKCS_V21:
 | |
|             return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
 | |
|                                         hashlen, hash, sig );
 | |
| #endif
 | |
| 
 | |
|         default:
 | |
|             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
 | |
|  */
 | |
| int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
 | |
|                                int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                void *p_rng,
 | |
|                                int mode,
 | |
|                                mbedtls_md_type_t md_alg,
 | |
|                                unsigned int hashlen,
 | |
|                                const unsigned char *hash,
 | |
|                                mbedtls_md_type_t mgf1_hash_id,
 | |
|                                int expected_salt_len,
 | |
|                                const unsigned char *sig )
 | |
| {
 | |
|     int ret;
 | |
|     size_t siglen;
 | |
|     unsigned char *p;
 | |
|     unsigned char result[MBEDTLS_MD_MAX_SIZE];
 | |
|     unsigned char zeros[8];
 | |
|     unsigned int hlen;
 | |
|     size_t slen, msb;
 | |
|     const mbedtls_md_info_t *md_info;
 | |
|     mbedtls_md_context_t md_ctx;
 | |
|     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
 | |
| 
 | |
|     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     siglen = ctx->len;
 | |
| 
 | |
|     if( siglen < 16 || siglen > sizeof( buf ) )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     ret = ( mode == MBEDTLS_RSA_PUBLIC )
 | |
|           ? mbedtls_rsa_public(  ctx, sig, buf )
 | |
|           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, buf );
 | |
| 
 | |
|     if( ret != 0 )
 | |
|         return( ret );
 | |
| 
 | |
|     p = buf;
 | |
| 
 | |
|     if( buf[siglen - 1] != 0xBC )
 | |
|         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
 | |
| 
 | |
|     if( md_alg != MBEDTLS_MD_NONE )
 | |
|     {
 | |
|         /* Gather length of hash to sign */
 | |
|         md_info = mbedtls_md_info_from_type( md_alg );
 | |
|         if( md_info == NULL )
 | |
|             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|         hashlen = mbedtls_md_get_size( md_info );
 | |
|     }
 | |
| 
 | |
|     md_info = mbedtls_md_info_from_type( mgf1_hash_id );
 | |
|     if( md_info == NULL )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     hlen = mbedtls_md_get_size( md_info );
 | |
|     slen = siglen - hlen - 1; /* Currently length of salt + padding */
 | |
| 
 | |
|     memset( zeros, 0, 8 );
 | |
| 
 | |
|     /*
 | |
|      * Note: EMSA-PSS verification is over the length of N - 1 bits
 | |
|      */
 | |
|     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
 | |
| 
 | |
|     /* Compensate for boundary condition when applying mask */
 | |
|     if( msb % 8 == 0 )
 | |
|     {
 | |
|         p++;
 | |
|         siglen -= 1;
 | |
|     }
 | |
|     if( buf[0] >> ( 8 - siglen * 8 + msb ) )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     mbedtls_md_init( &md_ctx );
 | |
|     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
 | |
|     {
 | |
|         mbedtls_md_free( &md_ctx );
 | |
|         return( ret );
 | |
|     }
 | |
| 
 | |
|     mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );
 | |
| 
 | |
|     buf[0] &= 0xFF >> ( siglen * 8 - msb );
 | |
| 
 | |
|     while( p < buf + siglen && *p == 0 )
 | |
|         p++;
 | |
| 
 | |
|     if( p == buf + siglen ||
 | |
|         *p++ != 0x01 )
 | |
|     {
 | |
|         mbedtls_md_free( &md_ctx );
 | |
|         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
 | |
|     }
 | |
| 
 | |
|     /* Actual salt len */
 | |
|     slen -= p - buf;
 | |
| 
 | |
|     if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
 | |
|         slen != (size_t) expected_salt_len )
 | |
|     {
 | |
|         mbedtls_md_free( &md_ctx );
 | |
|         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Generate H = Hash( M' )
 | |
|      */
 | |
|     mbedtls_md_starts( &md_ctx );
 | |
|     mbedtls_md_update( &md_ctx, zeros, 8 );
 | |
|     mbedtls_md_update( &md_ctx, hash, hashlen );
 | |
|     mbedtls_md_update( &md_ctx, p, slen );
 | |
|     mbedtls_md_finish( &md_ctx, result );
 | |
| 
 | |
|     mbedtls_md_free( &md_ctx );
 | |
| 
 | |
|     if( memcmp( p + slen, result, hlen ) == 0 )
 | |
|         return( 0 );
 | |
|     else
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
 | |
|  */
 | |
| int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
 | |
|                            int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                            void *p_rng,
 | |
|                            int mode,
 | |
|                            mbedtls_md_type_t md_alg,
 | |
|                            unsigned int hashlen,
 | |
|                            const unsigned char *hash,
 | |
|                            const unsigned char *sig )
 | |
| {
 | |
|     mbedtls_md_type_t mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE )
 | |
|                              ? (mbedtls_md_type_t) ctx->hash_id
 | |
|                              : md_alg;
 | |
| 
 | |
|     return( mbedtls_rsa_rsassa_pss_verify_ext( ctx, f_rng, p_rng, mode,
 | |
|                                        md_alg, hashlen, hash,
 | |
|                                        mgf1_hash_id, MBEDTLS_RSA_SALT_LEN_ANY,
 | |
|                                        sig ) );
 | |
| 
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V21 */
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
| /*
 | |
|  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
 | |
|  */
 | |
| int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
 | |
|                                  int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                                  void *p_rng,
 | |
|                                  int mode,
 | |
|                                  mbedtls_md_type_t md_alg,
 | |
|                                  unsigned int hashlen,
 | |
|                                  const unsigned char *hash,
 | |
|                                  const unsigned char *sig )
 | |
| {
 | |
|     int ret;
 | |
|     size_t len, siglen, asn1_len;
 | |
|     unsigned char *p, *p0, *end;
 | |
|     mbedtls_md_type_t msg_md_alg;
 | |
|     const mbedtls_md_info_t *md_info;
 | |
|     mbedtls_asn1_buf oid;
 | |
|     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
 | |
| 
 | |
|     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     siglen = ctx->len;
 | |
| 
 | |
|     if( siglen < 16 || siglen > sizeof( buf ) )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
| 
 | |
|     ret = ( mode == MBEDTLS_RSA_PUBLIC )
 | |
|           ? mbedtls_rsa_public(  ctx, sig, buf )
 | |
|           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, buf );
 | |
| 
 | |
|     if( ret != 0 )
 | |
|         return( ret );
 | |
| 
 | |
|     p = buf;
 | |
| 
 | |
|     if( *p++ != 0 || *p++ != MBEDTLS_RSA_SIGN )
 | |
|         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
 | |
| 
 | |
|     while( *p != 0 )
 | |
|     {
 | |
|         if( p >= buf + siglen - 1 || *p != 0xFF )
 | |
|             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
 | |
|         p++;
 | |
|     }
 | |
|     p++; /* skip 00 byte */
 | |
| 
 | |
|     /* We've read: 00 01 PS 00 where PS must be at least 8 bytes */
 | |
|     if( p - buf < 11 )
 | |
|         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
 | |
| 
 | |
|     len = siglen - ( p - buf );
 | |
| 
 | |
|     if( len == hashlen && md_alg == MBEDTLS_MD_NONE )
 | |
|     {
 | |
|         if( memcmp( p, hash, hashlen ) == 0 )
 | |
|             return( 0 );
 | |
|         else
 | |
|             return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
|     }
 | |
| 
 | |
|     md_info = mbedtls_md_info_from_type( md_alg );
 | |
|     if( md_info == NULL )
 | |
|         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
 | |
|     hashlen = mbedtls_md_get_size( md_info );
 | |
| 
 | |
|     end = p + len;
 | |
| 
 | |
|     /*
 | |
|      * Parse the ASN.1 structure inside the PKCS#1 v1.5 structure.
 | |
|      * Insist on 2-byte length tags, to protect against variants of
 | |
|      * Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification.
 | |
|      */
 | |
|     p0 = p;
 | |
|     if( ( ret = mbedtls_asn1_get_tag( &p, end, &asn1_len,
 | |
|             MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
|     if( p != p0 + 2 || asn1_len + 2 != len )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
| 
 | |
|     p0 = p;
 | |
|     if( ( ret = mbedtls_asn1_get_tag( &p, end, &asn1_len,
 | |
|             MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE ) ) != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
|     if( p != p0 + 2 || asn1_len + 6 + hashlen != len )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
| 
 | |
|     p0 = p;
 | |
|     if( ( ret = mbedtls_asn1_get_tag( &p, end, &oid.len, MBEDTLS_ASN1_OID ) ) != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
|     if( p != p0 + 2 )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
| 
 | |
|     oid.p = p;
 | |
|     p += oid.len;
 | |
| 
 | |
|     if( mbedtls_oid_get_md_alg( &oid, &msg_md_alg ) != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
| 
 | |
|     if( md_alg != msg_md_alg )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
| 
 | |
|     /*
 | |
|      * assume the algorithm parameters must be NULL
 | |
|      */
 | |
|     p0 = p;
 | |
|     if( ( ret = mbedtls_asn1_get_tag( &p, end, &asn1_len, MBEDTLS_ASN1_NULL ) ) != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
|     if( p != p0 + 2 )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
| 
 | |
|     p0 = p;
 | |
|     if( ( ret = mbedtls_asn1_get_tag( &p, end, &asn1_len, MBEDTLS_ASN1_OCTET_STRING ) ) != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
|     if( p != p0 + 2 || asn1_len != hashlen )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
| 
 | |
|     if( memcmp( p, hash, hashlen ) != 0 )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
| 
 | |
|     p += hashlen;
 | |
| 
 | |
|     if( p != end )
 | |
|         return( MBEDTLS_ERR_RSA_VERIFY_FAILED );
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
| 
 | |
| /*
 | |
|  * Do an RSA operation and check the message digest
 | |
|  */
 | |
| int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
 | |
|                       int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                       void *p_rng,
 | |
|                       int mode,
 | |
|                       mbedtls_md_type_t md_alg,
 | |
|                       unsigned int hashlen,
 | |
|                       const unsigned char *hash,
 | |
|                       const unsigned char *sig )
 | |
| {
 | |
|     switch( ctx->padding )
 | |
|     {
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
|         case MBEDTLS_RSA_PKCS_V15:
 | |
|             return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode, md_alg,
 | |
|                                                 hashlen, hash, sig );
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V21)
 | |
|         case MBEDTLS_RSA_PKCS_V21:
 | |
|             return mbedtls_rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, md_alg,
 | |
|                                           hashlen, hash, sig );
 | |
| #endif
 | |
| 
 | |
|         default:
 | |
|             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the components of an RSA key
 | |
|  */
 | |
| int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     dst->ver = src->ver;
 | |
|     dst->len = src->len;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) );
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) );
 | |
| #endif
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) );
 | |
| 
 | |
|     dst->padding = src->padding;
 | |
|     dst->hash_id = src->hash_id;
 | |
| 
 | |
| cleanup:
 | |
|     if( ret != 0 )
 | |
|         mbedtls_rsa_free( dst );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the components of an RSA key
 | |
|  */
 | |
| void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
 | |
| {
 | |
|     mbedtls_mpi_free( &ctx->Vi ); mbedtls_mpi_free( &ctx->Vf );
 | |
|     mbedtls_mpi_free( &ctx->RN ); mbedtls_mpi_free( &ctx->D  );
 | |
|     mbedtls_mpi_free( &ctx->Q  ); mbedtls_mpi_free( &ctx->P  );
 | |
|     mbedtls_mpi_free( &ctx->E  ); mbedtls_mpi_free( &ctx->N  );
 | |
| 
 | |
| #if !defined(MBEDTLS_RSA_NO_CRT)
 | |
|     mbedtls_mpi_free( &ctx->RQ ); mbedtls_mpi_free( &ctx->RP );
 | |
|     mbedtls_mpi_free( &ctx->QP ); mbedtls_mpi_free( &ctx->DQ );
 | |
|     mbedtls_mpi_free( &ctx->DP );
 | |
| #endif /* MBEDTLS_RSA_NO_CRT */
 | |
| 
 | |
| #if defined(MBEDTLS_THREADING_C)
 | |
|     mbedtls_mutex_free( &ctx->mutex );
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif /* !MBEDTLS_RSA_ALT */
 | |
| 
 | |
| #if defined(MBEDTLS_SELF_TEST)
 | |
| 
 | |
| #include "mbedtls/sha1.h"
 | |
| 
 | |
| /*
 | |
|  * Example RSA-1024 keypair, for test purposes
 | |
|  */
 | |
| #define KEY_LEN 128
 | |
| 
 | |
| #define RSA_N   "9292758453063D803DD603D5E777D788" \
 | |
|                 "8ED1D5BF35786190FA2F23EBC0848AEA" \
 | |
|                 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
 | |
|                 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
 | |
|                 "93A89813FBF3C4F8066D2D800F7C38A8" \
 | |
|                 "1AE31942917403FF4946B0A83D3D3E05" \
 | |
|                 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
 | |
|                 "5E94BB77B07507233A0BC7BAC8F90F79"
 | |
| 
 | |
| #define RSA_E   "10001"
 | |
| 
 | |
| #define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
 | |
|                 "66CA472BC44D253102F8B4A9D3BFA750" \
 | |
|                 "91386C0077937FE33FA3252D28855837" \
 | |
|                 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
 | |
|                 "DF79C5CE07EE72C7F123142198164234" \
 | |
|                 "CABB724CF78B8173B9F880FC86322407" \
 | |
|                 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
 | |
|                 "071513A1E85B5DFA031F21ECAE91A34D"
 | |
| 
 | |
| #define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
 | |
|                 "2C01CAD19EA484A87EA4377637E75500" \
 | |
|                 "FCB2005C5C7DD6EC4AC023CDA285D796" \
 | |
|                 "C3D9E75E1EFC42488BB4F1D13AC30A57"
 | |
| 
 | |
| #define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
 | |
|                 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
 | |
|                 "910E4168387E3C30AA1E00C339A79508" \
 | |
|                 "8452DD96A9A5EA5D9DCA68DA636032AF"
 | |
| 
 | |
| #define RSA_DP  "C1ACF567564274FB07A0BBAD5D26E298" \
 | |
|                 "3C94D22288ACD763FD8E5600ED4A702D" \
 | |
|                 "F84198A5F06C2E72236AE490C93F07F8" \
 | |
|                 "3CC559CD27BC2D1CA488811730BB5725"
 | |
| 
 | |
| #define RSA_DQ  "4959CBF6F8FEF750AEE6977C155579C7" \
 | |
|                 "D8AAEA56749EA28623272E4F7D0592AF" \
 | |
|                 "7C1F1313CAC9471B5C523BFE592F517B" \
 | |
|                 "407A1BD76C164B93DA2D32A383E58357"
 | |
| 
 | |
| #define RSA_QP  "9AE7FBC99546432DF71896FC239EADAE" \
 | |
|                 "F38D18D2B2F0E2DD275AA977E2BF4411" \
 | |
|                 "F5A3B2A5D33605AEBBCCBA7FEB9F2D2F" \
 | |
|                 "A74206CEC169D74BF5A8C50D6F48EA08"
 | |
| 
 | |
| #define PT_LEN  24
 | |
| #define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
 | |
|                 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
 | |
| 
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
| static int myrand( void *rng_state, unsigned char *output, size_t len )
 | |
| {
 | |
| #if !defined(__OpenBSD__)
 | |
|     size_t i;
 | |
| 
 | |
|     if( rng_state != NULL )
 | |
|         rng_state  = NULL;
 | |
| 
 | |
|     for( i = 0; i < len; ++i )
 | |
|         output[i] = rand();
 | |
| #else
 | |
|     if( rng_state != NULL )
 | |
|         rng_state = NULL;
 | |
| 
 | |
|     arc4random_buf( output, len );
 | |
| #endif /* !OpenBSD */
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
| 
 | |
| /*
 | |
|  * Checkup routine
 | |
|  */
 | |
| int mbedtls_rsa_self_test( int verbose )
 | |
| {
 | |
|     int ret = 0;
 | |
| #if defined(MBEDTLS_PKCS1_V15)
 | |
|     size_t len;
 | |
|     mbedtls_rsa_context rsa;
 | |
|     unsigned char rsa_plaintext[PT_LEN];
 | |
|     unsigned char rsa_decrypted[PT_LEN];
 | |
|     unsigned char rsa_ciphertext[KEY_LEN];
 | |
| #if defined(MBEDTLS_SHA1_C)
 | |
|     unsigned char sha1sum[20];
 | |
| #endif
 | |
| 
 | |
|     mbedtls_mpi K;
 | |
| 
 | |
|     mbedtls_mpi_init( &K );
 | |
|     mbedtls_rsa_init( &rsa, MBEDTLS_RSA_PKCS_V15, 0 );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N  ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P  ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q  ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D  ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E  ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa, NULL, NULL ) );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "  RSA key validation: " );
 | |
| 
 | |
|     if( mbedtls_rsa_check_pubkey(  &rsa ) != 0 ||
 | |
|         mbedtls_rsa_check_privkey( &rsa ) != 0 )
 | |
|     {
 | |
|         if( verbose != 0 )
 | |
|             mbedtls_printf( "failed\n" );
 | |
| 
 | |
|         return( 1 );
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_DP  ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_check_crt( &rsa, &K, NULL, NULL ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_DQ  ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_check_crt( &rsa, NULL, &K, NULL ) );
 | |
| 
 | |
|     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_QP  ) );
 | |
|     MBEDTLS_MPI_CHK( mbedtls_rsa_check_crt( &rsa, NULL, NULL, &K ) );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "passed\n  PKCS#1 encryption : " );
 | |
| 
 | |
|     memcpy( rsa_plaintext, RSA_PT, PT_LEN );
 | |
| 
 | |
|     if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PUBLIC, PT_LEN,
 | |
|                            rsa_plaintext, rsa_ciphertext ) != 0 )
 | |
|     {
 | |
|         if( verbose != 0 )
 | |
|             mbedtls_printf( "failed\n" );
 | |
| 
 | |
|         return( 1 );
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "passed\n  PKCS#1 decryption : " );
 | |
| 
 | |
|     if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PRIVATE, &len,
 | |
|                            rsa_ciphertext, rsa_decrypted,
 | |
|                            sizeof(rsa_decrypted) ) != 0 )
 | |
|     {
 | |
|         if( verbose != 0 )
 | |
|             mbedtls_printf( "failed\n" );
 | |
| 
 | |
|         return( 1 );
 | |
|     }
 | |
| 
 | |
|     if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
 | |
|     {
 | |
|         if( verbose != 0 )
 | |
|             mbedtls_printf( "failed\n" );
 | |
| 
 | |
|         return( 1 );
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "passed\n" );
 | |
| 
 | |
| #if defined(MBEDTLS_SHA1_C)
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "  PKCS#1 data sign  : " );
 | |
| 
 | |
|     mbedtls_sha1( rsa_plaintext, PT_LEN, sha1sum );
 | |
| 
 | |
|     if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL, MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_SHA1, 0,
 | |
|                         sha1sum, rsa_ciphertext ) != 0 )
 | |
|     {
 | |
|         if( verbose != 0 )
 | |
|             mbedtls_printf( "failed\n" );
 | |
| 
 | |
|         return( 1 );
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "passed\n  PKCS#1 sig. verify: " );
 | |
| 
 | |
|     if( mbedtls_rsa_pkcs1_verify( &rsa, NULL, NULL, MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA1, 0,
 | |
|                           sha1sum, rsa_ciphertext ) != 0 )
 | |
|     {
 | |
|         if( verbose != 0 )
 | |
|             mbedtls_printf( "failed\n" );
 | |
| 
 | |
|         return( 1 );
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "passed\n" );
 | |
| #endif /* MBEDTLS_SHA1_C */
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         mbedtls_printf( "\n" );
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free( &K );
 | |
|     mbedtls_rsa_free( &rsa );
 | |
| #else /* MBEDTLS_PKCS1_V15 */
 | |
|     ((void) verbose);
 | |
| #endif /* MBEDTLS_PKCS1_V15 */
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_SELF_TEST */
 | |
| 
 | |
| #endif /* MBEDTLS_RSA_C */
 |