/* $NetBSD: npf_conn.c,v 1.16 2015/02/05 22:04:03 rmind Exp $ */ /*- * Copyright (c) 2014-2015 Mindaugas Rasiukevicius * Copyright (c) 2010-2014 The NetBSD Foundation, Inc. * All rights reserved. * * This material is based upon work partially supported by The * NetBSD Foundation under a contract with Mindaugas Rasiukevicius. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * NPF connection tracking for stateful filtering and translation. * * Overview * * Connection direction is identified by the direction of its first * packet. Packets can be incoming or outgoing with respect to an * interface. To describe the packet in the context of connection * direction we will use the terms "forwards stream" and "backwards * stream". All connections have two keys and thus two entries: * * npf_conn_t::c_forw_entry for the forwards stream and * npf_conn_t::c_back_entry for the backwards stream. * * The keys are formed from the 5-tuple (source/destination address, * source/destination port and the protocol). Additional matching * is performed for the interface (a common behaviour is equivalent * to the 6-tuple lookup including the interface ID). Note that the * key may be formed using translated values in a case of NAT. * * Connections can serve two purposes: for the implicit passing or * to accommodate the dynamic NAT. Connections for the former purpose * are created by the rules with "stateful" attribute and are used for * stateful filtering. Such connections indicate that the packet of * the backwards stream should be passed without inspection of the * ruleset. The other purpose is to associate a dynamic NAT mechanism * with a connection. Such connections are created by the NAT policies * and they have a relationship with NAT translation structure via * npf_conn_t::c_nat. A single connection can serve both purposes, * which is a common case. * * Connection life-cycle * * Connections are established when a packet matches said rule or * NAT policy. Both keys of the established connection are inserted * into the connection database. A garbage collection thread * periodically scans all connections and depending on connection * properties (e.g. last activity time, protocol) removes connection * entries and expires the actual connections. * * Each connection has a reference count. The reference is acquired * on lookup and should be released by the caller. It guarantees that * the connection will not be destroyed, although it may be expired. * * Synchronisation * * Connection database is accessed in a lock-less manner by the main * routines: npf_conn_inspect() and npf_conn_establish(). Since they * are always called from a software interrupt, the database is * protected using passive serialisation. The main place which can * destroy a connection is npf_conn_worker(). The database itself * can be replaced and destroyed in npf_conn_reload(). * * ALG support * * Application-level gateways (ALGs) can override generic connection * inspection (npf_alg_conn() call in npf_conn_inspect() function) by * performing their own lookup using different key. Recursive call * to npf_conn_inspect() is not allowed. The ALGs ought to use the * npf_conn_lookup() function for this purpose. * * Lock order * * npf_config_lock -> * conn_lock -> * npf_conn_t::c_lock */ #include __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.16 2015/02/05 22:04:03 rmind Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #define __NPF_CONN_PRIVATE #include "npf_conn.h" #include "npf_impl.h" /* * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction. */ CTASSERT(PFIL_ALL == (0x001 | 0x002)); #define CONN_ACTIVE 0x004 /* visible on inspection */ #define CONN_PASS 0x008 /* perform implicit passing */ #define CONN_EXPIRE 0x010 /* explicitly expire */ #define CONN_REMOVED 0x020 /* "forw/back" entries removed */ /* * Connection tracking state: disabled (off) or enabled (on). */ enum { CONN_TRACKING_OFF, CONN_TRACKING_ON }; static volatile int conn_tracking __cacheline_aligned; /* Connection tracking database, connection cache and the lock. */ static npf_conndb_t * conn_db __read_mostly; static pool_cache_t conn_cache __read_mostly; static kmutex_t conn_lock __cacheline_aligned; static void npf_conn_worker(void); static void npf_conn_destroy(npf_conn_t *); /* * npf_conn_sys{init,fini}: initialise/destroy connection tracking. */ void npf_conn_sysinit(void) { conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit, 0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL); mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE); conn_tracking = CONN_TRACKING_OFF; conn_db = npf_conndb_create(); npf_worker_register(npf_conn_worker); } void npf_conn_sysfini(void) { /* Note: the caller should have flushed the connections. */ KASSERT(conn_tracking == CONN_TRACKING_OFF); npf_worker_unregister(npf_conn_worker); npf_conndb_destroy(conn_db); pool_cache_destroy(conn_cache); mutex_destroy(&conn_lock); } /* * npf_conn_load: perform the load by flushing the current connection * database and replacing it with the new one or just destroying. * * => The caller must disable the connection tracking and ensure that * there are no connection database lookups or references in-flight. */ void npf_conn_load(npf_conndb_t *ndb, bool track) { npf_conndb_t *odb = NULL; KASSERT(npf_config_locked_p()); /* * The connection database is in the quiescent state. * Prevent G/C thread from running and install a new database. */ mutex_enter(&conn_lock); if (ndb) { KASSERT(conn_tracking == CONN_TRACKING_OFF); odb = conn_db; conn_db = ndb; membar_sync(); } if (track) { /* After this point lookups start flying in. */ conn_tracking = CONN_TRACKING_ON; } mutex_exit(&conn_lock); if (odb) { /* * Flush all, no sync since the caller did it for us. * Also, release the pool cache memory. */ npf_conn_gc(odb, true, false); npf_conndb_destroy(odb); pool_cache_invalidate(conn_cache); } } /* * npf_conn_tracking: enable/disable connection tracking. */ void npf_conn_tracking(bool track) { KASSERT(npf_config_locked_p()); conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF; } static inline bool npf_conn_trackable_p(const npf_cache_t *npc) { /* * Check if connection tracking is on. Also, if layer 3 and 4 are * not cached - protocol is not supported or packet is invalid. */ if (conn_tracking != CONN_TRACKING_ON) { return false; } if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) { return false; } return true; } /* * npf_conn_conkey: construct a key for the connection lookup. * * => Returns the key length in bytes or zero on failure. */ unsigned npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw) { const u_int alen = npc->npc_alen; const struct tcphdr *th; const struct udphdr *uh; u_int keylen, isrc, idst; uint16_t id[2]; switch (npc->npc_proto) { case IPPROTO_TCP: KASSERT(npf_iscached(npc, NPC_TCP)); th = npc->npc_l4.tcp; id[NPF_SRC] = th->th_sport; id[NPF_DST] = th->th_dport; break; case IPPROTO_UDP: KASSERT(npf_iscached(npc, NPC_UDP)); uh = npc->npc_l4.udp; id[NPF_SRC] = uh->uh_sport; id[NPF_DST] = uh->uh_dport; break; case IPPROTO_ICMP: if (npf_iscached(npc, NPC_ICMP_ID)) { const struct icmp *ic = npc->npc_l4.icmp; id[NPF_SRC] = ic->icmp_id; id[NPF_DST] = ic->icmp_id; break; } return 0; case IPPROTO_ICMPV6: if (npf_iscached(npc, NPC_ICMP_ID)) { const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6; id[NPF_SRC] = ic6->icmp6_id; id[NPF_DST] = ic6->icmp6_id; break; } return 0; default: /* Unsupported protocol. */ return 0; } if (__predict_true(forw)) { isrc = NPF_SRC, idst = NPF_DST; } else { isrc = NPF_DST, idst = NPF_SRC; } /* * Construct a key formed out of 32-bit integers. The key layout: * * Field: | proto | alen | src-id | dst-id | src-addr | dst-addr | * +--------+--------+--------+--------+----------+----------+ * Bits: | 16 | 16 | 16 | 16 | 32-128 | 32-128 | * * The source and destination are inverted if they key is for the * backwards stream (forw == false). The address length depends * on the 'alen' field; it is a length in bytes, either 4 or 16. */ key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff); key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst]; if (__predict_true(alen == sizeof(in_addr_t))) { key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0]; key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0]; keylen = 4 * sizeof(uint32_t); } else { const u_int nwords = alen >> 2; memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen); memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen); keylen = (2 + (nwords * 2)) * sizeof(uint32_t); } return keylen; } static __inline void connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di) { const u_int alen = key->ck_key[0] & 0xffff; uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)]; KASSERT(alen > 0); memcpy(addr, naddr, alen); } static __inline void connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di) { const uint32_t oid = key->ck_key[1]; const u_int shift = 16 * !di; const uint32_t mask = 0xffff0000 >> shift; key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask); } /* * npf_conn_lookup: lookup if there is an established connection. * * => If found, we will hold a reference for the caller. */ npf_conn_t * npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw) { const nbuf_t *nbuf = npc->npc_nbuf; npf_conn_t *con; npf_connkey_t key; u_int flags, cifid; bool ok, pforw; /* Construct a key and lookup for a connection in the store. */ if (!npf_conn_conkey(npc, &key, true)) { return NULL; } con = npf_conndb_lookup(conn_db, &key, forw); if (con == NULL) { return NULL; } KASSERT(npc->npc_proto == con->c_proto); /* Check if connection is active and not expired. */ flags = con->c_flags; ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE; if (__predict_false(!ok)) { atomic_dec_uint(&con->c_refcnt); return NULL; } /* * Match the interface and the direction of the connection entry * and the packet. */ cifid = con->c_ifid; if (__predict_false(cifid && cifid != nbuf->nb_ifid)) { atomic_dec_uint(&con->c_refcnt); return NULL; } pforw = (flags & PFIL_ALL) == di; if (__predict_false(*forw != pforw)) { atomic_dec_uint(&con->c_refcnt); return NULL; } /* Update the last activity time. */ getnanouptime(&con->c_atime); return con; } /* * npf_conn_inspect: lookup a connection and inspecting the protocol data. * * => If found, we will hold a reference for the caller. */ npf_conn_t * npf_conn_inspect(npf_cache_t *npc, const int di, int *error) { nbuf_t *nbuf = npc->npc_nbuf; npf_conn_t *con; bool forw, ok; KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)); if (!npf_conn_trackable_p(npc)) { return NULL; } /* Query ALG which may lookup connection for us. */ if ((con = npf_alg_conn(npc, di)) != NULL) { /* Note: reference is held. */ return con; } if (nbuf_head_mbuf(nbuf) == NULL) { *error = ENOMEM; return NULL; } KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)); /* Main lookup of the connection. */ if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) { return NULL; } /* Inspect the protocol data and handle state changes. */ mutex_enter(&con->c_lock); ok = npf_state_inspect(npc, &con->c_state, forw); mutex_exit(&con->c_lock); if (__predict_false(!ok)) { /* Invalid: let the rules deal with it. */ npf_conn_release(con); npf_stats_inc(NPF_STAT_INVALID_STATE); con = NULL; } return con; } /* * npf_conn_establish: create a new connection, insert into the global list. * * => Connection is created with the reference held for the caller. * => Connection will be activated on the first reference release. */ npf_conn_t * npf_conn_establish(npf_cache_t *npc, int di, bool per_if) { const nbuf_t *nbuf = npc->npc_nbuf; npf_conn_t *con; int error = 0; KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)); if (!npf_conn_trackable_p(npc)) { return NULL; } /* Allocate and initialise the new connection. */ con = pool_cache_get(conn_cache, PR_NOWAIT); if (__predict_false(!con)) { return NULL; } NPF_PRINTF(("NPF: create conn %p\n", con)); npf_stats_inc(NPF_STAT_CONN_CREATE); mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET); con->c_flags = (di & PFIL_ALL); con->c_refcnt = 0; con->c_rproc = NULL; con->c_nat = NULL; /* Initialize the protocol state. */ if (!npf_state_init(npc, &con->c_state)) { npf_conn_destroy(con); return NULL; } KASSERT(npf_iscached(npc, NPC_IP46)); npf_connkey_t *fw = &con->c_forw_entry; npf_connkey_t *bk = &con->c_back_entry; /* * Construct "forwards" and "backwards" keys. Also, set the * interface ID for this connection (unless it is global). */ if (!npf_conn_conkey(npc, fw, true) || !npf_conn_conkey(npc, bk, false)) { npf_conn_destroy(con); return NULL; } fw->ck_backptr = bk->ck_backptr = con; con->c_ifid = per_if ? nbuf->nb_ifid : 0; con->c_proto = npc->npc_proto; /* * Set last activity time for a new connection and acquire * a reference for the caller before we make it visible. */ getnanouptime(&con->c_atime); con->c_refcnt = 1; /* * Insert both keys (entries representing directions) of the * connection. At this point it becomes visible, but we activate * the connection later. */ mutex_enter(&con->c_lock); if (!npf_conndb_insert(conn_db, fw, con)) { error = EISCONN; goto err; } if (!npf_conndb_insert(conn_db, bk, con)) { npf_conn_t *ret __diagused; ret = npf_conndb_remove(conn_db, fw); KASSERT(ret == con); error = EISCONN; goto err; } err: /* * If we have hit the duplicate: mark the connection as expired * and let the G/C thread to take care of it. We cannot do it * here since there might be references acquired already. */ if (error) { atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE); atomic_dec_uint(&con->c_refcnt); npf_stats_inc(NPF_STAT_RACE_CONN); } else { NPF_PRINTF(("NPF: establish conn %p\n", con)); } /* Finally, insert into the connection list. */ npf_conndb_enqueue(conn_db, con); mutex_exit(&con->c_lock); return error ? NULL : con; } static void npf_conn_destroy(npf_conn_t *con) { KASSERT(con->c_refcnt == 0); if (con->c_nat) { /* Release any NAT structures. */ npf_nat_destroy(con->c_nat); } if (con->c_rproc) { /* Release the rule procedure. */ npf_rproc_release(con->c_rproc); } /* Destroy the state. */ npf_state_destroy(&con->c_state); mutex_destroy(&con->c_lock); /* Free the structure, increase the counter. */ pool_cache_put(conn_cache, con); npf_stats_inc(NPF_STAT_CONN_DESTROY); NPF_PRINTF(("NPF: conn %p destroyed\n", con)); } /* * npf_conn_setnat: associate NAT entry with the connection, update and * re-insert connection entry using the translation values. * * => The caller must be holding a reference. */ int npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con, npf_nat_t *nt, u_int ntype) { static const u_int nat_type_dimap[] = { [NPF_NATOUT] = NPF_DST, [NPF_NATIN] = NPF_SRC, }; npf_connkey_t key, *bk; npf_conn_t *ret __diagused; npf_addr_t *taddr; in_port_t tport; u_int tidx; KASSERT(con->c_refcnt > 0); npf_nat_gettrans(nt, &taddr, &tport); KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN); tidx = nat_type_dimap[ntype]; /* Construct a "backwards" key. */ if (!npf_conn_conkey(npc, &key, false)) { return EINVAL; } /* Acquire the lock and check for the races. */ mutex_enter(&con->c_lock); if (__predict_false(con->c_flags & CONN_EXPIRE)) { /* The connection got expired. */ mutex_exit(&con->c_lock); return EINVAL; } KASSERT((con->c_flags & CONN_REMOVED) == 0); if (__predict_false(con->c_nat != NULL)) { /* Race with a duplicate packet. */ mutex_exit(&con->c_lock); npf_stats_inc(NPF_STAT_RACE_NAT); return EISCONN; } /* Remove the "backwards" entry. */ ret = npf_conndb_remove(conn_db, &con->c_back_entry); KASSERT(ret == con); /* Set the source/destination IDs to the translation values. */ bk = &con->c_back_entry; connkey_set_addr(bk, taddr, tidx); if (tport) { connkey_set_id(bk, tport, tidx); } /* Finally, re-insert the "backwards" entry. */ if (!npf_conndb_insert(conn_db, bk, con)) { /* * Race: we have hit the duplicate, remove the "forwards" * entry and expire our connection; it is no longer valid. */ ret = npf_conndb_remove(conn_db, &con->c_forw_entry); KASSERT(ret == con); atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE); mutex_exit(&con->c_lock); npf_stats_inc(NPF_STAT_RACE_NAT); return EISCONN; } /* Associate the NAT entry and release the lock. */ con->c_nat = nt; mutex_exit(&con->c_lock); return 0; } /* * npf_conn_expire: explicitly mark connection as expired. */ void npf_conn_expire(npf_conn_t *con) { /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */ atomic_or_uint(&con->c_flags, CONN_EXPIRE); } /* * npf_conn_pass: return true if connection is "pass" one, otherwise false. */ bool npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp) { KASSERT(con->c_refcnt > 0); if (__predict_true(con->c_flags & CONN_PASS)) { *rp = con->c_rproc; return true; } return false; } /* * npf_conn_setpass: mark connection as a "pass" one and associate the * rule procedure with it. */ void npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp) { KASSERT((con->c_flags & CONN_ACTIVE) == 0); KASSERT(con->c_refcnt > 0); KASSERT(con->c_rproc == NULL); /* * No need for atomic since the connection is not yet active. * If rproc is set, the caller transfers its reference to us, * which will be released on npf_conn_destroy(). */ atomic_or_uint(&con->c_flags, CONN_PASS); con->c_rproc = rp; } /* * npf_conn_release: release a reference, which might allow G/C thread * to destroy this connection. */ void npf_conn_release(npf_conn_t *con) { if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) { /* Activate: after this, connection is globally visible. */ atomic_or_uint(&con->c_flags, CONN_ACTIVE); } KASSERT(con->c_refcnt > 0); atomic_dec_uint(&con->c_refcnt); } /* * npf_conn_getnat: return associated NAT data entry and indicate * whether it is a "forwards" or "backwards" stream. */ npf_nat_t * npf_conn_getnat(npf_conn_t *con, const int di, bool *forw) { KASSERT(con->c_refcnt > 0); *forw = (con->c_flags & PFIL_ALL) == di; return con->c_nat; } /* * npf_conn_expired: criterion to check if connection is expired. */ static inline bool npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow) { const int etime = npf_state_etime(&con->c_state, con->c_proto); struct timespec tsdiff; if (__predict_false(con->c_flags & CONN_EXPIRE)) { /* Explicitly marked to be expired. */ return true; } timespecsub(tsnow, &con->c_atime, &tsdiff); return tsdiff.tv_sec > etime; } /* * npf_conn_gc: garbage collect the expired connections. * * => Must run in a single-threaded manner. * => If it is a flush request, then destroy all connections. * => If 'sync' is true, then perform passive serialisation. */ void npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync) { npf_conn_t *con, *prev, *gclist = NULL; struct timespec tsnow; getnanouptime(&tsnow); /* * Scan all connections and check them for expiration. */ prev = NULL; con = npf_conndb_getlist(cd); while (con) { npf_conn_t *next = con->c_next; /* Expired? Flushing all? */ if (!npf_conn_expired(con, &tsnow) && !flush) { prev = con; con = next; continue; } /* Remove both entries of the connection. */ mutex_enter(&con->c_lock); if ((con->c_flags & CONN_REMOVED) == 0) { npf_conn_t *ret __diagused; ret = npf_conndb_remove(cd, &con->c_forw_entry); KASSERT(ret == con); ret = npf_conndb_remove(cd, &con->c_back_entry); KASSERT(ret == con); } /* Flag the removal and expiration. */ atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE); mutex_exit(&con->c_lock); /* Move to the G/C list. */ npf_conndb_dequeue(cd, con, prev); con->c_next = gclist; gclist = con; /* Next.. */ con = next; } npf_conndb_settail(cd, prev); /* * Ensure it is safe to destroy the connections. * Note: drop the conn_lock (see the lock order). */ if (sync) { mutex_exit(&conn_lock); if (gclist) { npf_config_enter(); npf_config_sync(); npf_config_exit(); } } /* * Garbage collect all expired connections. * May need to wait for the references to drain. */ con = gclist; while (con) { npf_conn_t *next = con->c_next; /* * Destroy only if removed and no references. * Otherwise, wait for a tiny moment. */ if (__predict_false(con->c_refcnt)) { kpause("npfcongc", false, 1, NULL); continue; } npf_conn_destroy(con); con = next; } } /* * npf_conn_worker: G/C to run from a worker thread. */ static void npf_conn_worker(void) { mutex_enter(&conn_lock); /* Note: the conn_lock will be released (sync == true). */ npf_conn_gc(conn_db, false, true); } /* * npf_conndb_export: construct a list of connections prepared for saving. * Note: this is expected to be an expensive operation. */ int npf_conndb_export(prop_array_t conlist) { npf_conn_t *con, *prev; /* * Note: acquire conn_lock to prevent from the database * destruction and G/C thread. */ mutex_enter(&conn_lock); if (conn_tracking != CONN_TRACKING_ON) { mutex_exit(&conn_lock); return 0; } prev = NULL; con = npf_conndb_getlist(conn_db); while (con) { npf_conn_t *next = con->c_next; prop_dictionary_t cdict; if ((cdict = npf_conn_export(con)) != NULL) { prop_array_add(conlist, cdict); prop_object_release(cdict); } prev = con; con = next; } npf_conndb_settail(conn_db, prev); mutex_exit(&conn_lock); return 0; } /* * npf_conn_export: serialise a single connection. */ prop_dictionary_t npf_conn_export(const npf_conn_t *con) { prop_dictionary_t cdict; prop_data_t d; if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) { return NULL; } cdict = prop_dictionary_create(); prop_dictionary_set_uint32(cdict, "flags", con->c_flags); prop_dictionary_set_uint32(cdict, "proto", con->c_proto); if (con->c_ifid) { const char *ifname = npf_ifmap_getname(con->c_ifid); prop_dictionary_set_cstring(cdict, "ifname", ifname); } d = prop_data_create_data(&con->c_state, sizeof(npf_state_t)); prop_dictionary_set_and_rel(cdict, "state", d); const uint32_t *fkey = con->c_forw_entry.ck_key; d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN); prop_dictionary_set_and_rel(cdict, "forw-key", d); const uint32_t *bkey = con->c_back_entry.ck_key; d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN); prop_dictionary_set_and_rel(cdict, "back-key", d); if (con->c_nat) { npf_nat_export(cdict, con->c_nat); } return cdict; } /* * npf_conn_import: fully reconstruct a single connection from a * directory and insert into the given database. */ int npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict, npf_ruleset_t *natlist) { npf_conn_t *con; npf_connkey_t *fw, *bk; prop_object_t obj; const char *ifname; const void *d; /* Allocate a connection and initialise it (clear first). */ con = pool_cache_get(conn_cache, PR_WAITOK); memset(con, 0, sizeof(npf_conn_t)); mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET); npf_stats_inc(NPF_STAT_CONN_CREATE); prop_dictionary_get_uint32(cdict, "proto", &con->c_proto); prop_dictionary_get_uint32(cdict, "flags", &con->c_flags); con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS; getnanouptime(&con->c_atime); if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) && (con->c_ifid = npf_ifmap_register(ifname)) == 0) { goto err; } obj = prop_dictionary_get(cdict, "state"); if ((d = prop_data_data_nocopy(obj)) == NULL || prop_data_size(obj) != sizeof(npf_state_t)) { goto err; } memcpy(&con->c_state, d, sizeof(npf_state_t)); /* Reconstruct NAT association, if any. */ if ((obj = prop_dictionary_get(cdict, "nat")) != NULL && (con->c_nat = npf_nat_import(obj, natlist, con)) == NULL) { goto err; } /* * Fetch and copy the keys for each direction. */ obj = prop_dictionary_get(cdict, "forw-key"); if ((d = prop_data_data_nocopy(obj)) == NULL || prop_data_size(obj) != NPF_CONN_MAXKEYLEN) { goto err; } fw = &con->c_forw_entry; memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN); obj = prop_dictionary_get(cdict, "back-key"); if ((d = prop_data_data_nocopy(obj)) == NULL || prop_data_size(obj) != NPF_CONN_MAXKEYLEN) { goto err; } bk = &con->c_back_entry; memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN); fw->ck_backptr = bk->ck_backptr = con; /* Insert the entries and the connection itself. */ if (!npf_conndb_insert(cd, fw, con)) { goto err; } if (!npf_conndb_insert(cd, bk, con)) { npf_conndb_remove(cd, fw); goto err; } NPF_PRINTF(("NPF: imported conn %p\n", con)); npf_conndb_enqueue(cd, con); return 0; err: npf_conn_destroy(con); return EINVAL; } #if defined(DDB) || defined(_NPF_TESTING) void npf_conn_print(const npf_conn_t *con) { const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry); const uint32_t *fkey = con->c_forw_entry.ck_key; const uint32_t *bkey = con->c_back_entry.ck_key; const u_int proto = con->c_proto; struct timespec tsnow, tsdiff; const void *src, *dst; int etime; getnanouptime(&tsnow); timespecsub(&tsnow, &con->c_atime, &tsdiff); etime = npf_state_etime(&con->c_state, proto); printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n", con, proto, con->c_flags, (int)tsdiff.tv_sec, etime); src = &fkey[2], dst = &fkey[2 + (alen >> 2)]; printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16)); printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff)); src = &bkey[2], dst = &bkey[2 + (alen >> 2)]; printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16)); printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff)); npf_state_dump(&con->c_state); if (con->c_nat) { npf_nat_dump(con->c_nat); } } #endif