mirror of
				https://github.com/cuberite/polarssl.git
				synced 2025-11-03 20:22:59 -05:00 
			
		
		
		
	Signed-off-by: Tom Cosgrove <tom.cosgrove@arm.com> Signed-off-by: Gabor Mezei <gabor.mezei@arm.com>
		
			
				
	
	
		
			2702 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2702 lines
		
	
	
		
			72 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Multi-precision integer library
 | 
						|
 *
 | 
						|
 *  Copyright The Mbed TLS Contributors
 | 
						|
 *  SPDX-License-Identifier: Apache-2.0
 | 
						|
 *
 | 
						|
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 | 
						|
 *  not use this file except in compliance with the License.
 | 
						|
 *  You may obtain a copy of the License at
 | 
						|
 *
 | 
						|
 *  http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
 *
 | 
						|
 *  Unless required by applicable law or agreed to in writing, software
 | 
						|
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 | 
						|
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
 *  See the License for the specific language governing permissions and
 | 
						|
 *  limitations under the License.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 *  The following sources were referenced in the design of this Multi-precision
 | 
						|
 *  Integer library:
 | 
						|
 *
 | 
						|
 *  [1] Handbook of Applied Cryptography - 1997
 | 
						|
 *      Menezes, van Oorschot and Vanstone
 | 
						|
 *
 | 
						|
 *  [2] Multi-Precision Math
 | 
						|
 *      Tom St Denis
 | 
						|
 *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
 | 
						|
 *
 | 
						|
 *  [3] GNU Multi-Precision Arithmetic Library
 | 
						|
 *      https://gmplib.org/manual/index.html
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include "common.h"
 | 
						|
 | 
						|
#if defined(MBEDTLS_BIGNUM_C)
 | 
						|
 | 
						|
#include "mbedtls/bignum.h"
 | 
						|
#include "bignum_core.h"
 | 
						|
#include "bn_mul.h"
 | 
						|
#include "mbedtls/platform_util.h"
 | 
						|
#include "mbedtls/error.h"
 | 
						|
#include "constant_time_internal.h"
 | 
						|
 | 
						|
#include <limits.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include "mbedtls/platform.h"
 | 
						|
 | 
						|
#define MPI_VALIDATE_RET(cond)                                       \
 | 
						|
    MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA)
 | 
						|
#define MPI_VALIDATE(cond)                                           \
 | 
						|
    MBEDTLS_INTERNAL_VALIDATE(cond)
 | 
						|
 | 
						|
#define MPI_SIZE_T_MAX  ((size_t) -1)   /* SIZE_T_MAX is not standard */
 | 
						|
 | 
						|
/* Implementation that should never be optimized out by the compiler */
 | 
						|
static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n)
 | 
						|
{
 | 
						|
    mbedtls_platform_zeroize(v, ciL * n);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize one MPI
 | 
						|
 */
 | 
						|
void mbedtls_mpi_init(mbedtls_mpi *X)
 | 
						|
{
 | 
						|
    MPI_VALIDATE(X != NULL);
 | 
						|
 | 
						|
    X->s = 1;
 | 
						|
    X->n = 0;
 | 
						|
    X->p = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unallocate one MPI
 | 
						|
 */
 | 
						|
void mbedtls_mpi_free(mbedtls_mpi *X)
 | 
						|
{
 | 
						|
    if (X == NULL) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (X->p != NULL) {
 | 
						|
        mbedtls_mpi_zeroize(X->p, X->n);
 | 
						|
        mbedtls_free(X->p);
 | 
						|
    }
 | 
						|
 | 
						|
    X->s = 1;
 | 
						|
    X->n = 0;
 | 
						|
    X->p = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Enlarge to the specified number of limbs
 | 
						|
 */
 | 
						|
int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
 | 
						|
{
 | 
						|
    mbedtls_mpi_uint *p;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
 | 
						|
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
 | 
						|
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
 | 
						|
    }
 | 
						|
 | 
						|
    if (X->n < nblimbs) {
 | 
						|
        if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
 | 
						|
            return MBEDTLS_ERR_MPI_ALLOC_FAILED;
 | 
						|
        }
 | 
						|
 | 
						|
        if (X->p != NULL) {
 | 
						|
            memcpy(p, X->p, X->n * ciL);
 | 
						|
            mbedtls_mpi_zeroize(X->p, X->n);
 | 
						|
            mbedtls_free(X->p);
 | 
						|
        }
 | 
						|
 | 
						|
        X->n = nblimbs;
 | 
						|
        X->p = p;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Resize down as much as possible,
 | 
						|
 * while keeping at least the specified number of limbs
 | 
						|
 */
 | 
						|
int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
 | 
						|
{
 | 
						|
    mbedtls_mpi_uint *p;
 | 
						|
    size_t i;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
 | 
						|
    if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
 | 
						|
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Actually resize up if there are currently fewer than nblimbs limbs. */
 | 
						|
    if (X->n <= nblimbs) {
 | 
						|
        return mbedtls_mpi_grow(X, nblimbs);
 | 
						|
    }
 | 
						|
    /* After this point, then X->n > nblimbs and in particular X->n > 0. */
 | 
						|
 | 
						|
    for (i = X->n - 1; i > 0; i--) {
 | 
						|
        if (X->p[i] != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    i++;
 | 
						|
 | 
						|
    if (i < nblimbs) {
 | 
						|
        i = nblimbs;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
 | 
						|
        return MBEDTLS_ERR_MPI_ALLOC_FAILED;
 | 
						|
    }
 | 
						|
 | 
						|
    if (X->p != NULL) {
 | 
						|
        memcpy(p, X->p, i * ciL);
 | 
						|
        mbedtls_mpi_zeroize(X->p, X->n);
 | 
						|
        mbedtls_free(X->p);
 | 
						|
    }
 | 
						|
 | 
						|
    X->n = i;
 | 
						|
    X->p = p;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Resize X to have exactly n limbs and set it to 0. */
 | 
						|
static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
 | 
						|
{
 | 
						|
    if (limbs == 0) {
 | 
						|
        mbedtls_mpi_free(X);
 | 
						|
        return 0;
 | 
						|
    } else if (X->n == limbs) {
 | 
						|
        memset(X->p, 0, limbs * ciL);
 | 
						|
        X->s = 1;
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
        mbedtls_mpi_free(X);
 | 
						|
        return mbedtls_mpi_grow(X, limbs);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Copy the contents of Y into X.
 | 
						|
 *
 | 
						|
 * This function is not constant-time. Leading zeros in Y may be removed.
 | 
						|
 *
 | 
						|
 * Ensure that X does not shrink. This is not guaranteed by the public API,
 | 
						|
 * but some code in the bignum module relies on this property, for example
 | 
						|
 * in mbedtls_mpi_exp_mod().
 | 
						|
 */
 | 
						|
int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    size_t i;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(Y != NULL);
 | 
						|
 | 
						|
    if (X == Y) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Y->n == 0) {
 | 
						|
        if (X->n != 0) {
 | 
						|
            X->s = 1;
 | 
						|
            memset(X->p, 0, X->n * ciL);
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = Y->n - 1; i > 0; i--) {
 | 
						|
        if (Y->p[i] != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    i++;
 | 
						|
 | 
						|
    X->s = Y->s;
 | 
						|
 | 
						|
    if (X->n < i) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
 | 
						|
    } else {
 | 
						|
        memset(X->p + i, 0, (X->n - i) * ciL);
 | 
						|
    }
 | 
						|
 | 
						|
    memcpy(X->p, Y->p, i * ciL);
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Swap the contents of X and Y
 | 
						|
 */
 | 
						|
void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
 | 
						|
{
 | 
						|
    mbedtls_mpi T;
 | 
						|
    MPI_VALIDATE(X != NULL);
 | 
						|
    MPI_VALIDATE(Y != NULL);
 | 
						|
 | 
						|
    memcpy(&T,  X, sizeof(mbedtls_mpi));
 | 
						|
    memcpy(X,  Y, sizeof(mbedtls_mpi));
 | 
						|
    memcpy(Y, &T, sizeof(mbedtls_mpi));
 | 
						|
}
 | 
						|
 | 
						|
static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
 | 
						|
{
 | 
						|
    if (z >= 0) {
 | 
						|
        return z;
 | 
						|
    }
 | 
						|
    /* Take care to handle the most negative value (-2^(biL-1)) correctly.
 | 
						|
     * A naive -z would have undefined behavior.
 | 
						|
     * Write this in a way that makes popular compilers happy (GCC, Clang,
 | 
						|
     * MSVC). */
 | 
						|
    return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set value from integer
 | 
						|
 */
 | 
						|
int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
 | 
						|
    memset(X->p, 0, X->n * ciL);
 | 
						|
 | 
						|
    X->p[0] = mpi_sint_abs(z);
 | 
						|
    X->s    = (z < 0) ? -1 : 1;
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Get a specific bit
 | 
						|
 */
 | 
						|
int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
 | 
						|
{
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
 | 
						|
    if (X->n * biL <= pos) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return (X->p[pos / biL] >> (pos % biL)) & 0x01;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set a bit to a specific value of 0 or 1
 | 
						|
 */
 | 
						|
int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    size_t off = pos / biL;
 | 
						|
    size_t idx = pos % biL;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
 | 
						|
    if (val != 0 && val != 1) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (X->n * biL <= pos) {
 | 
						|
        if (val == 0) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
 | 
						|
    }
 | 
						|
 | 
						|
    X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
 | 
						|
    X->p[off] |= (mbedtls_mpi_uint) val << idx;
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of less significant zero-bits
 | 
						|
 */
 | 
						|
size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
 | 
						|
{
 | 
						|
    size_t i, j, count = 0;
 | 
						|
    MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0);
 | 
						|
 | 
						|
    for (i = 0; i < X->n; i++) {
 | 
						|
        for (j = 0; j < biL; j++, count++) {
 | 
						|
            if (((X->p[i] >> j) & 1) != 0) {
 | 
						|
                return count;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the number of bits
 | 
						|
 */
 | 
						|
size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
 | 
						|
{
 | 
						|
    return mbedtls_mpi_core_bitlen(X->p, X->n);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the total size in bytes
 | 
						|
 */
 | 
						|
size_t mbedtls_mpi_size(const mbedtls_mpi *X)
 | 
						|
{
 | 
						|
    return (mbedtls_mpi_bitlen(X) + 7) >> 3;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert an ASCII character to digit value
 | 
						|
 */
 | 
						|
static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
 | 
						|
{
 | 
						|
    *d = 255;
 | 
						|
 | 
						|
    if (c >= 0x30 && c <= 0x39) {
 | 
						|
        *d = c - 0x30;
 | 
						|
    }
 | 
						|
    if (c >= 0x41 && c <= 0x46) {
 | 
						|
        *d = c - 0x37;
 | 
						|
    }
 | 
						|
    if (c >= 0x61 && c <= 0x66) {
 | 
						|
        *d = c - 0x57;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*d >= (mbedtls_mpi_uint) radix) {
 | 
						|
        return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Import from an ASCII string
 | 
						|
 */
 | 
						|
int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    size_t i, j, slen, n;
 | 
						|
    int sign = 1;
 | 
						|
    mbedtls_mpi_uint d;
 | 
						|
    mbedtls_mpi T;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(s != NULL);
 | 
						|
 | 
						|
    if (radix < 2 || radix > 16) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_mpi_init(&T);
 | 
						|
 | 
						|
    if (s[0] == 0) {
 | 
						|
        mbedtls_mpi_free(X);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s[0] == '-') {
 | 
						|
        ++s;
 | 
						|
        sign = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    slen = strlen(s);
 | 
						|
 | 
						|
    if (radix == 16) {
 | 
						|
        if (slen > MPI_SIZE_T_MAX >> 2) {
 | 
						|
            return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
        }
 | 
						|
 | 
						|
        n = BITS_TO_LIMBS(slen << 2);
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
 | 
						|
 | 
						|
        for (i = slen, j = 0; i > 0; i--, j++) {
 | 
						|
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
 | 
						|
            X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
 | 
						|
 | 
						|
        for (i = 0; i < slen; i++) {
 | 
						|
            MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
 | 
						|
        X->s = -1;
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_mpi_free(&T);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Helper to write the digits high-order first.
 | 
						|
 */
 | 
						|
static int mpi_write_hlp(mbedtls_mpi *X, int radix,
 | 
						|
                         char **p, const size_t buflen)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_mpi_uint r;
 | 
						|
    size_t length = 0;
 | 
						|
    char *p_end = *p + buflen;
 | 
						|
 | 
						|
    do {
 | 
						|
        if (length >= buflen) {
 | 
						|
            return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | 
						|
        }
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
 | 
						|
        /*
 | 
						|
         * Write the residue in the current position, as an ASCII character.
 | 
						|
         */
 | 
						|
        if (r < 0xA) {
 | 
						|
            *(--p_end) = (char) ('0' + r);
 | 
						|
        } else {
 | 
						|
            *(--p_end) = (char) ('A' + (r - 0xA));
 | 
						|
        }
 | 
						|
 | 
						|
        length++;
 | 
						|
    } while (mbedtls_mpi_cmp_int(X, 0) != 0);
 | 
						|
 | 
						|
    memmove(*p, p_end, length);
 | 
						|
    *p += length;
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Export into an ASCII string
 | 
						|
 */
 | 
						|
int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
 | 
						|
                             char *buf, size_t buflen, size_t *olen)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    size_t n;
 | 
						|
    char *p;
 | 
						|
    mbedtls_mpi T;
 | 
						|
    MPI_VALIDATE_RET(X    != NULL);
 | 
						|
    MPI_VALIDATE_RET(olen != NULL);
 | 
						|
    MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
 | 
						|
 | 
						|
    if (radix < 2 || radix > 16) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    n = mbedtls_mpi_bitlen(X);   /* Number of bits necessary to present `n`. */
 | 
						|
    if (radix >=  4) {
 | 
						|
        n >>= 1;                 /* Number of 4-adic digits necessary to present
 | 
						|
                                  * `n`. If radix > 4, this might be a strict
 | 
						|
                                  * overapproximation of the number of
 | 
						|
                                  * radix-adic digits needed to present `n`. */
 | 
						|
    }
 | 
						|
    if (radix >= 16) {
 | 
						|
        n >>= 1;                 /* Number of hexadecimal digits necessary to
 | 
						|
                                  * present `n`. */
 | 
						|
 | 
						|
    }
 | 
						|
    n += 1; /* Terminating null byte */
 | 
						|
    n += 1; /* Compensate for the divisions above, which round down `n`
 | 
						|
             * in case it's not even. */
 | 
						|
    n += 1; /* Potential '-'-sign. */
 | 
						|
    n += (n & 1);   /* Make n even to have enough space for hexadecimal writing,
 | 
						|
                     * which always uses an even number of hex-digits. */
 | 
						|
 | 
						|
    if (buflen < n) {
 | 
						|
        *olen = n;
 | 
						|
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | 
						|
    }
 | 
						|
 | 
						|
    p = buf;
 | 
						|
    mbedtls_mpi_init(&T);
 | 
						|
 | 
						|
    if (X->s == -1) {
 | 
						|
        *p++ = '-';
 | 
						|
        buflen--;
 | 
						|
    }
 | 
						|
 | 
						|
    if (radix == 16) {
 | 
						|
        int c;
 | 
						|
        size_t i, j, k;
 | 
						|
 | 
						|
        for (i = X->n, k = 0; i > 0; i--) {
 | 
						|
            for (j = ciL; j > 0; j--) {
 | 
						|
                c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
 | 
						|
 | 
						|
                if (c == 0 && k == 0 && (i + j) != 2) {
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                *(p++) = "0123456789ABCDEF" [c / 16];
 | 
						|
                *(p++) = "0123456789ABCDEF" [c % 16];
 | 
						|
                k = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
 | 
						|
 | 
						|
        if (T.s == -1) {
 | 
						|
            T.s = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
 | 
						|
    }
 | 
						|
 | 
						|
    *p++ = '\0';
 | 
						|
    *olen = p - buf;
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_mpi_free(&T);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(MBEDTLS_FS_IO)
 | 
						|
/*
 | 
						|
 * Read X from an opened file
 | 
						|
 */
 | 
						|
int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
 | 
						|
{
 | 
						|
    mbedtls_mpi_uint d;
 | 
						|
    size_t slen;
 | 
						|
    char *p;
 | 
						|
    /*
 | 
						|
     * Buffer should have space for (short) label and decimal formatted MPI,
 | 
						|
     * newline characters and '\0'
 | 
						|
     */
 | 
						|
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
 | 
						|
 | 
						|
    MPI_VALIDATE_RET(X   != NULL);
 | 
						|
    MPI_VALIDATE_RET(fin != NULL);
 | 
						|
 | 
						|
    if (radix < 2 || radix > 16) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    memset(s, 0, sizeof(s));
 | 
						|
    if (fgets(s, sizeof(s) - 1, fin) == NULL) {
 | 
						|
        return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
 | 
						|
    }
 | 
						|
 | 
						|
    slen = strlen(s);
 | 
						|
    if (slen == sizeof(s) - 2) {
 | 
						|
        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (slen > 0 && s[slen - 1] == '\n') {
 | 
						|
        slen--; s[slen] = '\0';
 | 
						|
    }
 | 
						|
    if (slen > 0 && s[slen - 1] == '\r') {
 | 
						|
        slen--; s[slen] = '\0';
 | 
						|
    }
 | 
						|
 | 
						|
    p = s + slen;
 | 
						|
    while (p-- > s) {
 | 
						|
        if (mpi_get_digit(&d, radix, *p) != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return mbedtls_mpi_read_string(X, radix, p + 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write X into an opened file (or stdout if fout == NULL)
 | 
						|
 */
 | 
						|
int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    size_t n, slen, plen;
 | 
						|
    /*
 | 
						|
     * Buffer should have space for (short) label and decimal formatted MPI,
 | 
						|
     * newline characters and '\0'
 | 
						|
     */
 | 
						|
    char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
 | 
						|
    if (radix < 2 || radix > 16) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    memset(s, 0, sizeof(s));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
 | 
						|
 | 
						|
    if (p == NULL) {
 | 
						|
        p = "";
 | 
						|
    }
 | 
						|
 | 
						|
    plen = strlen(p);
 | 
						|
    slen = strlen(s);
 | 
						|
    s[slen++] = '\r';
 | 
						|
    s[slen++] = '\n';
 | 
						|
 | 
						|
    if (fout != NULL) {
 | 
						|
        if (fwrite(p, 1, plen, fout) != plen ||
 | 
						|
            fwrite(s, 1, slen, fout) != slen) {
 | 
						|
            return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        mbedtls_printf("%s%s", p, s);
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
#endif /* MBEDTLS_FS_IO */
 | 
						|
 | 
						|
/*
 | 
						|
 * Import X from unsigned binary data, little endian
 | 
						|
 *
 | 
						|
 * This function is guaranteed to return an MPI with exactly the necessary
 | 
						|
 * number of limbs (in particular, it does not skip 0s in the input).
 | 
						|
 */
 | 
						|
int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
 | 
						|
                               const unsigned char *buf, size_t buflen)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    const size_t limbs = CHARS_TO_LIMBS(buflen);
 | 
						|
 | 
						|
    /* Ensure that target MPI has exactly the necessary number of limbs */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    /*
 | 
						|
     * This function is also used to import keys. However, wiping the buffers
 | 
						|
     * upon failure is not necessary because failure only can happen before any
 | 
						|
     * input is copied.
 | 
						|
     */
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Import X from unsigned binary data, big endian
 | 
						|
 *
 | 
						|
 * This function is guaranteed to return an MPI with exactly the necessary
 | 
						|
 * number of limbs (in particular, it does not skip 0s in the input).
 | 
						|
 */
 | 
						|
int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    const size_t limbs = CHARS_TO_LIMBS(buflen);
 | 
						|
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(buflen == 0 || buf != NULL);
 | 
						|
 | 
						|
    /* Ensure that target MPI has exactly the necessary number of limbs */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    /*
 | 
						|
     * This function is also used to import keys. However, wiping the buffers
 | 
						|
     * upon failure is not necessary because failure only can happen before any
 | 
						|
     * input is copied.
 | 
						|
     */
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Export X into unsigned binary data, little endian
 | 
						|
 */
 | 
						|
int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
 | 
						|
                                unsigned char *buf, size_t buflen)
 | 
						|
{
 | 
						|
    return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Export X into unsigned binary data, big endian
 | 
						|
 */
 | 
						|
int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
 | 
						|
                             unsigned char *buf, size_t buflen)
 | 
						|
{
 | 
						|
    return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Left-shift: X <<= count
 | 
						|
 */
 | 
						|
int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    size_t i, v0, t1;
 | 
						|
    mbedtls_mpi_uint r0 = 0, r1;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
 | 
						|
    v0 = count / (biL);
 | 
						|
    t1 = count & (biL - 1);
 | 
						|
 | 
						|
    i = mbedtls_mpi_bitlen(X) + count;
 | 
						|
 | 
						|
    if (X->n * biL < i) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
 | 
						|
    }
 | 
						|
 | 
						|
    ret = 0;
 | 
						|
 | 
						|
    /*
 | 
						|
     * shift by count / limb_size
 | 
						|
     */
 | 
						|
    if (v0 > 0) {
 | 
						|
        for (i = X->n; i > v0; i--) {
 | 
						|
            X->p[i - 1] = X->p[i - v0 - 1];
 | 
						|
        }
 | 
						|
 | 
						|
        for (; i > 0; i--) {
 | 
						|
            X->p[i - 1] = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * shift by count % limb_size
 | 
						|
     */
 | 
						|
    if (t1 > 0) {
 | 
						|
        for (i = v0; i < X->n; i++) {
 | 
						|
            r1 = X->p[i] >> (biL - t1);
 | 
						|
            X->p[i] <<= t1;
 | 
						|
            X->p[i] |= r0;
 | 
						|
            r0 = r1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Right-shift: X >>= count
 | 
						|
 */
 | 
						|
int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
 | 
						|
{
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    if (X->n != 0) {
 | 
						|
        mbedtls_mpi_core_shift_r(X->p, X->n, count);
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compare unsigned values
 | 
						|
 */
 | 
						|
int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
 | 
						|
{
 | 
						|
    size_t i, j;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(Y != NULL);
 | 
						|
 | 
						|
    for (i = X->n; i > 0; i--) {
 | 
						|
        if (X->p[i - 1] != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (j = Y->n; j > 0; j--) {
 | 
						|
        if (Y->p[j - 1] != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (i == 0 && j == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (i > j) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    if (j > i) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    for (; i > 0; i--) {
 | 
						|
        if (X->p[i - 1] > Y->p[i - 1]) {
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        if (X->p[i - 1] < Y->p[i - 1]) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compare signed values
 | 
						|
 */
 | 
						|
int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
 | 
						|
{
 | 
						|
    size_t i, j;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(Y != NULL);
 | 
						|
 | 
						|
    for (i = X->n; i > 0; i--) {
 | 
						|
        if (X->p[i - 1] != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    for (j = Y->n; j > 0; j--) {
 | 
						|
        if (Y->p[j - 1] != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (i == 0 && j == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (i > j) {
 | 
						|
        return X->s;
 | 
						|
    }
 | 
						|
    if (j > i) {
 | 
						|
        return -Y->s;
 | 
						|
    }
 | 
						|
 | 
						|
    if (X->s > 0 && Y->s < 0) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    if (Y->s > 0 && X->s < 0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    for (; i > 0; i--) {
 | 
						|
        if (X->p[i - 1] > Y->p[i - 1]) {
 | 
						|
            return X->s;
 | 
						|
        }
 | 
						|
        if (X->p[i - 1] < Y->p[i - 1]) {
 | 
						|
            return -X->s;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Compare signed values
 | 
						|
 */
 | 
						|
int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
 | 
						|
{
 | 
						|
    mbedtls_mpi Y;
 | 
						|
    mbedtls_mpi_uint p[1];
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
 | 
						|
    *p  = mpi_sint_abs(z);
 | 
						|
    Y.s = (z < 0) ? -1 : 1;
 | 
						|
    Y.n = 1;
 | 
						|
    Y.p = p;
 | 
						|
 | 
						|
    return mbedtls_mpi_cmp_mpi(X, &Y);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unsigned addition: X = |A| + |B|  (HAC 14.7)
 | 
						|
 */
 | 
						|
int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    size_t j;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
    MPI_VALIDATE_RET(B != NULL);
 | 
						|
 | 
						|
    if (X == B) {
 | 
						|
        const mbedtls_mpi *T = A; A = X; B = T;
 | 
						|
    }
 | 
						|
 | 
						|
    if (X != A) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * X must always be positive as a result of unsigned additions.
 | 
						|
     */
 | 
						|
    X->s = 1;
 | 
						|
 | 
						|
    for (j = B->n; j > 0; j--) {
 | 
						|
        if (B->p[j - 1] != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
 | 
						|
     * and B is 0 (of any size). */
 | 
						|
    if (j == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
 | 
						|
 | 
						|
    /* j is the number of non-zero limbs of B. Add those to X. */
 | 
						|
 | 
						|
    mbedtls_mpi_uint *p = X->p;
 | 
						|
 | 
						|
    mbedtls_mpi_uint c = mbedtls_mpi_core_add(p, p, B->p, j);
 | 
						|
 | 
						|
    p += j;
 | 
						|
 | 
						|
    /* Now propagate any carry */
 | 
						|
 | 
						|
    while (c != 0) {
 | 
						|
        if (j >= X->n) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
 | 
						|
            p = X->p + j;
 | 
						|
        }
 | 
						|
 | 
						|
        *p += c; c = (*p < c); j++; p++;
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unsigned subtraction: X = |A| - |B|  (HAC 14.9, 14.10)
 | 
						|
 */
 | 
						|
int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    size_t n;
 | 
						|
    mbedtls_mpi_uint carry;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
    MPI_VALIDATE_RET(B != NULL);
 | 
						|
 | 
						|
    for (n = B->n; n > 0; n--) {
 | 
						|
        if (B->p[n - 1] != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (n > A->n) {
 | 
						|
        /* B >= (2^ciL)^n > A */
 | 
						|
        ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
 | 
						|
 | 
						|
    /* Set the high limbs of X to match A. Don't touch the lower limbs
 | 
						|
     * because X might be aliased to B, and we must not overwrite the
 | 
						|
     * significant digits of B. */
 | 
						|
    if (A->n > n && A != X) {
 | 
						|
        memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
 | 
						|
    }
 | 
						|
    if (X->n > A->n) {
 | 
						|
        memset(X->p + A->n, 0, (X->n - A->n) * ciL);
 | 
						|
    }
 | 
						|
 | 
						|
    carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
 | 
						|
    if (carry != 0) {
 | 
						|
        /* Propagate the carry through the rest of X. */
 | 
						|
        carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
 | 
						|
 | 
						|
        /* If we have further carry/borrow, the result is negative. */
 | 
						|
        if (carry != 0) {
 | 
						|
            ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
 | 
						|
            goto cleanup;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* X should always be positive as a result of unsigned subtractions. */
 | 
						|
    X->s = 1;
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Common function for signed addition and subtraction.
 | 
						|
 * Calculate A + B * flip_B where flip_B is 1 or -1.
 | 
						|
 */
 | 
						|
static int add_sub_mpi(mbedtls_mpi *X,
 | 
						|
                       const mbedtls_mpi *A, const mbedtls_mpi *B,
 | 
						|
                       int flip_B)
 | 
						|
{
 | 
						|
    int ret, s;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
    MPI_VALIDATE_RET(B != NULL);
 | 
						|
 | 
						|
    s = A->s;
 | 
						|
    if (A->s * B->s * flip_B < 0) {
 | 
						|
        int cmp = mbedtls_mpi_cmp_abs(A, B);
 | 
						|
        if (cmp >= 0) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
 | 
						|
            /* If |A| = |B|, the result is 0 and we must set the sign bit
 | 
						|
             * to +1 regardless of which of A or B was negative. Otherwise,
 | 
						|
             * since |A| > |B|, the sign is the sign of A. */
 | 
						|
            X->s = cmp == 0 ? 1 : s;
 | 
						|
        } else {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
 | 
						|
            /* Since |A| < |B|, the sign is the opposite of A. */
 | 
						|
            X->s = -s;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
 | 
						|
        X->s = s;
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Signed addition: X = A + B
 | 
						|
 */
 | 
						|
int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | 
						|
{
 | 
						|
    return add_sub_mpi(X, A, B, 1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Signed subtraction: X = A - B
 | 
						|
 */
 | 
						|
int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | 
						|
{
 | 
						|
    return add_sub_mpi(X, A, B, -1);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Signed addition: X = A + b
 | 
						|
 */
 | 
						|
int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
 | 
						|
{
 | 
						|
    mbedtls_mpi B;
 | 
						|
    mbedtls_mpi_uint p[1];
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
 | 
						|
    p[0] = mpi_sint_abs(b);
 | 
						|
    B.s = (b < 0) ? -1 : 1;
 | 
						|
    B.n = 1;
 | 
						|
    B.p = p;
 | 
						|
 | 
						|
    return mbedtls_mpi_add_mpi(X, A, &B);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Signed subtraction: X = A - b
 | 
						|
 */
 | 
						|
int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
 | 
						|
{
 | 
						|
    mbedtls_mpi B;
 | 
						|
    mbedtls_mpi_uint p[1];
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
 | 
						|
    p[0] = mpi_sint_abs(b);
 | 
						|
    B.s = (b < 0) ? -1 : 1;
 | 
						|
    B.n = 1;
 | 
						|
    B.p = p;
 | 
						|
 | 
						|
    return mbedtls_mpi_sub_mpi(X, A, &B);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Baseline multiplication: X = A * B  (HAC 14.12)
 | 
						|
 */
 | 
						|
int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    size_t i, j;
 | 
						|
    mbedtls_mpi TA, TB;
 | 
						|
    int result_is_zero = 0;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
    MPI_VALIDATE_RET(B != NULL);
 | 
						|
 | 
						|
    mbedtls_mpi_init(&TA);
 | 
						|
    mbedtls_mpi_init(&TB);
 | 
						|
 | 
						|
    if (X == A) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
 | 
						|
    }
 | 
						|
    if (X == B) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = A->n; i > 0; i--) {
 | 
						|
        if (A->p[i - 1] != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (i == 0) {
 | 
						|
        result_is_zero = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    for (j = B->n; j > 0; j--) {
 | 
						|
        if (B->p[j - 1] != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (j == 0) {
 | 
						|
        result_is_zero = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
 | 
						|
 | 
						|
    mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
 | 
						|
 | 
						|
    /* If the result is 0, we don't shortcut the operation, which reduces
 | 
						|
     * but does not eliminate side channels leaking the zero-ness. We do
 | 
						|
     * need to take care to set the sign bit properly since the library does
 | 
						|
     * not fully support an MPI object with a value of 0 and s == -1. */
 | 
						|
    if (result_is_zero) {
 | 
						|
        X->s = 1;
 | 
						|
    } else {
 | 
						|
        X->s = A->s * B->s;
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Baseline multiplication: X = A * b
 | 
						|
 */
 | 
						|
int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
 | 
						|
{
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
 | 
						|
    size_t n = A->n;
 | 
						|
    while (n > 0 && A->p[n - 1] == 0) {
 | 
						|
        --n;
 | 
						|
    }
 | 
						|
 | 
						|
    /* The general method below doesn't work if b==0. */
 | 
						|
    if (b == 0 || n == 0) {
 | 
						|
        return mbedtls_mpi_lset(X, 0);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    /* In general, A * b requires 1 limb more than b. If
 | 
						|
     * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
 | 
						|
     * number of limbs as A and the call to grow() is not required since
 | 
						|
     * copy() will take care of the growth if needed. However, experimentally,
 | 
						|
     * making the call to grow() unconditional causes slightly fewer
 | 
						|
     * calls to calloc() in ECP code, presumably because it reuses the
 | 
						|
     * same mpi for a while and this way the mpi is more likely to directly
 | 
						|
     * grow to its final size.
 | 
						|
     *
 | 
						|
     * Note that calculating A*b as 0 + A*b doesn't work as-is because
 | 
						|
     * A,X can be the same. */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
 | 
						|
    mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
 | 
						|
 * mbedtls_mpi_uint divisor, d
 | 
						|
 */
 | 
						|
static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
 | 
						|
                                            mbedtls_mpi_uint u0,
 | 
						|
                                            mbedtls_mpi_uint d,
 | 
						|
                                            mbedtls_mpi_uint *r)
 | 
						|
{
 | 
						|
#if defined(MBEDTLS_HAVE_UDBL)
 | 
						|
    mbedtls_t_udbl dividend, quotient;
 | 
						|
#else
 | 
						|
    const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
 | 
						|
    const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
 | 
						|
    mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
 | 
						|
    mbedtls_mpi_uint u0_msw, u0_lsw;
 | 
						|
    size_t s;
 | 
						|
#endif
 | 
						|
 | 
						|
    /*
 | 
						|
     * Check for overflow
 | 
						|
     */
 | 
						|
    if (0 == d || u1 >= d) {
 | 
						|
        if (r != NULL) {
 | 
						|
            *r = ~(mbedtls_mpi_uint) 0u;
 | 
						|
        }
 | 
						|
 | 
						|
        return ~(mbedtls_mpi_uint) 0u;
 | 
						|
    }
 | 
						|
 | 
						|
#if defined(MBEDTLS_HAVE_UDBL)
 | 
						|
    dividend  = (mbedtls_t_udbl) u1 << biL;
 | 
						|
    dividend |= (mbedtls_t_udbl) u0;
 | 
						|
    quotient = dividend / d;
 | 
						|
    if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
 | 
						|
        quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (r != NULL) {
 | 
						|
        *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
 | 
						|
    }
 | 
						|
 | 
						|
    return (mbedtls_mpi_uint) quotient;
 | 
						|
#else
 | 
						|
 | 
						|
    /*
 | 
						|
     * Algorithm D, Section 4.3.1 - The Art of Computer Programming
 | 
						|
     *   Vol. 2 - Seminumerical Algorithms, Knuth
 | 
						|
     */
 | 
						|
 | 
						|
    /*
 | 
						|
     * Normalize the divisor, d, and dividend, u0, u1
 | 
						|
     */
 | 
						|
    s = mbedtls_mpi_core_clz(d);
 | 
						|
    d = d << s;
 | 
						|
 | 
						|
    u1 = u1 << s;
 | 
						|
    u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
 | 
						|
    u0 =  u0 << s;
 | 
						|
 | 
						|
    d1 = d >> biH;
 | 
						|
    d0 = d & uint_halfword_mask;
 | 
						|
 | 
						|
    u0_msw = u0 >> biH;
 | 
						|
    u0_lsw = u0 & uint_halfword_mask;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Find the first quotient and remainder
 | 
						|
     */
 | 
						|
    q1 = u1 / d1;
 | 
						|
    r0 = u1 - d1 * q1;
 | 
						|
 | 
						|
    while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
 | 
						|
        q1 -= 1;
 | 
						|
        r0 += d1;
 | 
						|
 | 
						|
        if (r0 >= radix) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    rAX = (u1 * radix) + (u0_msw - q1 * d);
 | 
						|
    q0 = rAX / d1;
 | 
						|
    r0 = rAX - q0 * d1;
 | 
						|
 | 
						|
    while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
 | 
						|
        q0 -= 1;
 | 
						|
        r0 += d1;
 | 
						|
 | 
						|
        if (r0 >= radix) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (r != NULL) {
 | 
						|
        *r = (rAX * radix + u0_lsw - q0 * d) >> s;
 | 
						|
    }
 | 
						|
 | 
						|
    quotient = q1 * radix + q0;
 | 
						|
 | 
						|
    return quotient;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)
 | 
						|
 */
 | 
						|
int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
 | 
						|
                        const mbedtls_mpi *B)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    size_t i, n, t, k;
 | 
						|
    mbedtls_mpi X, Y, Z, T1, T2;
 | 
						|
    mbedtls_mpi_uint TP2[3];
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
    MPI_VALIDATE_RET(B != NULL);
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(B, 0) == 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
 | 
						|
    mbedtls_mpi_init(&T1);
 | 
						|
    /*
 | 
						|
     * Avoid dynamic memory allocations for constant-size T2.
 | 
						|
     *
 | 
						|
     * T2 is used for comparison only and the 3 limbs are assigned explicitly,
 | 
						|
     * so nobody increase the size of the MPI and we're safe to use an on-stack
 | 
						|
     * buffer.
 | 
						|
     */
 | 
						|
    T2.s = 1;
 | 
						|
    T2.n = sizeof(TP2) / sizeof(*TP2);
 | 
						|
    T2.p = TP2;
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_abs(A, B) < 0) {
 | 
						|
        if (Q != NULL) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
 | 
						|
        }
 | 
						|
        if (R != NULL) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
 | 
						|
    X.s = Y.s = 1;
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z,  0));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
 | 
						|
 | 
						|
    k = mbedtls_mpi_bitlen(&Y) % biL;
 | 
						|
    if (k < biL - 1) {
 | 
						|
        k = biL - 1 - k;
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
 | 
						|
    } else {
 | 
						|
        k = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    n = X.n - 1;
 | 
						|
    t = Y.n - 1;
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
 | 
						|
 | 
						|
    while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
 | 
						|
        Z.p[n - t]++;
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
 | 
						|
    }
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
 | 
						|
 | 
						|
    for (i = n; i > t; i--) {
 | 
						|
        if (X.p[i] >= Y.p[t]) {
 | 
						|
            Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
 | 
						|
        } else {
 | 
						|
            Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
 | 
						|
                                                 Y.p[t], NULL);
 | 
						|
        }
 | 
						|
 | 
						|
        T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
 | 
						|
        T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
 | 
						|
        T2.p[2] = X.p[i];
 | 
						|
 | 
						|
        Z.p[i - t - 1]++;
 | 
						|
        do {
 | 
						|
            Z.p[i - t - 1]--;
 | 
						|
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
 | 
						|
            T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
 | 
						|
            T1.p[1] = Y.p[t];
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
 | 
						|
        } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1,  biL * (i - t - 1)));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
 | 
						|
 | 
						|
        if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
 | 
						|
            Z.p[i - t - 1]--;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (Q != NULL) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
 | 
						|
        Q->s = A->s * B->s;
 | 
						|
    }
 | 
						|
 | 
						|
    if (R != NULL) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
 | 
						|
        X.s = A->s;
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
 | 
						|
 | 
						|
        if (mbedtls_mpi_cmp_int(R, 0) == 0) {
 | 
						|
            R->s = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
 | 
						|
    mbedtls_mpi_free(&T1);
 | 
						|
    mbedtls_platform_zeroize(TP2, sizeof(TP2));
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Division by int: A = Q * b + R
 | 
						|
 */
 | 
						|
int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
 | 
						|
                        const mbedtls_mpi *A,
 | 
						|
                        mbedtls_mpi_sint b)
 | 
						|
{
 | 
						|
    mbedtls_mpi B;
 | 
						|
    mbedtls_mpi_uint p[1];
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
 | 
						|
    p[0] = mpi_sint_abs(b);
 | 
						|
    B.s = (b < 0) ? -1 : 1;
 | 
						|
    B.n = 1;
 | 
						|
    B.p = p;
 | 
						|
 | 
						|
    return mbedtls_mpi_div_mpi(Q, R, A, &B);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Modulo: R = A mod B
 | 
						|
 */
 | 
						|
int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    MPI_VALIDATE_RET(R != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
    MPI_VALIDATE_RET(B != NULL);
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(B, 0) < 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
 | 
						|
 | 
						|
    while (mbedtls_mpi_cmp_int(R, 0) < 0) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
 | 
						|
    }
 | 
						|
 | 
						|
    while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Modulo: r = A mod b
 | 
						|
 */
 | 
						|
int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
 | 
						|
{
 | 
						|
    size_t i;
 | 
						|
    mbedtls_mpi_uint x, y, z;
 | 
						|
    MPI_VALIDATE_RET(r != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
 | 
						|
    if (b == 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
 | 
						|
    }
 | 
						|
 | 
						|
    if (b < 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * handle trivial cases
 | 
						|
     */
 | 
						|
    if (b == 1 || A->n == 0) {
 | 
						|
        *r = 0;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (b == 2) {
 | 
						|
        *r = A->p[0] & 1;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * general case
 | 
						|
     */
 | 
						|
    for (i = A->n, y = 0; i > 0; i--) {
 | 
						|
        x  = A->p[i - 1];
 | 
						|
        y  = (y << biH) | (x >> biH);
 | 
						|
        z  = y / b;
 | 
						|
        y -= z * b;
 | 
						|
 | 
						|
        x <<= biH;
 | 
						|
        y  = (y << biH) | (x >> biH);
 | 
						|
        z  = y / b;
 | 
						|
        y -= z * b;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * If A is negative, then the current y represents a negative value.
 | 
						|
     * Flipping it to the positive side.
 | 
						|
     */
 | 
						|
    if (A->s < 0 && y != 0) {
 | 
						|
        y = b - y;
 | 
						|
    }
 | 
						|
 | 
						|
    *r = y;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N)
 | 
						|
{
 | 
						|
    *mm = mbedtls_mpi_core_montmul_init(N->p);
 | 
						|
}
 | 
						|
 | 
						|
/** Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36)
 | 
						|
 *
 | 
						|
 * \param[in,out]   A   One of the numbers to multiply.
 | 
						|
 *                      It must have at least as many limbs as N
 | 
						|
 *                      (A->n >= N->n), and any limbs beyond n are ignored.
 | 
						|
 *                      On successful completion, A contains the result of
 | 
						|
 *                      the multiplication A * B * R^-1 mod N where
 | 
						|
 *                      R = (2^ciL)^n.
 | 
						|
 * \param[in]       B   One of the numbers to multiply.
 | 
						|
 *                      It must be nonzero and must not have more limbs than N
 | 
						|
 *                      (B->n <= N->n).
 | 
						|
 * \param[in]       N   The modulus. \p N must be odd.
 | 
						|
 * \param           mm  The value calculated by `mpi_montg_init(&mm, N)`.
 | 
						|
 *                      This is -N^-1 mod 2^ciL.
 | 
						|
 * \param[in,out]   T   A bignum for temporary storage.
 | 
						|
 *                      It must be at least twice the limb size of N plus 1
 | 
						|
 *                      (T->n >= 2 * N->n + 1).
 | 
						|
 *                      Its initial content is unused and
 | 
						|
 *                      its final content is indeterminate.
 | 
						|
 *                      It does not get reallocated.
 | 
						|
 */
 | 
						|
static void mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
 | 
						|
                        const mbedtls_mpi *N, mbedtls_mpi_uint mm,
 | 
						|
                        mbedtls_mpi *T)
 | 
						|
{
 | 
						|
    mbedtls_mpi_core_montmul(A->p, A->p, B->p, B->n, N->p, N->n, mm, T->p);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Montgomery reduction: A = A * R^-1 mod N
 | 
						|
 *
 | 
						|
 * See mpi_montmul() regarding constraints and guarantees on the parameters.
 | 
						|
 */
 | 
						|
static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N,
 | 
						|
                        mbedtls_mpi_uint mm, mbedtls_mpi *T)
 | 
						|
{
 | 
						|
    mbedtls_mpi_uint z = 1;
 | 
						|
    mbedtls_mpi U;
 | 
						|
 | 
						|
    U.n = U.s = (int) z;
 | 
						|
    U.p = &z;
 | 
						|
 | 
						|
    mpi_montmul(A, &U, N, mm, T);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Select an MPI from a table without leaking the index.
 | 
						|
 *
 | 
						|
 * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it
 | 
						|
 * reads the entire table in order to avoid leaking the value of idx to an
 | 
						|
 * attacker able to observe memory access patterns.
 | 
						|
 *
 | 
						|
 * \param[out] R        Where to write the selected MPI.
 | 
						|
 * \param[in] T         The table to read from.
 | 
						|
 * \param[in] T_size    The number of elements in the table.
 | 
						|
 * \param[in] idx       The index of the element to select;
 | 
						|
 *                      this must satisfy 0 <= idx < T_size.
 | 
						|
 *
 | 
						|
 * \return \c 0 on success, or a negative error code.
 | 
						|
 */
 | 
						|
static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
 | 
						|
    for (size_t i = 0; i < T_size; i++) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i],
 | 
						|
                                                     (unsigned char) mbedtls_ct_size_bool_eq(i,
 | 
						|
                                                                                             idx)));
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85)
 | 
						|
 */
 | 
						|
int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
 | 
						|
                        const mbedtls_mpi *E, const mbedtls_mpi *N,
 | 
						|
                        mbedtls_mpi *prec_RR)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    size_t window_bitsize;
 | 
						|
    size_t i, j, nblimbs;
 | 
						|
    size_t bufsize, nbits;
 | 
						|
    size_t exponent_bits_in_window = 0;
 | 
						|
    mbedtls_mpi_uint ei, mm, state;
 | 
						|
    mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos;
 | 
						|
    int neg;
 | 
						|
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
    MPI_VALIDATE_RET(E != NULL);
 | 
						|
    MPI_VALIDATE_RET(N != NULL);
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(E, 0) < 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
 | 
						|
        mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Init temps and window size
 | 
						|
     */
 | 
						|
    mpi_montg_init(&mm, N);
 | 
						|
    mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T);
 | 
						|
    mbedtls_mpi_init(&Apos);
 | 
						|
    mbedtls_mpi_init(&WW);
 | 
						|
    memset(W, 0, sizeof(W));
 | 
						|
 | 
						|
    i = mbedtls_mpi_bitlen(E);
 | 
						|
 | 
						|
    window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 :
 | 
						|
                     (i >  79) ? 4 : (i >  23) ? 3 : 1;
 | 
						|
 | 
						|
#if (MBEDTLS_MPI_WINDOW_SIZE < 6)
 | 
						|
    if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) {
 | 
						|
        window_bitsize = MBEDTLS_MPI_WINDOW_SIZE;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    const size_t w_table_used_size = (size_t) 1 << window_bitsize;
 | 
						|
 | 
						|
    /*
 | 
						|
     * This function is not constant-trace: its memory accesses depend on the
 | 
						|
     * exponent value. To defend against timing attacks, callers (such as RSA
 | 
						|
     * and DHM) should use exponent blinding. However this is not enough if the
 | 
						|
     * adversary can find the exponent in a single trace, so this function
 | 
						|
     * takes extra precautions against adversaries who can observe memory
 | 
						|
     * access patterns.
 | 
						|
     *
 | 
						|
     * This function performs a series of multiplications by table elements and
 | 
						|
     * squarings, and we want the prevent the adversary from finding out which
 | 
						|
     * table element was used, and from distinguishing between multiplications
 | 
						|
     * and squarings. Firstly, when multiplying by an element of the window
 | 
						|
     * W[i], we do a constant-trace table lookup to obfuscate i. This leaves
 | 
						|
     * squarings as having a different memory access patterns from other
 | 
						|
     * multiplications. So secondly, we put the accumulator X in the table as
 | 
						|
     * well, and also do a constant-trace table lookup to multiply by X.
 | 
						|
     *
 | 
						|
     * This way, all multiplications take the form of a lookup-and-multiply.
 | 
						|
     * The number of lookup-and-multiply operations inside each iteration of
 | 
						|
     * the main loop still depends on the bits of the exponent, but since the
 | 
						|
     * other operations in the loop don't have an easily recognizable memory
 | 
						|
     * trace, an adversary is unlikely to be able to observe the exact
 | 
						|
     * patterns.
 | 
						|
     *
 | 
						|
     * An adversary may still be able to recover the exponent if they can
 | 
						|
     * observe both memory accesses and branches. However, branch prediction
 | 
						|
     * exploitation typically requires many traces of execution over the same
 | 
						|
     * data, which is defeated by randomized blinding.
 | 
						|
     *
 | 
						|
     * To achieve this, we make a copy of X and we use the table entry in each
 | 
						|
     * calculation from this point on.
 | 
						|
     */
 | 
						|
    const size_t x_index = 0;
 | 
						|
    mbedtls_mpi_init(&W[x_index]);
 | 
						|
    mbedtls_mpi_copy(&W[x_index], X);
 | 
						|
 | 
						|
    j = N->n + 1;
 | 
						|
    /* All W[i] and X must have at least N->n limbs for the mpi_montmul()
 | 
						|
     * and mpi_montred() calls later. Here we ensure that W[1] and X are
 | 
						|
     * large enough, and later we'll grow other W[i] to the same length.
 | 
						|
     * They must not be shrunk midway through this function!
 | 
						|
     */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1],  j));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
 | 
						|
 | 
						|
    /*
 | 
						|
     * Compensate for negative A (and correct at the end)
 | 
						|
     */
 | 
						|
    neg = (A->s == -1);
 | 
						|
    if (neg) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
 | 
						|
        Apos.s = 1;
 | 
						|
        A = &Apos;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * If 1st call, pre-compute R^2 mod N
 | 
						|
     */
 | 
						|
    if (prec_RR == NULL || prec_RR->p == NULL) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
 | 
						|
 | 
						|
        if (prec_RR != NULL) {
 | 
						|
            memcpy(prec_RR, &RR, sizeof(mbedtls_mpi));
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        memcpy(&RR, prec_RR, sizeof(mbedtls_mpi));
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * W[1] = A * R^2 * R^-1 mod N = A * R mod N
 | 
						|
     */
 | 
						|
    if (mbedtls_mpi_cmp_mpi(A, N) >= 0) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
 | 
						|
        /* This should be a no-op because W[1] is already that large before
 | 
						|
         * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow
 | 
						|
         * in mpi_montmul() below, so let's make sure. */
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1));
 | 
						|
    } else {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
 | 
						|
    }
 | 
						|
 | 
						|
    /* Note that this is safe because W[1] always has at least N->n limbs
 | 
						|
     * (it grew above and was preserved by mbedtls_mpi_copy()). */
 | 
						|
    mpi_montmul(&W[1], &RR, N, mm, &T);
 | 
						|
 | 
						|
    /*
 | 
						|
     * W[x_index] = R^2 * R^-1 mod N = R mod N
 | 
						|
     */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR));
 | 
						|
    mpi_montred(&W[x_index], N, mm, &T);
 | 
						|
 | 
						|
 | 
						|
    if (window_bitsize > 1) {
 | 
						|
        /*
 | 
						|
         * W[i] = W[1] ^ i
 | 
						|
         *
 | 
						|
         * The first bit of the sliding window is always 1 and therefore we
 | 
						|
         * only need to store the second half of the table.
 | 
						|
         *
 | 
						|
         * (There are two special elements in the table: W[0] for the
 | 
						|
         * accumulator/result and W[1] for A in Montgomery form. Both of these
 | 
						|
         * are already set at this point.)
 | 
						|
         */
 | 
						|
        j = w_table_used_size / 2;
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
 | 
						|
 | 
						|
        for (i = 0; i < window_bitsize - 1; i++) {
 | 
						|
            mpi_montmul(&W[j], &W[j], N, mm, &T);
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * W[i] = W[i - 1] * W[1]
 | 
						|
         */
 | 
						|
        for (i = j + 1; i < w_table_used_size; i++) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
 | 
						|
 | 
						|
            mpi_montmul(&W[i], &W[1], N, mm, &T);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    nblimbs = E->n;
 | 
						|
    bufsize = 0;
 | 
						|
    nbits   = 0;
 | 
						|
    state   = 0;
 | 
						|
 | 
						|
    while (1) {
 | 
						|
        if (bufsize == 0) {
 | 
						|
            if (nblimbs == 0) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            nblimbs--;
 | 
						|
 | 
						|
            bufsize = sizeof(mbedtls_mpi_uint) << 3;
 | 
						|
        }
 | 
						|
 | 
						|
        bufsize--;
 | 
						|
 | 
						|
        ei = (E->p[nblimbs] >> bufsize) & 1;
 | 
						|
 | 
						|
        /*
 | 
						|
         * skip leading 0s
 | 
						|
         */
 | 
						|
        if (ei == 0 && state == 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (ei == 0 && state == 1) {
 | 
						|
            /*
 | 
						|
             * out of window, square W[x_index]
 | 
						|
             */
 | 
						|
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
 | 
						|
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * add ei to current window
 | 
						|
         */
 | 
						|
        state = 2;
 | 
						|
 | 
						|
        nbits++;
 | 
						|
        exponent_bits_in_window |= (ei << (window_bitsize - nbits));
 | 
						|
 | 
						|
        if (nbits == window_bitsize) {
 | 
						|
            /*
 | 
						|
             * W[x_index] = W[x_index]^window_bitsize R^-1 mod N
 | 
						|
             */
 | 
						|
            for (i = 0; i < window_bitsize; i++) {
 | 
						|
                MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
 | 
						|
                                           x_index));
 | 
						|
                mpi_montmul(&W[x_index], &WW, N, mm, &T);
 | 
						|
            }
 | 
						|
 | 
						|
            /*
 | 
						|
             * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N
 | 
						|
             */
 | 
						|
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size,
 | 
						|
                                       exponent_bits_in_window));
 | 
						|
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
 | 
						|
 | 
						|
            state--;
 | 
						|
            nbits = 0;
 | 
						|
            exponent_bits_in_window = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * process the remaining bits
 | 
						|
     */
 | 
						|
    for (i = 0; i < nbits; i++) {
 | 
						|
        MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index));
 | 
						|
        mpi_montmul(&W[x_index], &WW, N, mm, &T);
 | 
						|
 | 
						|
        exponent_bits_in_window <<= 1;
 | 
						|
 | 
						|
        if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) {
 | 
						|
            MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1));
 | 
						|
            mpi_montmul(&W[x_index], &WW, N, mm, &T);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * W[x_index] = A^E * R * R^-1 mod N = A^E mod N
 | 
						|
     */
 | 
						|
    mpi_montred(&W[x_index], N, mm, &T);
 | 
						|
 | 
						|
    if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
 | 
						|
        W[x_index].s = -1;
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index]));
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Load the result in the output variable.
 | 
						|
     */
 | 
						|
    mbedtls_mpi_copy(X, &W[x_index]);
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    /* The first bit of the sliding window is always 1 and therefore the first
 | 
						|
     * half of the table was unused. */
 | 
						|
    for (i = w_table_used_size/2; i < w_table_used_size; i++) {
 | 
						|
        mbedtls_mpi_free(&W[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_mpi_free(&W[x_index]);
 | 
						|
    mbedtls_mpi_free(&W[1]);
 | 
						|
    mbedtls_mpi_free(&T);
 | 
						|
    mbedtls_mpi_free(&Apos);
 | 
						|
    mbedtls_mpi_free(&WW);
 | 
						|
 | 
						|
    if (prec_RR == NULL || prec_RR->p == NULL) {
 | 
						|
        mbedtls_mpi_free(&RR);
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)
 | 
						|
 */
 | 
						|
int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    size_t lz, lzt;
 | 
						|
    mbedtls_mpi TA, TB;
 | 
						|
 | 
						|
    MPI_VALIDATE_RET(G != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
    MPI_VALIDATE_RET(B != NULL);
 | 
						|
 | 
						|
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
 | 
						|
 | 
						|
    lz = mbedtls_mpi_lsb(&TA);
 | 
						|
    lzt = mbedtls_mpi_lsb(&TB);
 | 
						|
 | 
						|
    /* The loop below gives the correct result when A==0 but not when B==0.
 | 
						|
     * So have a special case for B==0. Leverage the fact that we just
 | 
						|
     * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
 | 
						|
     * slightly more efficient than cmp_int(). */
 | 
						|
    if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
 | 
						|
        ret = mbedtls_mpi_copy(G, A);
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lzt < lz) {
 | 
						|
        lz = lzt;
 | 
						|
    }
 | 
						|
 | 
						|
    TA.s = TB.s = 1;
 | 
						|
 | 
						|
    /* We mostly follow the procedure described in HAC 14.54, but with some
 | 
						|
     * minor differences:
 | 
						|
     * - Sequences of multiplications or divisions by 2 are grouped into a
 | 
						|
     *   single shift operation.
 | 
						|
     * - The procedure in HAC assumes that 0 < TB <= TA.
 | 
						|
     *     - The condition TB <= TA is not actually necessary for correctness.
 | 
						|
     *       TA and TB have symmetric roles except for the loop termination
 | 
						|
     *       condition, and the shifts at the beginning of the loop body
 | 
						|
     *       remove any significance from the ordering of TA vs TB before
 | 
						|
     *       the shifts.
 | 
						|
     *     - If TA = 0, the loop goes through 0 iterations and the result is
 | 
						|
     *       correctly TB.
 | 
						|
     *     - The case TB = 0 was short-circuited above.
 | 
						|
     *
 | 
						|
     * For the correctness proof below, decompose the original values of
 | 
						|
     * A and B as
 | 
						|
     *   A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
 | 
						|
     *   B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
 | 
						|
     * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
 | 
						|
     * and gcd(A',B') is odd or 0.
 | 
						|
     *
 | 
						|
     * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
 | 
						|
     * The code maintains the following invariant:
 | 
						|
     *     gcd(A,B) = 2^k * gcd(TA,TB) for some k   (I)
 | 
						|
     */
 | 
						|
 | 
						|
    /* Proof that the loop terminates:
 | 
						|
     * At each iteration, either the right-shift by 1 is made on a nonzero
 | 
						|
     * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
 | 
						|
     * by at least 1, or the right-shift by 1 is made on zero and then
 | 
						|
     * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
 | 
						|
     * since in that case TB is calculated from TB-TA with the condition TB>TA).
 | 
						|
     */
 | 
						|
    while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
 | 
						|
        /* Divisions by 2 preserve the invariant (I). */
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
 | 
						|
 | 
						|
        /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
 | 
						|
         * TA-TB is even so the division by 2 has an integer result.
 | 
						|
         * Invariant (I) is preserved since any odd divisor of both TA and TB
 | 
						|
         * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
 | 
						|
         * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
 | 
						|
         * divides TA.
 | 
						|
         */
 | 
						|
        if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
 | 
						|
        } else {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
 | 
						|
        }
 | 
						|
        /* Note that one of TA or TB is still odd. */
 | 
						|
    }
 | 
						|
 | 
						|
    /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
 | 
						|
     * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
 | 
						|
     * - If there was at least one loop iteration, then one of TA or TB is odd,
 | 
						|
     *   and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
 | 
						|
     *   lz = min(a,b) so gcd(A,B) = 2^lz * TB.
 | 
						|
     * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
 | 
						|
     *   In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
 | 
						|
     */
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Fill X with size bytes of random.
 | 
						|
 * The bytes returned from the RNG are used in a specific order which
 | 
						|
 * is suitable for deterministic ECDSA (see the specification of
 | 
						|
 * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
 | 
						|
 */
 | 
						|
int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
 | 
						|
                            int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                            void *p_rng)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    const size_t limbs = CHARS_TO_LIMBS(size);
 | 
						|
 | 
						|
    MPI_VALIDATE_RET(X     != NULL);
 | 
						|
    MPI_VALIDATE_RET(f_rng != NULL);
 | 
						|
 | 
						|
    /* Ensure that target MPI has exactly the necessary number of limbs */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
 | 
						|
    if (size == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
int mbedtls_mpi_random(mbedtls_mpi *X,
 | 
						|
                       mbedtls_mpi_sint min,
 | 
						|
                       const mbedtls_mpi *N,
 | 
						|
                       int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                       void *p_rng)
 | 
						|
{
 | 
						|
    if (min < 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
    if (mbedtls_mpi_cmp_int(N, min) <= 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Ensure that target MPI has exactly the same number of limbs
 | 
						|
     * as the upper bound, even if the upper bound has leading zeros.
 | 
						|
     * This is necessary for mbedtls_mpi_core_random. */
 | 
						|
    int ret = mbedtls_mpi_resize_clear(X, N->n);
 | 
						|
    if (ret != 0) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)
 | 
						|
 */
 | 
						|
int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
 | 
						|
    MPI_VALIDATE_RET(X != NULL);
 | 
						|
    MPI_VALIDATE_RET(A != NULL);
 | 
						|
    MPI_VALIDATE_RET(N != NULL);
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
 | 
						|
    mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
 | 
						|
    mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
 | 
						|
        ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
 | 
						|
 | 
						|
    do {
 | 
						|
        while ((TU.p[0] & 1) == 0) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
 | 
						|
 | 
						|
            if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
 | 
						|
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
 | 
						|
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
 | 
						|
            }
 | 
						|
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
 | 
						|
        }
 | 
						|
 | 
						|
        while ((TV.p[0] & 1) == 0) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
 | 
						|
 | 
						|
            if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
 | 
						|
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
 | 
						|
                MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
 | 
						|
            }
 | 
						|
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
 | 
						|
        }
 | 
						|
 | 
						|
        if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
 | 
						|
        } else {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
 | 
						|
        }
 | 
						|
    } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
 | 
						|
 | 
						|
    while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
 | 
						|
    }
 | 
						|
 | 
						|
    while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
 | 
						|
    mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
 | 
						|
    mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(MBEDTLS_GENPRIME)
 | 
						|
 | 
						|
static const int small_prime[] =
 | 
						|
{
 | 
						|
    3,    5,    7,   11,   13,   17,   19,   23,
 | 
						|
    29,   31,   37,   41,   43,   47,   53,   59,
 | 
						|
    61,   67,   71,   73,   79,   83,   89,   97,
 | 
						|
    101,  103,  107,  109,  113,  127,  131,  137,
 | 
						|
    139,  149,  151,  157,  163,  167,  173,  179,
 | 
						|
    181,  191,  193,  197,  199,  211,  223,  227,
 | 
						|
    229,  233,  239,  241,  251,  257,  263,  269,
 | 
						|
    271,  277,  281,  283,  293,  307,  311,  313,
 | 
						|
    317,  331,  337,  347,  349,  353,  359,  367,
 | 
						|
    373,  379,  383,  389,  397,  401,  409,  419,
 | 
						|
    421,  431,  433,  439,  443,  449,  457,  461,
 | 
						|
    463,  467,  479,  487,  491,  499,  503,  509,
 | 
						|
    521,  523,  541,  547,  557,  563,  569,  571,
 | 
						|
    577,  587,  593,  599,  601,  607,  613,  617,
 | 
						|
    619,  631,  641,  643,  647,  653,  659,  661,
 | 
						|
    673,  677,  683,  691,  701,  709,  719,  727,
 | 
						|
    733,  739,  743,  751,  757,  761,  769,  773,
 | 
						|
    787,  797,  809,  811,  821,  823,  827,  829,
 | 
						|
    839,  853,  857,  859,  863,  877,  881,  883,
 | 
						|
    887,  907,  911,  919,  929,  937,  941,  947,
 | 
						|
    953,  967,  971,  977,  983,  991,  997, -103
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Small divisors test (X must be positive)
 | 
						|
 *
 | 
						|
 * Return values:
 | 
						|
 * 0: no small factor (possible prime, more tests needed)
 | 
						|
 * 1: certain prime
 | 
						|
 * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
 | 
						|
 * other negative: error
 | 
						|
 */
 | 
						|
static int mpi_check_small_factors(const mbedtls_mpi *X)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    size_t i;
 | 
						|
    mbedtls_mpi_uint r;
 | 
						|
 | 
						|
    if ((X->p[0] & 1) == 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; small_prime[i] > 0; i++) {
 | 
						|
        if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) {
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
 | 
						|
 | 
						|
        if (r == 0) {
 | 
						|
            return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Miller-Rabin pseudo-primality test  (HAC 4.24)
 | 
						|
 */
 | 
						|
static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
 | 
						|
                            int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                            void *p_rng)
 | 
						|
{
 | 
						|
    int ret, count;
 | 
						|
    size_t i, j, k, s;
 | 
						|
    mbedtls_mpi W, R, T, A, RR;
 | 
						|
 | 
						|
    MPI_VALIDATE_RET(X     != NULL);
 | 
						|
    MPI_VALIDATE_RET(f_rng != NULL);
 | 
						|
 | 
						|
    mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
 | 
						|
    mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
 | 
						|
    mbedtls_mpi_init(&RR);
 | 
						|
 | 
						|
    /*
 | 
						|
     * W = |X| - 1
 | 
						|
     * R = W >> lsb( W )
 | 
						|
     */
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
 | 
						|
    s = mbedtls_mpi_lsb(&W);
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
 | 
						|
 | 
						|
    for (i = 0; i < rounds; i++) {
 | 
						|
        /*
 | 
						|
         * pick a random A, 1 < A < |X| - 1
 | 
						|
         */
 | 
						|
        count = 0;
 | 
						|
        do {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
 | 
						|
 | 
						|
            j = mbedtls_mpi_bitlen(&A);
 | 
						|
            k = mbedtls_mpi_bitlen(&W);
 | 
						|
            if (j > k) {
 | 
						|
                A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
 | 
						|
            }
 | 
						|
 | 
						|
            if (count++ > 30) {
 | 
						|
                ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | 
						|
                goto cleanup;
 | 
						|
            }
 | 
						|
 | 
						|
        } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
 | 
						|
                 mbedtls_mpi_cmp_int(&A, 1)  <= 0);
 | 
						|
 | 
						|
        /*
 | 
						|
         * A = A^R mod |X|
 | 
						|
         */
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
 | 
						|
 | 
						|
        if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
 | 
						|
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        j = 1;
 | 
						|
        while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
 | 
						|
            /*
 | 
						|
             * A = A * A mod |X|
 | 
						|
             */
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
 | 
						|
 | 
						|
            if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            j++;
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * not prime if A != |X| - 1 or A == 1
 | 
						|
         */
 | 
						|
        if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
 | 
						|
            mbedtls_mpi_cmp_int(&A,  1) == 0) {
 | 
						|
            ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
    mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
 | 
						|
    mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
 | 
						|
    mbedtls_mpi_free(&RR);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Pseudo-primality test: small factors, then Miller-Rabin
 | 
						|
 */
 | 
						|
int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
 | 
						|
                             int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                             void *p_rng)
 | 
						|
{
 | 
						|
    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
 | 
						|
    mbedtls_mpi XX;
 | 
						|
    MPI_VALIDATE_RET(X     != NULL);
 | 
						|
    MPI_VALIDATE_RET(f_rng != NULL);
 | 
						|
 | 
						|
    XX.s = 1;
 | 
						|
    XX.n = X->n;
 | 
						|
    XX.p = X->p;
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
 | 
						|
        mbedtls_mpi_cmp_int(&XX, 1) == 0) {
 | 
						|
        return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((ret = mpi_check_small_factors(&XX)) != 0) {
 | 
						|
        if (ret == 1) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Prime number generation
 | 
						|
 *
 | 
						|
 * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
 | 
						|
 * be either 1024 bits or 1536 bits long, and flags must contain
 | 
						|
 * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
 | 
						|
 */
 | 
						|
int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
 | 
						|
                          int (*f_rng)(void *, unsigned char *, size_t),
 | 
						|
                          void *p_rng)
 | 
						|
{
 | 
						|
#ifdef MBEDTLS_HAVE_INT64
 | 
						|
// ceil(2^63.5)
 | 
						|
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
 | 
						|
#else
 | 
						|
// ceil(2^31.5)
 | 
						|
#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
 | 
						|
#endif
 | 
						|
    int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | 
						|
    size_t k, n;
 | 
						|
    int rounds;
 | 
						|
    mbedtls_mpi_uint r;
 | 
						|
    mbedtls_mpi Y;
 | 
						|
 | 
						|
    MPI_VALIDATE_RET(X     != NULL);
 | 
						|
    MPI_VALIDATE_RET(f_rng != NULL);
 | 
						|
 | 
						|
    if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
 | 
						|
        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_mpi_init(&Y);
 | 
						|
 | 
						|
    n = BITS_TO_LIMBS(nbits);
 | 
						|
 | 
						|
    if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
 | 
						|
        /*
 | 
						|
         * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
 | 
						|
         */
 | 
						|
        rounds = ((nbits >= 1300) ?  2 : (nbits >=  850) ?  3 :
 | 
						|
                  (nbits >=  650) ?  4 : (nbits >=  350) ?  8 :
 | 
						|
                  (nbits >=  250) ? 12 : (nbits >=  150) ? 18 : 27);
 | 
						|
    } else {
 | 
						|
        /*
 | 
						|
         * 2^-100 error probability, number of rounds computed based on HAC,
 | 
						|
         * fact 4.48
 | 
						|
         */
 | 
						|
        rounds = ((nbits >= 1450) ?  4 : (nbits >=  1150) ?  5 :
 | 
						|
                  (nbits >= 1000) ?  6 : (nbits >=   850) ?  7 :
 | 
						|
                  (nbits >=  750) ?  8 : (nbits >=   500) ? 13 :
 | 
						|
                  (nbits >=  250) ? 28 : (nbits >=   150) ? 40 : 51);
 | 
						|
    }
 | 
						|
 | 
						|
    while (1) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
 | 
						|
        /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
 | 
						|
        if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        k = n * biL;
 | 
						|
        if (k > nbits) {
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
 | 
						|
        }
 | 
						|
        X->p[0] |= 1;
 | 
						|
 | 
						|
        if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
 | 
						|
            ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
 | 
						|
 | 
						|
            if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
 | 
						|
                goto cleanup;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            /*
 | 
						|
             * A necessary condition for Y and X = 2Y + 1 to be prime
 | 
						|
             * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
 | 
						|
             * Make sure it is satisfied, while keeping X = 3 mod 4
 | 
						|
             */
 | 
						|
 | 
						|
            X->p[0] |= 2;
 | 
						|
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
 | 
						|
            if (r == 0) {
 | 
						|
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
 | 
						|
            } else if (r == 1) {
 | 
						|
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
 | 
						|
            }
 | 
						|
 | 
						|
            /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
 | 
						|
            MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
 | 
						|
 | 
						|
            while (1) {
 | 
						|
                /*
 | 
						|
                 * First, check small factors for X and Y
 | 
						|
                 * before doing Miller-Rabin on any of them
 | 
						|
                 */
 | 
						|
                if ((ret = mpi_check_small_factors(X)) == 0 &&
 | 
						|
                    (ret = mpi_check_small_factors(&Y)) == 0 &&
 | 
						|
                    (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
 | 
						|
                    == 0 &&
 | 
						|
                    (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
 | 
						|
                    == 0) {
 | 
						|
                    goto cleanup;
 | 
						|
                }
 | 
						|
 | 
						|
                if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
 | 
						|
                    goto cleanup;
 | 
						|
                }
 | 
						|
 | 
						|
                /*
 | 
						|
                 * Next candidates. We want to preserve Y = (X-1) / 2 and
 | 
						|
                 * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
 | 
						|
                 * so up Y by 6 and X by 12.
 | 
						|
                 */
 | 
						|
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X,  X, 12));
 | 
						|
                MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    mbedtls_mpi_free(&Y);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* MBEDTLS_GENPRIME */
 | 
						|
 | 
						|
#if defined(MBEDTLS_SELF_TEST)
 | 
						|
 | 
						|
#define GCD_PAIR_COUNT  3
 | 
						|
 | 
						|
static const int gcd_pairs[GCD_PAIR_COUNT][3] =
 | 
						|
{
 | 
						|
    { 693, 609, 21 },
 | 
						|
    { 1764, 868, 28 },
 | 
						|
    { 768454923, 542167814, 1 }
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Checkup routine
 | 
						|
 */
 | 
						|
int mbedtls_mpi_self_test(int verbose)
 | 
						|
{
 | 
						|
    int ret, i;
 | 
						|
    mbedtls_mpi A, E, N, X, Y, U, V;
 | 
						|
 | 
						|
    mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
 | 
						|
    mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
 | 
						|
                                            "EFE021C2645FD1DC586E69184AF4A31E" \
 | 
						|
                                            "D5F53E93B5F123FA41680867BA110131" \
 | 
						|
                                            "944FE7952E2517337780CB0DB80E61AA" \
 | 
						|
                                            "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
 | 
						|
                                            "B2E7EFD37075B9F03FF989C7C5051C20" \
 | 
						|
                                            "34D2A323810251127E7BF8625A4F49A5" \
 | 
						|
                                            "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
 | 
						|
                                            "5B5C25763222FEFCCFC38B832366C29E"));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
 | 
						|
                                            "0066A198186C18C10B2F5ED9B522752A" \
 | 
						|
                                            "9830B69916E535C8F047518A889A43A5" \
 | 
						|
                                            "94B6BED27A168D31D4A52F88925AA8F5"));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | 
						|
                                            "602AB7ECA597A3D6B56FF9829A5E8B85" \
 | 
						|
                                            "9E857EA95A03512E2BAE7391688D264A" \
 | 
						|
                                            "A5663B0341DB9CCFD2C4C5F421FEC814" \
 | 
						|
                                            "8001B72E848A38CAE1C65F78E56ABDEF" \
 | 
						|
                                            "E12D3C039B8A02D6BE593F0BBBDA56F1" \
 | 
						|
                                            "ECF677152EF804370C1A305CAF3B5BF1" \
 | 
						|
                                            "30879B56C61DE584A0F53A2447A51E"));
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("  MPI test #1 (mul_mpi): ");
 | 
						|
    }
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
 | 
						|
        if (verbose != 0) {
 | 
						|
            mbedtls_printf("failed\n");
 | 
						|
        }
 | 
						|
 | 
						|
        ret = 1;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("passed\n");
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | 
						|
                                            "256567336059E52CAE22925474705F39A94"));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
 | 
						|
                                            "6613F26162223DF488E9CD48CC132C7A" \
 | 
						|
                                            "0AC93C701B001B092E4E5B9F73BCD27B" \
 | 
						|
                                            "9EE50D0657C77F374E903CDFA4C642"));
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("  MPI test #2 (div_mpi): ");
 | 
						|
    }
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
 | 
						|
        mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
 | 
						|
        if (verbose != 0) {
 | 
						|
            mbedtls_printf("failed\n");
 | 
						|
        }
 | 
						|
 | 
						|
        ret = 1;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("passed\n");
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | 
						|
                                            "36E139AEA55215609D2816998ED020BB" \
 | 
						|
                                            "BD96C37890F65171D948E9BC7CBAA4D9" \
 | 
						|
                                            "325D24D6A3C12710F10A09FA08AB87"));
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("  MPI test #3 (exp_mod): ");
 | 
						|
    }
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
 | 
						|
        if (verbose != 0) {
 | 
						|
            mbedtls_printf("failed\n");
 | 
						|
        }
 | 
						|
 | 
						|
        ret = 1;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("passed\n");
 | 
						|
    }
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
 | 
						|
 | 
						|
    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | 
						|
                                            "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
 | 
						|
                                            "C3DBA76456363A10869622EAC2DD84EC" \
 | 
						|
                                            "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("  MPI test #4 (inv_mod): ");
 | 
						|
    }
 | 
						|
 | 
						|
    if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
 | 
						|
        if (verbose != 0) {
 | 
						|
            mbedtls_printf("failed\n");
 | 
						|
        }
 | 
						|
 | 
						|
        ret = 1;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("passed\n");
 | 
						|
    }
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("  MPI test #5 (simple gcd): ");
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < GCD_PAIR_COUNT; i++) {
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
 | 
						|
 | 
						|
        MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
 | 
						|
 | 
						|
        if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
 | 
						|
            if (verbose != 0) {
 | 
						|
                mbedtls_printf("failed at %d\n", i);
 | 
						|
            }
 | 
						|
 | 
						|
            ret = 1;
 | 
						|
            goto cleanup;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("passed\n");
 | 
						|
    }
 | 
						|
 | 
						|
cleanup:
 | 
						|
 | 
						|
    if (ret != 0 && verbose != 0) {
 | 
						|
        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
 | 
						|
    }
 | 
						|
 | 
						|
    mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
 | 
						|
    mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
 | 
						|
 | 
						|
    if (verbose != 0) {
 | 
						|
        mbedtls_printf("\n");
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* MBEDTLS_SELF_TEST */
 | 
						|
 | 
						|
#endif /* MBEDTLS_BIGNUM_C */
 |