mirror of
				https://github.com/cuberite/polarssl.git
				synced 2025-10-31 03:30:35 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			1939 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1939 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Elliptic curves over GF(p): generic functions
 | |
|  *
 | |
|  *  Copyright (C) 2006-2013, Brainspark B.V.
 | |
|  *
 | |
|  *  This file is part of PolarSSL (http://www.polarssl.org)
 | |
|  *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
 | |
|  *
 | |
|  *  All rights reserved.
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or
 | |
|  *  (at your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with this program; if not, write to the Free Software Foundation, Inc.,
 | |
|  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * References:
 | |
|  *
 | |
|  * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
 | |
|  * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
 | |
|  * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
 | |
|  * RFC 4492 for the related TLS structures and constants
 | |
|  *
 | |
|  * [M255] http://cr.yp.to/ecdh/curve25519-20060209.pdf
 | |
|  *
 | |
|  * [2] CORON, Jean-Sébastien. Resistance against differential power analysis
 | |
|  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
 | |
|  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
 | |
|  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
 | |
|  *
 | |
|  * [3] HEDABOU, Mustapha, PINEL, Pierre, et BÉNÉTEAU, Lucien. A comb method to
 | |
|  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
 | |
|  *     ePrint Archive, 2004, vol. 2004, p. 342.
 | |
|  *     <http://eprint.iacr.org/2004/342.pdf>
 | |
|  */
 | |
| 
 | |
| #include "polarssl/config.h"
 | |
| 
 | |
| #if defined(POLARSSL_ECP_C)
 | |
| 
 | |
| #include "polarssl/ecp.h"
 | |
| 
 | |
| #if defined(POLARSSL_MEMORY_C)
 | |
| #include "polarssl/memory.h"
 | |
| #else
 | |
| #define polarssl_malloc     malloc
 | |
| #define polarssl_free       free
 | |
| #endif
 | |
| 
 | |
| #include <stdlib.h>
 | |
| 
 | |
| #if defined(_MSC_VER) && !defined strcasecmp && !defined(EFIX64) && \
 | |
|     !defined(EFI32)
 | |
| #define strcasecmp _stricmp
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER) && !defined(inline)
 | |
| #define inline _inline
 | |
| #else
 | |
| #if defined(__ARMCC_VERSION) && !defined(inline)
 | |
| #define inline __inline
 | |
| #endif /* __ARMCC_VERSION */
 | |
| #endif /*_MSC_VER */
 | |
| 
 | |
| #if defined(POLARSSL_SELF_TEST)
 | |
| /*
 | |
|  * Counts of point addition and doubling, and field multiplications.
 | |
|  * Used to test resistance of point multiplication to simple timing attacks.
 | |
|  */
 | |
| static unsigned long add_count, dbl_count, mul_count;
 | |
| #endif
 | |
| 
 | |
| #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED) ||   \
 | |
|     defined(POLARSSL_ECP_DP_SECP224R1_ENABLED) ||   \
 | |
|     defined(POLARSSL_ECP_DP_SECP256R1_ENABLED) ||   \
 | |
|     defined(POLARSSL_ECP_DP_SECP384R1_ENABLED) ||   \
 | |
|     defined(POLARSSL_ECP_DP_SECP521R1_ENABLED) ||   \
 | |
|     defined(POLARSSL_ECP_DP_BP256R1_ENABLED)   ||   \
 | |
|     defined(POLARSSL_ECP_DP_BP384R1_ENABLED)   ||   \
 | |
|     defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
 | |
| #define POLARSSL_ECP_SHORT_WEIERSTRASS
 | |
| #endif
 | |
| 
 | |
| #if defined(POLARSSL_ECP_DP_M221_ENABLED) ||   \
 | |
|     defined(POLARSSL_ECP_DP_M255_ENABLED) ||   \
 | |
|     defined(POLARSSL_ECP_DP_M383_ENABLED) ||   \
 | |
|     defined(POLARSSL_ECP_DP_M511_ENABLED)
 | |
| #define POLARSSL_ECP_MONTGOMERY
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Curve types: internal for now, might be exposed later
 | |
|  */
 | |
| typedef enum
 | |
| {
 | |
|     POLARSSL_ECP_TYPE_NONE = 0,
 | |
|     POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS,    /* y^2 = x^3 + a x + b      */
 | |
|     POLARSSL_ECP_TYPE_MONTGOMERY,           /* y^2 = x^3 + a x^2 + x    */
 | |
| } ecp_curve_type;
 | |
| 
 | |
| /*
 | |
|  * List of supported curves:
 | |
|  *  - internal ID
 | |
|  *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
 | |
|  *  - size in bits
 | |
|  *  - readable name
 | |
|  */
 | |
| static const ecp_curve_info ecp_supported_curves[] =
 | |
| {
 | |
| #if defined(POLARSSL_ECP_DP_BP512R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_DP_BP384R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_DP_BP256R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_DP_SECP521R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_DP_SECP384R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_DP_SECP256R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_DP_SECP224R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
 | |
|     { POLARSSL_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
 | |
| #endif
 | |
|     { POLARSSL_ECP_DP_NONE,          0,     0,      NULL                },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * List of supported curves and associated info
 | |
|  */
 | |
| const ecp_curve_info *ecp_curve_list( void )
 | |
| {
 | |
|     return ecp_supported_curves;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the curve info for the internal identifer
 | |
|  */
 | |
| const ecp_curve_info *ecp_curve_info_from_grp_id( ecp_group_id grp_id )
 | |
| {
 | |
|     const ecp_curve_info *curve_info;
 | |
| 
 | |
|     for( curve_info = ecp_curve_list();
 | |
|          curve_info->grp_id != POLARSSL_ECP_DP_NONE;
 | |
|          curve_info++ )
 | |
|     {
 | |
|         if( curve_info->grp_id == grp_id )
 | |
|             return( curve_info );
 | |
|     }
 | |
| 
 | |
|     return( NULL );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the curve info from the TLS identifier
 | |
|  */
 | |
| const ecp_curve_info *ecp_curve_info_from_tls_id( uint16_t tls_id )
 | |
| {
 | |
|     const ecp_curve_info *curve_info;
 | |
| 
 | |
|     for( curve_info = ecp_curve_list();
 | |
|          curve_info->grp_id != POLARSSL_ECP_DP_NONE;
 | |
|          curve_info++ )
 | |
|     {
 | |
|         if( curve_info->tls_id == tls_id )
 | |
|             return( curve_info );
 | |
|     }
 | |
| 
 | |
|     return( NULL );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the curve info from the name
 | |
|  */
 | |
| const ecp_curve_info *ecp_curve_info_from_name( const char *name )
 | |
| {
 | |
|     const ecp_curve_info *curve_info;
 | |
| 
 | |
|     for( curve_info = ecp_curve_list();
 | |
|          curve_info->grp_id != POLARSSL_ECP_DP_NONE;
 | |
|          curve_info++ )
 | |
|     {
 | |
|         if( strcasecmp( curve_info->name, name ) == 0 )
 | |
|             return( curve_info );
 | |
|     }
 | |
| 
 | |
|     return( NULL );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the type of a curve
 | |
|  */
 | |
| static inline ecp_curve_type ecp_get_type( const ecp_group *grp )
 | |
| {
 | |
|     if( grp->G.X.p == NULL )
 | |
|         return( POLARSSL_ECP_TYPE_NONE );
 | |
| 
 | |
|     if( grp->G.Y.p == NULL )
 | |
|         return( POLARSSL_ECP_TYPE_MONTGOMERY );
 | |
|     else
 | |
|         return( POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize (the components of) a point
 | |
|  */
 | |
| void ecp_point_init( ecp_point *pt )
 | |
| {
 | |
|     if( pt == NULL )
 | |
|         return;
 | |
| 
 | |
|     mpi_init( &pt->X );
 | |
|     mpi_init( &pt->Y );
 | |
|     mpi_init( &pt->Z );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize (the components of) a group
 | |
|  */
 | |
| void ecp_group_init( ecp_group *grp )
 | |
| {
 | |
|     if( grp == NULL )
 | |
|         return;
 | |
| 
 | |
|     memset( grp, 0, sizeof( ecp_group ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize (the components of) a key pair
 | |
|  */
 | |
| void ecp_keypair_init( ecp_keypair *key )
 | |
| {
 | |
|     if ( key == NULL )
 | |
|         return;
 | |
| 
 | |
|     ecp_group_init( &key->grp );
 | |
|     mpi_init( &key->d );
 | |
|     ecp_point_init( &key->Q );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate (the components of) a point
 | |
|  */
 | |
| void ecp_point_free( ecp_point *pt )
 | |
| {
 | |
|     if( pt == NULL )
 | |
|         return;
 | |
| 
 | |
|     mpi_free( &( pt->X ) );
 | |
|     mpi_free( &( pt->Y ) );
 | |
|     mpi_free( &( pt->Z ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate (the components of) a group
 | |
|  */
 | |
| void ecp_group_free( ecp_group *grp )
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     if( grp == NULL )
 | |
|         return;
 | |
| 
 | |
|     if( grp->h != 1 )
 | |
|     {
 | |
|         mpi_free( &grp->P );
 | |
|         mpi_free( &grp->A );
 | |
|         mpi_free( &grp->B );
 | |
|         ecp_point_free( &grp->G );
 | |
|         mpi_free( &grp->N );
 | |
|     }
 | |
| 
 | |
|     if( grp->T != NULL )
 | |
|     {
 | |
|         for( i = 0; i < grp->T_size; i++ )
 | |
|             ecp_point_free( &grp->T[i] );
 | |
|         polarssl_free( grp->T );
 | |
|     }
 | |
| 
 | |
|     memset( grp, 0, sizeof( ecp_group ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate (the components of) a key pair
 | |
|  */
 | |
| void ecp_keypair_free( ecp_keypair *key )
 | |
| {
 | |
|     if ( key == NULL )
 | |
|         return;
 | |
| 
 | |
|     ecp_group_free( &key->grp );
 | |
|     mpi_free( &key->d );
 | |
|     ecp_point_free( &key->Q );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the contents of a point
 | |
|  */
 | |
| int ecp_copy( ecp_point *P, const ecp_point *Q )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     MPI_CHK( mpi_copy( &P->X, &Q->X ) );
 | |
|     MPI_CHK( mpi_copy( &P->Y, &Q->Y ) );
 | |
|     MPI_CHK( mpi_copy( &P->Z, &Q->Z ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the contents of a group object
 | |
|  */
 | |
| int ecp_group_copy( ecp_group *dst, const ecp_group *src )
 | |
| {
 | |
|     return ecp_use_known_dp( dst, src->id );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set point to zero
 | |
|  */
 | |
| int ecp_set_zero( ecp_point *pt )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     MPI_CHK( mpi_lset( &pt->X , 1 ) );
 | |
|     MPI_CHK( mpi_lset( &pt->Y , 1 ) );
 | |
|     MPI_CHK( mpi_lset( &pt->Z , 0 ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tell if a point is zero
 | |
|  */
 | |
| int ecp_is_zero( ecp_point *pt )
 | |
| {
 | |
|     return( mpi_cmp_int( &pt->Z, 0 ) == 0 );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import a non-zero point from ASCII strings
 | |
|  */
 | |
| int ecp_point_read_string( ecp_point *P, int radix,
 | |
|                            const char *x, const char *y )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     MPI_CHK( mpi_read_string( &P->X, radix, x ) );
 | |
|     MPI_CHK( mpi_read_string( &P->Y, radix, y ) );
 | |
|     MPI_CHK( mpi_lset( &P->Z, 1 ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export a point into unsigned binary data (SEC1 2.3.3)
 | |
|  */
 | |
| int ecp_point_write_binary( const ecp_group *grp, const ecp_point *P,
 | |
|                             int format, size_t *olen,
 | |
|                             unsigned char *buf, size_t buflen )
 | |
| {
 | |
|     int ret = 0;
 | |
|     size_t plen;
 | |
| 
 | |
|     if( format != POLARSSL_ECP_PF_UNCOMPRESSED &&
 | |
|         format != POLARSSL_ECP_PF_COMPRESSED )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * Common case: P == 0
 | |
|      */
 | |
|     if( mpi_cmp_int( &P->Z, 0 ) == 0 )
 | |
|     {
 | |
|         if( buflen < 1 )
 | |
|             return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
 | |
| 
 | |
|         buf[0] = 0x00;
 | |
|         *olen = 1;
 | |
| 
 | |
|         return( 0 );
 | |
|     }
 | |
| 
 | |
|     plen = mpi_size( &grp->P );
 | |
| 
 | |
|     if( format == POLARSSL_ECP_PF_UNCOMPRESSED )
 | |
|     {
 | |
|         *olen = 2 * plen + 1;
 | |
| 
 | |
|         if( buflen < *olen )
 | |
|             return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
 | |
| 
 | |
|         buf[0] = 0x04;
 | |
|         MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
 | |
|         MPI_CHK( mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
 | |
|     }
 | |
|     else if( format == POLARSSL_ECP_PF_COMPRESSED )
 | |
|     {
 | |
|         *olen = plen + 1;
 | |
| 
 | |
|         if( buflen < *olen )
 | |
|             return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
 | |
| 
 | |
|         buf[0] = 0x02 + mpi_get_bit( &P->Y, 0 );
 | |
|         MPI_CHK( mpi_write_binary( &P->X, buf + 1, plen ) );
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import a point from unsigned binary data (SEC1 2.3.4)
 | |
|  */
 | |
| int ecp_point_read_binary( const ecp_group *grp, ecp_point *pt,
 | |
|                            const unsigned char *buf, size_t ilen ) {
 | |
|     int ret;
 | |
|     size_t plen;
 | |
| 
 | |
|     if( ilen == 1 && buf[0] == 0x00 )
 | |
|         return( ecp_set_zero( pt ) );
 | |
| 
 | |
|     plen = mpi_size( &grp->P );
 | |
| 
 | |
|     if( ilen != 2 * plen + 1 || buf[0] != 0x04 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     MPI_CHK( mpi_read_binary( &pt->X, buf + 1, plen ) );
 | |
|     MPI_CHK( mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
 | |
|     MPI_CHK( mpi_lset( &pt->Z, 1 ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import a point from a TLS ECPoint record (RFC 4492)
 | |
|  *      struct {
 | |
|  *          opaque point <1..2^8-1>;
 | |
|  *      } ECPoint;
 | |
|  */
 | |
| int ecp_tls_read_point( const ecp_group *grp, ecp_point *pt,
 | |
|                         const unsigned char **buf, size_t buf_len )
 | |
| {
 | |
|     unsigned char data_len;
 | |
|     const unsigned char *buf_start;
 | |
| 
 | |
|     /*
 | |
|      * We must have at least two bytes (1 for length, at least of for data)
 | |
|      */
 | |
|     if( buf_len < 2 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     data_len = *(*buf)++;
 | |
|     if( data_len < 1 || data_len > buf_len - 1 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * Save buffer start for read_binary and update buf
 | |
|      */
 | |
|     buf_start = *buf;
 | |
|     *buf += data_len;
 | |
| 
 | |
|     return ecp_point_read_binary( grp, pt, buf_start, data_len );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export a point as a TLS ECPoint record (RFC 4492)
 | |
|  *      struct {
 | |
|  *          opaque point <1..2^8-1>;
 | |
|  *      } ECPoint;
 | |
|  */
 | |
| int ecp_tls_write_point( const ecp_group *grp, const ecp_point *pt,
 | |
|                          int format, size_t *olen,
 | |
|                          unsigned char *buf, size_t blen )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /*
 | |
|      * buffer length must be at least one, for our length byte
 | |
|      */
 | |
|     if( blen < 1 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( ( ret = ecp_point_write_binary( grp, pt, format,
 | |
|                     olen, buf + 1, blen - 1) ) != 0 )
 | |
|         return( ret );
 | |
| 
 | |
|     /*
 | |
|      * write length to the first byte and update total length
 | |
|      */
 | |
|     buf[0] = (unsigned char) *olen;
 | |
|     ++*olen;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import an ECP group from ASCII strings, case A == -3
 | |
|  */
 | |
| int ecp_group_read_string( ecp_group *grp, int radix,
 | |
|                            const char *p, const char *b,
 | |
|                            const char *gx, const char *gy, const char *n)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     MPI_CHK( mpi_read_string( &grp->P, radix, p ) );
 | |
|     MPI_CHK( mpi_read_string( &grp->B, radix, b ) );
 | |
|     MPI_CHK( ecp_point_read_string( &grp->G, radix, gx, gy ) );
 | |
|     MPI_CHK( mpi_read_string( &grp->N, radix, n ) );
 | |
| 
 | |
|     grp->pbits = mpi_msb( &grp->P );
 | |
|     grp->nbits = mpi_msb( &grp->N );
 | |
| 
 | |
| cleanup:
 | |
|     if( ret != 0 )
 | |
|         ecp_group_free( grp );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a group from an ECParameters record (RFC 4492)
 | |
|  */
 | |
| int ecp_tls_read_group( ecp_group *grp, const unsigned char **buf, size_t len )
 | |
| {
 | |
|     uint16_t tls_id;
 | |
|     const ecp_curve_info *curve_info;
 | |
| 
 | |
|     /*
 | |
|      * We expect at least three bytes (see below)
 | |
|      */
 | |
|     if( len < 3 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * First byte is curve_type; only named_curve is handled
 | |
|      */
 | |
|     if( *(*buf)++ != POLARSSL_ECP_TLS_NAMED_CURVE )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * Next two bytes are the namedcurve value
 | |
|      */
 | |
|     tls_id = *(*buf)++;
 | |
|     tls_id <<= 8;
 | |
|     tls_id |= *(*buf)++;
 | |
| 
 | |
|     if( ( curve_info = ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
 | |
|         return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
 | |
| 
 | |
|     return ecp_use_known_dp( grp, curve_info->grp_id );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write the ECParameters record corresponding to a group (RFC 4492)
 | |
|  */
 | |
| int ecp_tls_write_group( const ecp_group *grp, size_t *olen,
 | |
|                          unsigned char *buf, size_t blen )
 | |
| {
 | |
|     const ecp_curve_info *curve_info;
 | |
| 
 | |
|     if( ( curve_info = ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * We are going to write 3 bytes (see below)
 | |
|      */
 | |
|     *olen = 3;
 | |
|     if( blen < *olen )
 | |
|         return( POLARSSL_ERR_ECP_BUFFER_TOO_SMALL );
 | |
| 
 | |
|     /*
 | |
|      * First byte is curve_type, always named_curve
 | |
|      */
 | |
|     *buf++ = POLARSSL_ECP_TLS_NAMED_CURVE;
 | |
| 
 | |
|     /*
 | |
|      * Next two bytes are the namedcurve value
 | |
|      */
 | |
|     buf[0] = curve_info->tls_id >> 8;
 | |
|     buf[1] = curve_info->tls_id & 0xFF;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper around fast quasi-modp functions, with fall-back to mpi_mod_mpi.
 | |
|  * See the documentation of struct ecp_group.
 | |
|  *
 | |
|  * This function is in the critial loop for ecp_mul, so pay attention to perf.
 | |
|  */
 | |
| static int ecp_modp( mpi *N, const ecp_group *grp )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if( grp->modp == NULL )
 | |
|         return( mpi_mod_mpi( N, N, &grp->P ) );
 | |
| 
 | |
|     /* N->s < 0 is a much faster test, which fails only if N is 0 */
 | |
|     if( ( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 ) ||
 | |
|         mpi_msb( N ) > 2 * grp->pbits )
 | |
|     {
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
|     }
 | |
| 
 | |
|     MPI_CHK( grp->modp( N ) );
 | |
| 
 | |
|     /* N->s < 0 is a much faster test, which fails only if N is 0 */
 | |
|     while( N->s < 0 && mpi_cmp_int( N, 0 ) != 0 )
 | |
|         MPI_CHK( mpi_add_mpi( N, N, &grp->P ) );
 | |
| 
 | |
|     while( mpi_cmp_mpi( N, &grp->P ) >= 0 )
 | |
|         /* we known P, N and the result are positive */
 | |
|         MPI_CHK( mpi_sub_abs( N, N, &grp->P ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fast mod-p functions expect their argument to be in the 0..p^2 range.
 | |
|  *
 | |
|  * In order to guarantee that, we need to ensure that operands of
 | |
|  * mpi_mul_mpi are in the 0..p range. So, after each operation we will
 | |
|  * bring the result back to this range.
 | |
|  *
 | |
|  * The following macros are shortcuts for doing that.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Reduce a mpi mod p in-place, general case, to use after mpi_mul_mpi
 | |
|  */
 | |
| #if defined(POLARSSL_SELF_TEST)
 | |
| #define INC_MUL_COUNT   mul_count++;
 | |
| #else
 | |
| #define INC_MUL_COUNT
 | |
| #endif
 | |
| 
 | |
| #define MOD_MUL( N )    do { MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \
 | |
|                         while( 0 )
 | |
| 
 | |
| /*
 | |
|  * Reduce a mpi mod p in-place, to use after mpi_sub_mpi
 | |
|  * N->s < 0 is a very fast test, which fails only if N is 0
 | |
|  */
 | |
| #define MOD_SUB( N )                                \
 | |
|     while( N.s < 0 && mpi_cmp_int( &N, 0 ) != 0 )   \
 | |
|         MPI_CHK( mpi_add_mpi( &N, &N, &grp->P ) )
 | |
| 
 | |
| /*
 | |
|  * Reduce a mpi mod p in-place, to use after mpi_add_mpi and mpi_mul_int.
 | |
|  * We known P, N and the result are positive, so sub_abs is correct, and
 | |
|  * a bit faster.
 | |
|  */
 | |
| #define MOD_ADD( N )                                \
 | |
|     while( mpi_cmp_mpi( &N, &grp->P ) >= 0 )        \
 | |
|         MPI_CHK( mpi_sub_abs( &N, &N, &grp->P ) )
 | |
| 
 | |
| #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
 | |
| /*
 | |
|  * For curves in short Weierstrass form, we do all the internal operations in
 | |
|  * Jacobian coordinates.
 | |
|  *
 | |
|  * For multiplication, we'll use a comb method with coutermeasueres against
 | |
|  * SPA, hence timing attacks.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
 | |
|  * Cost: 1N := 1I + 3M + 1S
 | |
|  */
 | |
| static int ecp_normalize_jac( const ecp_group *grp, ecp_point *pt )
 | |
| {
 | |
|     int ret;
 | |
|     mpi Zi, ZZi;
 | |
| 
 | |
|     if( mpi_cmp_int( &pt->Z, 0 ) == 0 )
 | |
|         return( 0 );
 | |
| 
 | |
|     mpi_init( &Zi ); mpi_init( &ZZi );
 | |
| 
 | |
|     /*
 | |
|      * X = X / Z^2  mod p
 | |
|      */
 | |
|     MPI_CHK( mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) );
 | |
|     MPI_CHK( mpi_mul_mpi( &ZZi,     &Zi,        &Zi     ) ); MOD_MUL( ZZi );
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->X,   &pt->X,     &ZZi    ) ); MOD_MUL( pt->X );
 | |
| 
 | |
|     /*
 | |
|      * Y = Y / Z^3  mod p
 | |
|      */
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->Y,   &pt->Y,     &ZZi    ) ); MOD_MUL( pt->Y );
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->Y,   &pt->Y,     &Zi     ) ); MOD_MUL( pt->Y );
 | |
| 
 | |
|     /*
 | |
|      * Z = 1
 | |
|      */
 | |
|     MPI_CHK( mpi_lset( &pt->Z, 1 ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mpi_free( &Zi ); mpi_free( &ZZi );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Normalize jacobian coordinates of an array of (pointers to) points,
 | |
|  * using Montgomery's trick to perform only one inversion mod P.
 | |
|  * (See for example Cohen's "A Course in Computational Algebraic Number
 | |
|  * Theory", Algorithm 10.3.4.)
 | |
|  *
 | |
|  * Warning: fails (returning an error) if one of the points is zero!
 | |
|  * This should never happen, see choice of w in ecp_mul_comb().
 | |
|  *
 | |
|  * Cost: 1N(t) := 1I + (6t - 3)M + 1S
 | |
|  */
 | |
| static int ecp_normalize_jac_many( const ecp_group *grp,
 | |
|                                    ecp_point *T[], size_t t_len )
 | |
| {
 | |
|     int ret;
 | |
|     size_t i;
 | |
|     mpi *c, u, Zi, ZZi;
 | |
| 
 | |
|     if( t_len < 2 )
 | |
|         return( ecp_normalize_jac( grp, *T ) );
 | |
| 
 | |
|     if( ( c = (mpi *) polarssl_malloc( t_len * sizeof( mpi ) ) ) == NULL )
 | |
|         return( POLARSSL_ERR_ECP_MALLOC_FAILED );
 | |
| 
 | |
|     mpi_init( &u ); mpi_init( &Zi ); mpi_init( &ZZi );
 | |
|     for( i = 0; i < t_len; i++ )
 | |
|         mpi_init( &c[i] );
 | |
| 
 | |
|     /*
 | |
|      * c[i] = Z_0 * ... * Z_i
 | |
|      */
 | |
|     MPI_CHK( mpi_copy( &c[0], &T[0]->Z ) );
 | |
|     for( i = 1; i < t_len; i++ )
 | |
|     {
 | |
|         MPI_CHK( mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
 | |
|         MOD_MUL( c[i] );
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * u = 1 / (Z_0 * ... * Z_n) mod P
 | |
|      */
 | |
|     MPI_CHK( mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );
 | |
| 
 | |
|     for( i = t_len - 1; ; i-- )
 | |
|     {
 | |
|         /*
 | |
|          * Zi = 1 / Z_i mod p
 | |
|          * u = 1 / (Z_0 * ... * Z_i) mod P
 | |
|          */
 | |
|         if( i == 0 ) {
 | |
|             MPI_CHK( mpi_copy( &Zi, &u ) );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             MPI_CHK( mpi_mul_mpi( &Zi, &u, &c[i-1]  ) ); MOD_MUL( Zi );
 | |
|             MPI_CHK( mpi_mul_mpi( &u,  &u, &T[i]->Z ) ); MOD_MUL( u );
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * proceed as in normalize()
 | |
|          */
 | |
|         MPI_CHK( mpi_mul_mpi( &ZZi,     &Zi,      &Zi  ) ); MOD_MUL( ZZi );
 | |
|         MPI_CHK( mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
 | |
|         MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
 | |
|         MPI_CHK( mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi  ) ); MOD_MUL( T[i]->Y );
 | |
| 
 | |
|         /*
 | |
|          * Post-precessing: reclaim some memory by shrinking coordinates
 | |
|          * - not storing Z (always 1)
 | |
|          * - shrinking other coordinates, but still keeping the same number of
 | |
|          *   limbs as P, as otherwise it will too likely be regrown too fast.
 | |
|          */
 | |
|         MPI_CHK( mpi_shrink( &T[i]->X, grp->P.n ) );
 | |
|         MPI_CHK( mpi_shrink( &T[i]->Y, grp->P.n ) );
 | |
|         mpi_free( &T[i]->Z );
 | |
| 
 | |
|         if( i == 0 )
 | |
|             break;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mpi_free( &u ); mpi_free( &Zi ); mpi_free( &ZZi );
 | |
|     for( i = 0; i < t_len; i++ )
 | |
|         mpi_free( &c[i] );
 | |
|     polarssl_free( c );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
 | |
|  * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
 | |
|  */
 | |
| static int ecp_safe_invert_jac( const ecp_group *grp,
 | |
|                             ecp_point *Q,
 | |
|                             unsigned char inv )
 | |
| {
 | |
|     int ret;
 | |
|     unsigned char nonzero;
 | |
|     mpi mQY;
 | |
| 
 | |
|     mpi_init( &mQY );
 | |
| 
 | |
|     /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
 | |
|     MPI_CHK( mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
 | |
|     nonzero = mpi_cmp_int( &Q->Y, 0 ) != 0;
 | |
|     MPI_CHK( mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
 | |
| 
 | |
| cleanup:
 | |
|     mpi_free( &mQY );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Point doubling R = 2 P, Jacobian coordinates
 | |
|  *
 | |
|  * http://www.hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian/doubling/dbl-2007-bl.op3
 | |
|  * with heavy variable renaming, some reordering and one minor modification
 | |
|  * (a = 2 * b, c = d - 2a replaced with c = d, c = c - b, c = c - b)
 | |
|  * in order to use a lot less intermediate variables (6 vs 25).
 | |
|  *
 | |
|  * Cost: 1D := 2M + 8S
 | |
|  */
 | |
| static int ecp_double_jac( const ecp_group *grp, ecp_point *R,
 | |
|                            const ecp_point *P )
 | |
| {
 | |
|     int ret;
 | |
|     mpi T1, T2, T3, X3, Y3, Z3;
 | |
| 
 | |
| #if defined(POLARSSL_SELF_TEST)
 | |
|     dbl_count++;
 | |
| #endif
 | |
| 
 | |
|     mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 );
 | |
|     mpi_init( &X3 ); mpi_init( &Y3 ); mpi_init( &Z3 );
 | |
| 
 | |
|     MPI_CHK( mpi_mul_mpi( &T3,  &P->X,  &P->X   ) ); MOD_MUL( T3 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T2,  &P->Y,  &P->Y   ) ); MOD_MUL( T2 );
 | |
|     MPI_CHK( mpi_mul_mpi( &Y3,  &T2,    &T2     ) ); MOD_MUL( Y3 );
 | |
|     MPI_CHK( mpi_add_mpi( &X3,  &P->X,  &T2     ) ); MOD_ADD( X3 );
 | |
|     MPI_CHK( mpi_mul_mpi( &X3,  &X3,    &X3     ) ); MOD_MUL( X3 );
 | |
|     MPI_CHK( mpi_sub_mpi( &X3,  &X3,    &Y3     ) ); MOD_SUB( X3 );
 | |
|     MPI_CHK( mpi_sub_mpi( &X3,  &X3,    &T3     ) ); MOD_SUB( X3 );
 | |
|     MPI_CHK( mpi_mul_int( &T1,  &X3,    2       ) ); MOD_ADD( T1 );
 | |
|     MPI_CHK( mpi_mul_mpi( &Z3,  &P->Z,  &P->Z   ) ); MOD_MUL( Z3 );
 | |
|     MPI_CHK( mpi_mul_mpi( &X3,  &Z3,    &Z3     ) ); MOD_MUL( X3 );
 | |
|     MPI_CHK( mpi_mul_int( &T3,  &T3,    3       ) ); MOD_ADD( T3 );
 | |
| 
 | |
|     /* Special case for A = -3 */
 | |
|     if( grp->A.p == NULL )
 | |
|     {
 | |
|         MPI_CHK( mpi_mul_int( &X3, &X3, 3 ) );
 | |
|         X3.s = -1; /* mpi_mul_int doesn't handle negative numbers */
 | |
|         MOD_SUB( X3 );
 | |
|     }
 | |
|     else
 | |
|         MPI_CHK( mpi_mul_mpi( &X3,  &X3,    &grp->A ) ); MOD_MUL( X3 );
 | |
| 
 | |
|     MPI_CHK( mpi_add_mpi( &T3,  &T3,    &X3     ) ); MOD_ADD( T3 );
 | |
|     MPI_CHK( mpi_mul_mpi( &X3,  &T3,    &T3     ) ); MOD_MUL( X3 );
 | |
|     MPI_CHK( mpi_sub_mpi( &X3,  &X3,    &T1     ) ); MOD_SUB( X3 );
 | |
|     MPI_CHK( mpi_sub_mpi( &X3,  &X3,    &T1     ) ); MOD_SUB( X3 );
 | |
|     MPI_CHK( mpi_sub_mpi( &T1,  &T1,    &X3     ) ); MOD_SUB( T1 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T1,  &T3,    &T1     ) ); MOD_MUL( T1 );
 | |
|     MPI_CHK( mpi_mul_int( &T3,  &Y3,    8       ) ); MOD_ADD( T3 );
 | |
|     MPI_CHK( mpi_sub_mpi( &Y3,  &T1,    &T3     ) ); MOD_SUB( Y3 );
 | |
|     MPI_CHK( mpi_add_mpi( &T1,  &P->Y,  &P->Z   ) ); MOD_ADD( T1 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T1,  &T1,    &T1     ) ); MOD_MUL( T1 );
 | |
|     MPI_CHK( mpi_sub_mpi( &T1,  &T1,    &T2     ) ); MOD_SUB( T1 );
 | |
|     MPI_CHK( mpi_sub_mpi( &Z3,  &T1,    &Z3     ) ); MOD_SUB( Z3 );
 | |
| 
 | |
|     MPI_CHK( mpi_copy( &R->X, &X3 ) );
 | |
|     MPI_CHK( mpi_copy( &R->Y, &Y3 ) );
 | |
|     MPI_CHK( mpi_copy( &R->Z, &Z3 ) );
 | |
| 
 | |
| cleanup:
 | |
|     mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 );
 | |
|     mpi_free( &X3 ); mpi_free( &Y3 ); mpi_free( &Z3 );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
 | |
|  *
 | |
|  * The coordinates of Q must be normalized (= affine),
 | |
|  * but those of P don't need to. R is not normalized.
 | |
|  *
 | |
|  * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
 | |
|  * None of these cases can happen as intermediate step in ecp_mul_comb():
 | |
|  * - at each step, P, Q and R are multiples of the base point, the factor
 | |
|  *   being less than its order, so none of them is zero;
 | |
|  * - Q is an odd multiple of the base point, P an even multiple,
 | |
|  *   due to the choice of precomputed points in the modified comb method.
 | |
|  * So branches for these cases do not leak secret information.
 | |
|  *
 | |
|  * We accept Q->Z being unset (saving memory in tables) as meaning 1.
 | |
|  *
 | |
|  * Cost: 1A := 8M + 3S
 | |
|  */
 | |
| static int ecp_add_mixed( const ecp_group *grp, ecp_point *R,
 | |
|                           const ecp_point *P, const ecp_point *Q )
 | |
| {
 | |
|     int ret;
 | |
|     mpi T1, T2, T3, T4, X, Y, Z;
 | |
| 
 | |
| #if defined(POLARSSL_SELF_TEST)
 | |
|     add_count++;
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * Trivial cases: P == 0 or Q == 0 (case 1)
 | |
|      */
 | |
|     if( mpi_cmp_int( &P->Z, 0 ) == 0 )
 | |
|         return( ecp_copy( R, Q ) );
 | |
| 
 | |
|     if( Q->Z.p != NULL && mpi_cmp_int( &Q->Z, 0 ) == 0 )
 | |
|         return( ecp_copy( R, P ) );
 | |
| 
 | |
|     /*
 | |
|      * Make sure Q coordinates are normalized
 | |
|      */
 | |
|     if( Q->Z.p != NULL && mpi_cmp_int( &Q->Z, 1 ) != 0 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     mpi_init( &T1 ); mpi_init( &T2 ); mpi_init( &T3 ); mpi_init( &T4 );
 | |
|     mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
 | |
| 
 | |
|     MPI_CHK( mpi_mul_mpi( &T1,  &P->Z,  &P->Z ) );  MOD_MUL( T1 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T2,  &T1,    &P->Z ) );  MOD_MUL( T2 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T1,  &T1,    &Q->X ) );  MOD_MUL( T1 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T2,  &T2,    &Q->Y ) );  MOD_MUL( T2 );
 | |
|     MPI_CHK( mpi_sub_mpi( &T1,  &T1,    &P->X ) );  MOD_SUB( T1 );
 | |
|     MPI_CHK( mpi_sub_mpi( &T2,  &T2,    &P->Y ) );  MOD_SUB( T2 );
 | |
| 
 | |
|     /* Special cases (2) and (3) */
 | |
|     if( mpi_cmp_int( &T1, 0 ) == 0 )
 | |
|     {
 | |
|         if( mpi_cmp_int( &T2, 0 ) == 0 )
 | |
|         {
 | |
|             ret = ecp_double_jac( grp, R, P );
 | |
|             goto cleanup;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             ret = ecp_set_zero( R );
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     MPI_CHK( mpi_mul_mpi( &Z,   &P->Z,  &T1   ) );  MOD_MUL( Z  );
 | |
|     MPI_CHK( mpi_mul_mpi( &T3,  &T1,    &T1   ) );  MOD_MUL( T3 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T4,  &T3,    &T1   ) );  MOD_MUL( T4 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T3,  &T3,    &P->X ) );  MOD_MUL( T3 );
 | |
|     MPI_CHK( mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 );
 | |
|     MPI_CHK( mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  );
 | |
|     MPI_CHK( mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  );
 | |
|     MPI_CHK( mpi_sub_mpi( &X,   &X,     &T4   ) );  MOD_SUB( X  );
 | |
|     MPI_CHK( mpi_sub_mpi( &T3,  &T3,    &X    ) );  MOD_SUB( T3 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T3,  &T3,    &T2   ) );  MOD_MUL( T3 );
 | |
|     MPI_CHK( mpi_mul_mpi( &T4,  &T4,    &P->Y ) );  MOD_MUL( T4 );
 | |
|     MPI_CHK( mpi_sub_mpi( &Y,   &T3,    &T4   ) );  MOD_SUB( Y  );
 | |
| 
 | |
|     MPI_CHK( mpi_copy( &R->X, &X ) );
 | |
|     MPI_CHK( mpi_copy( &R->Y, &Y ) );
 | |
|     MPI_CHK( mpi_copy( &R->Z, &Z ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mpi_free( &T1 ); mpi_free( &T2 ); mpi_free( &T3 ); mpi_free( &T4 );
 | |
|     mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Addition: R = P + Q, result's coordinates normalized
 | |
|  */
 | |
| int ecp_add( const ecp_group *grp, ecp_point *R,
 | |
|              const ecp_point *P, const ecp_point *Q )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if( ecp_get_type( grp ) != POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
 | |
|         return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
 | |
| 
 | |
|     MPI_CHK( ecp_add_mixed( grp, R, P, Q ) );
 | |
|     MPI_CHK( ecp_normalize_jac( grp, R ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Subtraction: R = P - Q, result's coordinates normalized
 | |
|  */
 | |
| int ecp_sub( const ecp_group *grp, ecp_point *R,
 | |
|              const ecp_point *P, const ecp_point *Q )
 | |
| {
 | |
|     int ret;
 | |
|     ecp_point mQ;
 | |
| 
 | |
|     ecp_point_init( &mQ );
 | |
| 
 | |
|     if( ecp_get_type( grp ) != POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
 | |
|         return( POLARSSL_ERR_ECP_FEATURE_UNAVAILABLE );
 | |
| 
 | |
|     /* mQ = - Q */
 | |
|     MPI_CHK( ecp_copy( &mQ, Q ) );
 | |
|     if( mpi_cmp_int( &mQ.Y, 0 ) != 0 )
 | |
|         MPI_CHK( mpi_sub_mpi( &mQ.Y, &grp->P, &mQ.Y ) );
 | |
| 
 | |
|     MPI_CHK( ecp_add_mixed( grp, R, P, &mQ ) );
 | |
|     MPI_CHK( ecp_normalize_jac( grp, R ) );
 | |
| 
 | |
| cleanup:
 | |
|     ecp_point_free( &mQ );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Randomize jacobian coordinates:
 | |
|  * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
 | |
|  * This is sort of the reverse operation of ecp_normalize_jac().
 | |
|  *
 | |
|  * This countermeasure was first suggested in [2].
 | |
|  */
 | |
| static int ecp_randomize_jac( const ecp_group *grp, ecp_point *pt,
 | |
|                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
 | |
| {
 | |
|     int ret;
 | |
|     mpi l, ll;
 | |
|     size_t p_size = (grp->pbits + 7) / 8;
 | |
|     int count = 0;
 | |
| 
 | |
|     mpi_init( &l ); mpi_init( &ll );
 | |
| 
 | |
|     /* Generate l such that 1 < l < p */
 | |
|     do
 | |
|     {
 | |
|         mpi_fill_random( &l, p_size, f_rng, p_rng );
 | |
| 
 | |
|         while( mpi_cmp_mpi( &l, &grp->P ) >= 0 )
 | |
|             mpi_shift_r( &l, 1 );
 | |
| 
 | |
|         if( count++ > 10 )
 | |
|             return( POLARSSL_ERR_ECP_RANDOM_FAILED );
 | |
|     }
 | |
|     while( mpi_cmp_int( &l, 1 ) <= 0 );
 | |
| 
 | |
|     /* Z = l * Z */
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->Z,   &pt->Z,     &l  ) ); MOD_MUL( pt->Z );
 | |
| 
 | |
|     /* X = l^2 * X */
 | |
|     MPI_CHK( mpi_mul_mpi( &ll,      &l,         &l  ) ); MOD_MUL( ll );
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->X,   &pt->X,     &ll ) ); MOD_MUL( pt->X );
 | |
| 
 | |
|     /* Y = l^3 * Y */
 | |
|     MPI_CHK( mpi_mul_mpi( &ll,      &ll,        &l  ) ); MOD_MUL( ll );
 | |
|     MPI_CHK( mpi_mul_mpi( &pt->Y,   &pt->Y,     &ll ) ); MOD_MUL( pt->Y );
 | |
| 
 | |
| cleanup:
 | |
|     mpi_free( &l ); mpi_free( &ll );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check and define parameters used by the comb method (see below for details)
 | |
|  */
 | |
| #if POLARSSL_ECP_WINDOW_SIZE < 2 || POLARSSL_ECP_WINDOW_SIZE > 7
 | |
| #error "POLARSSL_ECP_WINDOW_SIZE out of bounds"
 | |
| #endif
 | |
| 
 | |
| /* d = ceil( n / w ) */
 | |
| #define COMB_MAX_D      ( POLARSSL_ECP_MAX_BITS + 1 ) / 2
 | |
| 
 | |
| /* number of precomputed points */
 | |
| #define COMB_MAX_PRE    ( 1 << ( POLARSSL_ECP_WINDOW_SIZE - 1 ) )
 | |
| 
 | |
| /*
 | |
|  * Compute the representation of m that will be used with our comb method.
 | |
|  *
 | |
|  * The basic comb method is described in GECC 3.44 for example. We use a
 | |
|  * modified version that provides resistance to SPA by avoiding zero
 | |
|  * digits in the representation as in [3]. We modify the method further by
 | |
|  * requiring that all K_i be odd, which has the small cost that our
 | |
|  * representation uses one more K_i, due to carries.
 | |
|  *
 | |
|  * Also, for the sake of compactness, only the seven low-order bits of x[i]
 | |
|  * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
 | |
|  * the paper): it is set if and only if if s_i == -1;
 | |
|  *
 | |
|  * Calling conventions:
 | |
|  * - x is an array of size d + 1
 | |
|  * - w is the size, ie number of teeth, of the comb, and must be between
 | |
|  *   2 and 7 (in practice, between 2 and POLARSSL_ECP_WINDOW_SIZE)
 | |
|  * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
 | |
|  *   (the result will be incorrect if these assumptions are not satisfied)
 | |
|  */
 | |
| static void ecp_comb_fixed( unsigned char x[], size_t d,
 | |
|                             unsigned char w, const mpi *m )
 | |
| {
 | |
|     size_t i, j;
 | |
|     unsigned char c, cc, adjust;
 | |
| 
 | |
|     memset( x, 0, d+1 );
 | |
| 
 | |
|     /* First get the classical comb values (except for x_d = 0) */
 | |
|     for( i = 0; i < d; i++ )
 | |
|         for( j = 0; j < w; j++ )
 | |
|             x[i] |= mpi_get_bit( m, i + d * j ) << j;
 | |
| 
 | |
|     /* Now make sure x_1 .. x_d are odd */
 | |
|     c = 0;
 | |
|     for( i = 1; i <= d; i++ )
 | |
|     {
 | |
|         /* Add carry and update it */
 | |
|         cc   = x[i] & c;
 | |
|         x[i] = x[i] ^ c;
 | |
|         c = cc;
 | |
| 
 | |
|         /* Adjust if needed, avoiding branches */
 | |
|         adjust = 1 - ( x[i] & 0x01 );
 | |
|         c   |= x[i] & ( x[i-1] * adjust );
 | |
|         x[i] = x[i] ^ ( x[i-1] * adjust );
 | |
|         x[i-1] |= adjust << 7;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Precompute points for the comb method
 | |
|  *
 | |
|  * If i = i_{w-1} ... i_1 is the binary representation of i, then
 | |
|  * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
 | |
|  *
 | |
|  * T must be able to hold 2^{w - 1} elements
 | |
|  *
 | |
|  * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
 | |
|  */
 | |
| static int ecp_precompute_comb( const ecp_group *grp,
 | |
|                                 ecp_point T[], const ecp_point *P,
 | |
|                                 unsigned char w, size_t d )
 | |
| {
 | |
|     int ret;
 | |
|     unsigned char i, k;
 | |
|     size_t j;
 | |
|     ecp_point *cur, *TT[COMB_MAX_PRE - 1];
 | |
| 
 | |
|     /*
 | |
|      * Set T[0] = P and
 | |
|      * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
 | |
|      */
 | |
|     MPI_CHK( ecp_copy( &T[0], P ) );
 | |
| 
 | |
|     k = 0;
 | |
|     for( i = 1; i < ( 1U << (w-1) ); i <<= 1 )
 | |
|     {
 | |
|         cur = T + i;
 | |
|         MPI_CHK( ecp_copy( cur, T + ( i >> 1 ) ) );
 | |
|         for( j = 0; j < d; j++ )
 | |
|             MPI_CHK( ecp_double_jac( grp, cur, cur ) );
 | |
| 
 | |
|         TT[k++] = cur;
 | |
|     }
 | |
| 
 | |
|     MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
 | |
| 
 | |
|     /*
 | |
|      * Compute the remaining ones using the minimal number of additions
 | |
|      * Be careful to update T[2^l] only after using it!
 | |
|      */
 | |
|     k = 0;
 | |
|     for( i = 1; i < ( 1U << (w-1) ); i <<= 1 )
 | |
|     {
 | |
|         j = i;
 | |
|         while( j-- )
 | |
|         {
 | |
|             MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
 | |
|             TT[k++] = &T[i + j];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
 | |
|  */
 | |
| static int ecp_select_comb( const ecp_group *grp, ecp_point *R,
 | |
|                             const ecp_point T[], unsigned char t_len,
 | |
|                             unsigned char i )
 | |
| {
 | |
|     int ret;
 | |
|     unsigned char ii, j;
 | |
| 
 | |
|     /* Ignore the "sign" bit and scale down */
 | |
|     ii =  ( i & 0x7Fu ) >> 1;
 | |
| 
 | |
|     /* Read the whole table to thwart cache-based timing attacks */
 | |
|     for( j = 0; j < t_len; j++ )
 | |
|     {
 | |
|         MPI_CHK( mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
 | |
|         MPI_CHK( mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
 | |
|     }
 | |
| 
 | |
|     /* Safely invert result if i is "negative" */
 | |
|     MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Core multiplication algorithm for the (modified) comb method.
 | |
|  * This part is actually common with the basic comb method (GECC 3.44)
 | |
|  *
 | |
|  * Cost: d A + d D + 1 R
 | |
|  */
 | |
| static int ecp_mul_comb_core( const ecp_group *grp, ecp_point *R,
 | |
|                               const ecp_point T[], unsigned char t_len,
 | |
|                               const unsigned char x[], size_t d,
 | |
|                               int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                               void *p_rng )
 | |
| {
 | |
|     int ret;
 | |
|     ecp_point Txi;
 | |
|     size_t i;
 | |
| 
 | |
|     ecp_point_init( &Txi );
 | |
| 
 | |
|     /* Start with a non-zero point and randomize its coordinates */
 | |
|     i = d;
 | |
|     MPI_CHK( ecp_select_comb( grp, R, T, t_len, x[i] ) );
 | |
|     MPI_CHK( mpi_lset( &R->Z, 1 ) );
 | |
|     if( f_rng != 0 )
 | |
|         MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
 | |
| 
 | |
|     while( i-- != 0 )
 | |
|     {
 | |
|         MPI_CHK( ecp_double_jac( grp, R, R ) );
 | |
|         MPI_CHK( ecp_select_comb( grp, &Txi, T, t_len, x[i] ) );
 | |
|         MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     ecp_point_free( &Txi );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Multiplication using the comb method,
 | |
|  * for curves in short Weierstrass form
 | |
|  */
 | |
| static int ecp_mul_comb( ecp_group *grp, ecp_point *R,
 | |
|                          const mpi *m, const ecp_point *P,
 | |
|                          int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                          void *p_rng )
 | |
| {
 | |
|     int ret;
 | |
|     unsigned char w, m_is_odd, p_eq_g, pre_len, i;
 | |
|     size_t d;
 | |
|     unsigned char k[COMB_MAX_D + 1];
 | |
|     ecp_point *T;
 | |
|     mpi M, mm;
 | |
| 
 | |
|     mpi_init( &M );
 | |
|     mpi_init( &mm );
 | |
| 
 | |
|     /* we need N to be odd to trnaform m in an odd number, check now */
 | |
|     if( mpi_get_bit( &grp->N, 0 ) != 1 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     /*
 | |
|      * Minimize the number of multiplications, that is minimize
 | |
|      * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
 | |
|      * (see costs of the various parts, with 1S = 1M)
 | |
|      */
 | |
|     w = grp->nbits >= 384 ? 5 : 4;
 | |
| 
 | |
|     /*
 | |
|      * If P == G, pre-compute a bit more, since this may be re-used later.
 | |
|      * Just adding one avoids upping the cost of the first mul too much,
 | |
|      * and the memory cost too.
 | |
|      */
 | |
| #if POLARSSL_ECP_FIXED_POINT_OPTIM == 1
 | |
|     p_eq_g = ( mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
 | |
|                mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
 | |
|     if( p_eq_g )
 | |
|         w++;
 | |
| #else
 | |
|     p_eq_g = 0;
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * Make sure w is within bounds.
 | |
|      * (The last test is useful only for very small curves in the test suite.)
 | |
|      */
 | |
|     if( w > POLARSSL_ECP_WINDOW_SIZE )
 | |
|         w = POLARSSL_ECP_WINDOW_SIZE;
 | |
|     if( w >= grp->nbits )
 | |
|         w = 2;
 | |
| 
 | |
|     /* Other sizes that depend on w */
 | |
|     pre_len = 1U << ( w - 1 );
 | |
|     d = ( grp->nbits + w - 1 ) / w;
 | |
| 
 | |
|     /*
 | |
|      * Prepare precomputed points: if P == G we want to
 | |
|      * use grp->T if already initialized, or initialize it.
 | |
|      */
 | |
|     T = p_eq_g ? grp->T : NULL;
 | |
| 
 | |
|     if( T == NULL )
 | |
|     {
 | |
|         T = (ecp_point *) polarssl_malloc( pre_len * sizeof( ecp_point ) );
 | |
|         if( T == NULL )
 | |
|         {
 | |
|             ret = POLARSSL_ERR_ECP_MALLOC_FAILED;
 | |
|             goto cleanup;
 | |
|         }
 | |
| 
 | |
|         for( i = 0; i < pre_len; i++ )
 | |
|             ecp_point_init( &T[i] );
 | |
| 
 | |
|         MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) );
 | |
| 
 | |
|         if( p_eq_g )
 | |
|         {
 | |
|             grp->T = T;
 | |
|             grp->T_size = pre_len;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Make sure M is odd (M = m or M = N - m, since N is odd)
 | |
|      * using the fact that m * P = - (N - m) * P
 | |
|      */
 | |
|     m_is_odd = ( mpi_get_bit( m, 0 ) == 1 );
 | |
|     MPI_CHK( mpi_copy( &M, m ) );
 | |
|     MPI_CHK( mpi_sub_mpi( &mm, &grp->N, m ) );
 | |
|     MPI_CHK( mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) );
 | |
| 
 | |
|     /*
 | |
|      * Go for comb multiplication, R = M * P
 | |
|      */
 | |
|     ecp_comb_fixed( k, d, w, &M );
 | |
|     MPI_CHK( ecp_mul_comb_core( grp, R, T, pre_len, k, d, f_rng, p_rng ) );
 | |
| 
 | |
|     /*
 | |
|      * Now get m * P from M * P and normalize it
 | |
|      */
 | |
|     MPI_CHK( ecp_safe_invert_jac( grp, R, ! m_is_odd ) );
 | |
|     MPI_CHK( ecp_normalize_jac( grp, R ) );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if( T != NULL && ! p_eq_g )
 | |
|     {
 | |
|         for( i = 0; i < pre_len; i++ )
 | |
|             ecp_point_free( &T[i] );
 | |
|         polarssl_free( T );
 | |
|     }
 | |
| 
 | |
|     mpi_free( &M );
 | |
|     mpi_free( &mm );
 | |
| 
 | |
|     if( ret != 0 )
 | |
|         ecp_point_free( R );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| #endif /* POLARSSL_ECP_SHORT_WEIERSTRASS */
 | |
| 
 | |
| #if defined(POLARSSL_ECP_MONTGOMERY)
 | |
| /*
 | |
|  * For Montgomery curves, we do all the internal arithmetic in projective
 | |
|  * coordinates. Import/export of points uses only the x coordinates, which is
 | |
|  * internaly represented as X / Z.
 | |
|  *
 | |
|  * For scalar multiplication, we'll use a Montgomery ladder.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
 | |
|  * Cost: 1M + 1I
 | |
|  */
 | |
| static int ecp_normalize_mxz( const ecp_group *grp, ecp_point *P )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     MPI_CHK( mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
 | |
|     MPI_CHK( mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
 | |
|     MPI_CHK( mpi_lset( &P->Z, 1 ) );
 | |
| 
 | |
| cleanup:
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Randomize projective x/z coordinates:
 | |
|  * (X, Z) -> (l X, l Z) for random l
 | |
|  * This is sort of the reverse operation of ecp_normalize_mxz().
 | |
|  *
 | |
|  * This countermeasure was first suggested in [2].
 | |
|  * Cost: 2M
 | |
|  */
 | |
| static int ecp_randomize_mxz( const ecp_group *grp, ecp_point *P,
 | |
|                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
 | |
| {
 | |
|     int ret;
 | |
|     mpi l;
 | |
|     size_t p_size = (grp->pbits + 7) / 8;
 | |
|     int count = 0;
 | |
| 
 | |
|     mpi_init( &l );
 | |
| 
 | |
|     /* Generate l such that 1 < l < p */
 | |
|     do
 | |
|     {
 | |
|         mpi_fill_random( &l, p_size, f_rng, p_rng );
 | |
| 
 | |
|         while( mpi_cmp_mpi( &l, &grp->P ) >= 0 )
 | |
|             mpi_shift_r( &l, 1 );
 | |
| 
 | |
|         if( count++ > 10 )
 | |
|             return( POLARSSL_ERR_ECP_RANDOM_FAILED );
 | |
|     }
 | |
|     while( mpi_cmp_int( &l, 1 ) <= 0 );
 | |
| 
 | |
|     MPI_CHK( mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
 | |
|     MPI_CHK( mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );
 | |
| 
 | |
| cleanup:
 | |
|     mpi_free( &l );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
 | |
|  * for Montgomery curves in x/z coordinates.
 | |
|  *
 | |
|  * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
 | |
|  * with
 | |
|  * d =  X1
 | |
|  * P = (X2, Z2)
 | |
|  * Q = (X3, Z3)
 | |
|  * R = (X4, Z4)
 | |
|  * S = (X5, Z5)
 | |
|  * and eliminating temporary variables tO, ..., t4.
 | |
|  *
 | |
|  * Cost: 5M + 4S
 | |
|  */
 | |
| static int ecp_double_add_mxz( const ecp_group *grp,
 | |
|                                ecp_point *R, ecp_point *S,
 | |
|                                const ecp_point *P, const ecp_point *Q,
 | |
|                                const mpi *d )
 | |
| {
 | |
|     int ret;
 | |
|     mpi A, AA, B, BB, E, C, D, DA, CB;
 | |
| 
 | |
|     mpi_init( &A ); mpi_init( &AA ); mpi_init( &B );
 | |
|     mpi_init( &BB ); mpi_init( &E ); mpi_init( &C );
 | |
|     mpi_init( &D ); mpi_init( &DA ); mpi_init( &CB );
 | |
| 
 | |
|     MPI_CHK( mpi_add_mpi( &A,    &P->X,   &P->Z ) ); MOD_ADD( A    );
 | |
|     MPI_CHK( mpi_mul_mpi( &AA,   &A,      &A    ) ); MOD_MUL( AA   );
 | |
|     MPI_CHK( mpi_sub_mpi( &B,    &P->X,   &P->Z ) ); MOD_SUB( B    );
 | |
|     MPI_CHK( mpi_mul_mpi( &BB,   &B,      &B    ) ); MOD_MUL( BB   );
 | |
|     MPI_CHK( mpi_sub_mpi( &E,    &AA,     &BB   ) ); MOD_SUB( E    );
 | |
|     MPI_CHK( mpi_add_mpi( &C,    &Q->X,   &Q->Z ) ); MOD_ADD( C    );
 | |
|     MPI_CHK( mpi_sub_mpi( &D,    &Q->X,   &Q->Z ) ); MOD_SUB( D    );
 | |
|     MPI_CHK( mpi_mul_mpi( &DA,   &D,      &A    ) ); MOD_MUL( DA   );
 | |
|     MPI_CHK( mpi_mul_mpi( &CB,   &C,      &B    ) ); MOD_MUL( CB   );
 | |
|     MPI_CHK( mpi_add_mpi( &S->X, &DA,     &CB   ) ); MOD_MUL( S->X );
 | |
|     MPI_CHK( mpi_mul_mpi( &S->X, &S->X,   &S->X ) ); MOD_MUL( S->X );
 | |
|     MPI_CHK( mpi_sub_mpi( &S->Z, &DA,     &CB   ) ); MOD_SUB( S->Z );
 | |
|     MPI_CHK( mpi_mul_mpi( &S->Z, &S->Z,   &S->Z ) ); MOD_MUL( S->Z );
 | |
|     MPI_CHK( mpi_mul_mpi( &S->Z, d,       &S->Z ) ); MOD_MUL( S->Z );
 | |
|     MPI_CHK( mpi_mul_mpi( &R->X, &AA,     &BB   ) ); MOD_MUL( R->X );
 | |
|     MPI_CHK( mpi_mul_mpi( &R->Z, &grp->A, &E    ) ); MOD_MUL( R->Z );
 | |
|     MPI_CHK( mpi_add_mpi( &R->Z, &BB,     &R->Z ) ); MOD_ADD( R->Z );
 | |
|     MPI_CHK( mpi_mul_mpi( &R->Z, &E,      &R->Z ) ); MOD_MUL( R->Z );
 | |
| 
 | |
| cleanup:
 | |
|     mpi_free( &A ); mpi_free( &AA ); mpi_free( &B );
 | |
|     mpi_free( &BB ); mpi_free( &E ); mpi_free( &C );
 | |
|     mpi_free( &D ); mpi_free( &DA ); mpi_free( &CB );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Multiplication with Montgomery ladder in x/z coordinates,
 | |
|  * for curves in Montgomery form
 | |
|  */
 | |
| static int ecp_mul_mxz( ecp_group *grp, ecp_point *R,
 | |
|                         const mpi *m, const ecp_point *P,
 | |
|                         int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                         void *p_rng )
 | |
| {
 | |
|     int ret;
 | |
|     size_t i;
 | |
|     unsigned char b;
 | |
|     ecp_point RP;
 | |
|     mpi PX;
 | |
| 
 | |
|     ecp_point_init( &RP ); mpi_init( &PX );
 | |
| 
 | |
|     /* Save PX and read from P before writing to R, in case P == R */
 | |
|     mpi_copy( &PX, &P->X );
 | |
|     MPI_CHK( ecp_copy( &RP, P ) );
 | |
| 
 | |
|     /* Set R to zero in modified x/z coordinates */
 | |
|     MPI_CHK( mpi_lset( &R->X, 1 ) );
 | |
|     MPI_CHK( mpi_lset( &R->Z, 0 ) );
 | |
|     mpi_free( &R->Y );
 | |
| 
 | |
|     /* RP.X might be sligtly larger than P, so reduce it */
 | |
|     MOD_ADD( RP.X );
 | |
| 
 | |
|     /* Randomize coordinates of the starting point */
 | |
|     if( f_rng != NULL )
 | |
|         MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
 | |
| 
 | |
|     /* Loop invariant: R = result so far, RP = R + P */
 | |
|     i = mpi_msb( m ); /* one past the (zero-based) most significant bit */
 | |
|     while( i-- > 0 )
 | |
|     {
 | |
|         b = mpi_get_bit( m, i );
 | |
|         /*
 | |
|          *  if (b) R = 2R + P else R = 2R,
 | |
|          * which is:
 | |
|          *  if (b) double_add( RP, R, RP, R )
 | |
|          *  else   double_add( R, RP, R, RP )
 | |
|          * but using safe conditional swaps to avoid leaks
 | |
|          */
 | |
|         MPI_CHK( mpi_safe_cond_swap( &R->X, &RP.X, b ) );
 | |
|         MPI_CHK( mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
 | |
|         MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
 | |
|         MPI_CHK( mpi_safe_cond_swap( &R->X, &RP.X, b ) );
 | |
|         MPI_CHK( mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
 | |
|     }
 | |
| 
 | |
|     MPI_CHK( ecp_normalize_mxz( grp, R ) );
 | |
| 
 | |
| cleanup:
 | |
|     ecp_point_free( &RP ); mpi_free( &PX );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| #endif /* POLARSSL_ECP_MONTGOMERY */
 | |
| 
 | |
| /*
 | |
|  * Multiplication R = m * P
 | |
|  */
 | |
| int ecp_mul( ecp_group *grp, ecp_point *R,
 | |
|              const mpi *m, const ecp_point *P,
 | |
|              int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /* Common sanity checks */
 | |
|     if( mpi_cmp_int( &P->Z, 1 ) != 0 )
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     if( ( ret = ecp_check_privkey( grp, m ) ) != 0 ||
 | |
|         ( ret = ecp_check_pubkey( grp, P ) ) != 0 )
 | |
|         return( ret );
 | |
| 
 | |
| #if defined(POLARSSL_ECP_MONTGOMERY)
 | |
|     if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY )
 | |
|         return( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
 | |
|     if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
 | |
|         return( ecp_mul_comb( grp, R, m, P, f_rng, p_rng ) );
 | |
| #endif
 | |
|     return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| }
 | |
| 
 | |
| #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
 | |
| /*
 | |
|  * Check that an affine point is valid as a public key,
 | |
|  * short weierstrass curves (SEC1 3.2.3.1)
 | |
|  */
 | |
| static int ecp_check_pubkey_sw( const ecp_group *grp, const ecp_point *pt )
 | |
| {
 | |
|     int ret;
 | |
|     mpi YY, RHS;
 | |
| 
 | |
|     /* pt coordinates must be normalized for our checks */
 | |
|     if( mpi_cmp_int( &pt->X, 0 ) < 0 ||
 | |
|         mpi_cmp_int( &pt->Y, 0 ) < 0 ||
 | |
|         mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
 | |
|         mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
 | |
|         return( POLARSSL_ERR_ECP_INVALID_KEY );
 | |
| 
 | |
|     mpi_init( &YY ); mpi_init( &RHS );
 | |
| 
 | |
|     /*
 | |
|      * YY = Y^2
 | |
|      * RHS = X (X^2 + A) + B = X^3 + A X + B
 | |
|      */
 | |
|     MPI_CHK( mpi_mul_mpi( &YY,  &pt->Y,   &pt->Y  ) );  MOD_MUL( YY  );
 | |
|     MPI_CHK( mpi_mul_mpi( &RHS, &pt->X,   &pt->X  ) );  MOD_MUL( RHS );
 | |
| 
 | |
|     /* Special case for A = -3 */
 | |
|     if( grp->A.p == NULL )
 | |
|     {
 | |
|         MPI_CHK( mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         MPI_CHK( mpi_add_mpi( &RHS, &RHS, &grp->A ) );  MOD_ADD( RHS );
 | |
|     }
 | |
| 
 | |
|     MPI_CHK( mpi_mul_mpi( &RHS, &RHS,     &pt->X  ) );  MOD_MUL( RHS );
 | |
|     MPI_CHK( mpi_add_mpi( &RHS, &RHS,     &grp->B ) );  MOD_ADD( RHS );
 | |
| 
 | |
|     if( mpi_cmp_mpi( &YY, &RHS ) != 0 )
 | |
|         ret = POLARSSL_ERR_ECP_INVALID_KEY;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mpi_free( &YY ); mpi_free( &RHS );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| #endif /* POLARSSL_ECP_SHORT_WEIERSTRASS */
 | |
| 
 | |
| 
 | |
| #if defined(POLARSSL_ECP_MONTGOMERY)
 | |
| /*
 | |
|  * Check validity of a public key for Montgomery curves with x-only schemes
 | |
|  */
 | |
| static int ecp_check_pubkey_mx( const ecp_group *grp, const ecp_point *pt )
 | |
| {
 | |
|     /* [M255 p. 5] Just check X is the correct number of bytes */
 | |
|     if( mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
 | |
|         return( POLARSSL_ERR_ECP_INVALID_KEY );
 | |
| 
 | |
|     return( 0 );
 | |
| }
 | |
| #endif /* POLARSSL_ECP_MONTGOMERY */
 | |
| 
 | |
| /*
 | |
|  * Check that a point is valid as a public key
 | |
|  */
 | |
| int ecp_check_pubkey( const ecp_group *grp, const ecp_point *pt )
 | |
| {
 | |
|     /* Must use affine coordinates */
 | |
|     if( mpi_cmp_int( &pt->Z, 1 ) != 0 )
 | |
|         return( POLARSSL_ERR_ECP_INVALID_KEY );
 | |
| 
 | |
| #if defined(POLARSSL_ECP_MONTGOMERY)
 | |
|     if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY )
 | |
|         return( ecp_check_pubkey_mx( grp, pt ) );
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
 | |
|     if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
 | |
|         return( ecp_check_pubkey_sw( grp, pt ) );
 | |
| #endif
 | |
|     return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that an mpi is valid as a private key
 | |
|  */
 | |
| int ecp_check_privkey( const ecp_group *grp, const mpi *d )
 | |
| {
 | |
| #if defined(POLARSSL_ECP_MONTGOMERY)
 | |
|     if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY )
 | |
|     {
 | |
|         /* see [M255] page 5 */
 | |
|         if( mpi_get_bit( d, 0 ) != 0 ||
 | |
|             mpi_get_bit( d, 1 ) != 0 ||
 | |
|             mpi_get_bit( d, 2 ) != 0 ||
 | |
|             mpi_msb( d ) - 1 != grp->nbits ) /* mpi_msb is one-based! */
 | |
|             return( POLARSSL_ERR_ECP_INVALID_KEY );
 | |
|         else
 | |
|             return( 0 );
 | |
|     }
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
 | |
|     if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
 | |
|     {
 | |
|         /* see SEC1 3.2 */
 | |
|         if( mpi_cmp_int( d, 1 ) < 0 ||
 | |
|             mpi_cmp_mpi( d, &grp->N ) >= 0 )
 | |
|             return( POLARSSL_ERR_ECP_INVALID_KEY );
 | |
|         else
 | |
|             return( 0 );
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate a keypair
 | |
|  */
 | |
| int ecp_gen_keypair( ecp_group *grp, mpi *d, ecp_point *Q,
 | |
|                      int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                      void *p_rng )
 | |
| {
 | |
|     size_t n_size = (grp->nbits + 7) / 8;
 | |
| 
 | |
| #if defined(POLARSSL_ECP_MONTGOMERY)
 | |
|     if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_MONTGOMERY )
 | |
|     {
 | |
|         /* [M225] page 5 */
 | |
|         size_t b;
 | |
| 
 | |
|         mpi_fill_random( d, n_size, f_rng, p_rng );
 | |
| 
 | |
|         /* Make sure the most significant bit is nbits */
 | |
|         b = mpi_msb( d ) - 1; /* mpi_msb is one-based */
 | |
|         if( b > grp->nbits )
 | |
|             mpi_shift_r( d, b - grp->nbits );
 | |
|         else
 | |
|             mpi_set_bit( d, grp->nbits, 1 );
 | |
| 
 | |
|         /* Make sure the last three bits are unset */
 | |
|         mpi_set_bit( d, 0, 0 );
 | |
|         mpi_set_bit( d, 1, 0 );
 | |
|         mpi_set_bit( d, 2, 0 );
 | |
|     }
 | |
|     else
 | |
| #endif
 | |
| #if defined(POLARSSL_ECP_SHORT_WEIERSTRASS)
 | |
|     if( ecp_get_type( grp ) == POLARSSL_ECP_TYPE_SHORT_WEIERSTRASS )
 | |
|     {
 | |
|         /* SEC1 3.2.1: Generate d such that 1 <= n < N */
 | |
|         int count = 0;
 | |
|         do
 | |
|         {
 | |
|             mpi_fill_random( d, n_size, f_rng, p_rng );
 | |
| 
 | |
|             while( mpi_cmp_mpi( d, &grp->N ) >= 0 )
 | |
|                 mpi_shift_r( d, 1 );
 | |
| 
 | |
|             if( count++ > 10 )
 | |
|                 return( POLARSSL_ERR_ECP_RANDOM_FAILED );
 | |
|         }
 | |
|         while( mpi_cmp_int( d, 1 ) < 0 );
 | |
|     }
 | |
|     else
 | |
| #endif
 | |
|         return( POLARSSL_ERR_ECP_BAD_INPUT_DATA );
 | |
| 
 | |
|     return( ecp_mul( grp, Q, d, &grp->G, f_rng, p_rng ) );
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generate a keypair, prettier wrapper
 | |
|  */
 | |
| int ecp_gen_key( ecp_group_id grp_id, ecp_keypair *key,
 | |
|                 int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if( ( ret = ecp_use_known_dp( &key->grp, grp_id ) ) != 0 )
 | |
|         return( ret );
 | |
| 
 | |
|     return( ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
 | |
| }
 | |
| 
 | |
| #if defined(POLARSSL_SELF_TEST)
 | |
| 
 | |
| /*
 | |
|  * Checkup routine
 | |
|  */
 | |
| int ecp_self_test( int verbose )
 | |
| {
 | |
|     int ret;
 | |
|     size_t i;
 | |
|     ecp_group grp;
 | |
|     ecp_point R, P;
 | |
|     mpi m;
 | |
|     unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
 | |
|     /* exponents especially adapted for secp192r1 */
 | |
|     const char *exponents[] =
 | |
|     {
 | |
|         "000000000000000000000000000000000000000000000001", /* one */
 | |
|         "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
 | |
|         "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
 | |
|         "400000000000000000000000000000000000000000000000", /* one and zeros */
 | |
|         "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
 | |
|         "555555555555555555555555555555555555555555555555", /* 101010... */
 | |
|     };
 | |
| 
 | |
|     ecp_group_init( &grp );
 | |
|     ecp_point_init( &R );
 | |
|     ecp_point_init( &P );
 | |
|     mpi_init( &m );
 | |
| 
 | |
|     /* Use secp192r1 if available, or any available curve */
 | |
| #if defined(POLARSSL_ECP_DP_SECP192R1_ENABLED)
 | |
|     MPI_CHK( ecp_use_known_dp( &grp, POLARSSL_ECP_DP_SECP192R1 ) );
 | |
| #else
 | |
|     MPI_CHK( ecp_use_known_dp( &grp, ecp_curve_list()->grp_id ) );
 | |
| #endif
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         printf( "  ECP test #1 (constant op_count, base point G): " );
 | |
| 
 | |
|     /* Do a dummy multiplication first to trigger precomputation */
 | |
|     MPI_CHK( mpi_lset( &m, 2 ) );
 | |
|     MPI_CHK( ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
 | |
| 
 | |
|     add_count = 0;
 | |
|     dbl_count = 0;
 | |
|     mul_count = 0;
 | |
|     MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
 | |
|     MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
 | |
| 
 | |
|     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
 | |
|     {
 | |
|         add_c_prev = add_count;
 | |
|         dbl_c_prev = dbl_count;
 | |
|         mul_c_prev = mul_count;
 | |
|         add_count = 0;
 | |
|         dbl_count = 0;
 | |
|         mul_count = 0;
 | |
| 
 | |
|         MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
 | |
|         MPI_CHK( ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
 | |
| 
 | |
|         if( add_count != add_c_prev ||
 | |
|             dbl_count != dbl_c_prev ||
 | |
|             mul_count != mul_c_prev )
 | |
|         {
 | |
|             if( verbose != 0 )
 | |
|                 printf( "failed (%u)\n", (unsigned int) i );
 | |
| 
 | |
|             ret = 1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         printf( "passed\n" );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         printf( "  ECP test #2 (constant op_count, other point): " );
 | |
|     /* We computed P = 2G last time, use it */
 | |
| 
 | |
|     add_count = 0;
 | |
|     dbl_count = 0;
 | |
|     mul_count = 0;
 | |
|     MPI_CHK( mpi_read_string( &m, 16, exponents[0] ) );
 | |
|     MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
 | |
| 
 | |
|     for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
 | |
|     {
 | |
|         add_c_prev = add_count;
 | |
|         dbl_c_prev = dbl_count;
 | |
|         mul_c_prev = mul_count;
 | |
|         add_count = 0;
 | |
|         dbl_count = 0;
 | |
|         mul_count = 0;
 | |
| 
 | |
|         MPI_CHK( mpi_read_string( &m, 16, exponents[i] ) );
 | |
|         MPI_CHK( ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
 | |
| 
 | |
|         if( add_count != add_c_prev ||
 | |
|             dbl_count != dbl_c_prev ||
 | |
|             mul_count != mul_c_prev )
 | |
|         {
 | |
|             if( verbose != 0 )
 | |
|                 printf( "failed (%u)\n", (unsigned int) i );
 | |
| 
 | |
|             ret = 1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         printf( "passed\n" );
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if( ret < 0 && verbose != 0 )
 | |
|         printf( "Unexpected error, return code = %08X\n", ret );
 | |
| 
 | |
|     ecp_group_free( &grp );
 | |
|     ecp_point_free( &R );
 | |
|     ecp_point_free( &P );
 | |
|     mpi_free( &m );
 | |
| 
 | |
|     if( verbose != 0 )
 | |
|         printf( "\n" );
 | |
| 
 | |
|     return( ret );
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif
 | 
