2013-04-06 16:48:33 +02:00

1781 lines
43 KiB
C

/*
* Copyright (c) 1984 through 2008, William LeFebvre
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* * Neither the name of William LeFebvre nor the names of other
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* top - a top users display for Unix
*
* SYNOPSIS: For FreeBSD 5.x, 6.x, 7.x, 8.x
*
* DESCRIPTION:
* Originally written for BSD4.4 system by Christos Zoulas.
* Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
* Order support hacked in from top-3.5beta6/machine/m_aix41.c
* by Monte Mitzelfelt
* Ported to FreeBSD 5.x and higher by William LeFebvre
*
* AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
* Steven Wallace <swallace@freebsd.org>
* Wolfram Schneider <wosch@FreeBSD.org>
*/
#include <sys/time.h>
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/param.h>
#include "config.h"
#include <stdio.h>
#include <string.h>
#include <nlist.h>
#include <math.h>
#include <kvm.h>
#include <pwd.h>
#include <sys/errno.h>
#include <sys/sysctl.h>
#include <sys/dkstat.h>
#include <sys/file.h>
#include <sys/time.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/vmmeter.h>
#include <sys/resource.h>
#include <sys/rtprio.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
/* Swap */
#include <stdlib.h>
#include <sys/conf.h>
#include <osreldate.h> /* for changes in kernel structures */
#include "top.h"
#include "machine.h"
#include "utils.h"
#include "username.h"
#include "hash.h"
#include "display.h"
extern char* printable __P((char *));
int swapmode __P((int *retavail, int *retfree));
static int smpmode;
static int namelength;
/*
* Versions prior to 5.x do not track threads in kinfo_proc, so we
* simply do not display any information about them.
* Versions 5.x, 6.x, and 7.x track threads but the data reported
* as runtime for each thread is actually per-process and is just
* duplicated across all threads. It would be very wrong to show
* this data individually for each thread. Therefore we will show
* a THR column (number of threads) but not provide any sort of
* per-thread display. We distinguish between these three ways of
* handling threads as follows: HAS_THREADS indicates that the
* system has and tracks kernel threads (a THR column will appear
* in the display). HAS_SHOWTHREADS indicates that the system
* reports correct per-thread information and we will provide a
* per-thread display (the 'H' and 't' command) upon request.
* HAS_SHOWTHREADS implies HAS_THREADS.
*/
/* HAS_THREADS for anything 5.x and up */
#if OSMAJOR >= 5
#define HAS_THREADS
#endif
/* HAS_SHOWTHREADS for anything 8.x and up */
#if OSMAJOR >=8
#define HAS_SHOWTHREADS
#endif
/* get_process_info passes back a handle. This is what it looks like: */
struct handle
{
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* declarations for load_avg */
#include "loadavg.h"
/*
* Macros to access process information:
* In versions 4.x and earlier the kinfo_proc structure was a collection of
* substructures (kp_proc and kp_eproc). Starting with 5.0 kinfo_proc was
* redesigned and "flattene" so that most of the information was available
* in a single structure. We use macros to access the various types of
* information and define these macros according to the OS revision. The
* names PP, EP, and VP are due to the fact that information was originally
* contained in the different substructures. We retain these names in the
* code for backward compatibility. These macros use ANSI concatenation.
* PP: proc
* EP: extented proc
* VP: vm (virtual memory information)
* PRUID: Real uid
* RP: rusage
* PPCPU: where we store calculated cpu% data
* SPPTR: where we store pointer to extra calculated data
* SP: access to the extra calculated data pointed to by SPPTR
*/
#if OSMAJOR <= 4
#define PP(pp, field) ((pp)->kp_proc . p_##field)
#define EP(pp, field) ((pp)->kp_eproc . e_##field)
#define VP(pp, field) ((pp)->kp_eproc.e_vm . vm_##field)
#define PRUID(pp) ((pp)->kp_eproc.e_pcred.p_ruid)
#else
#define PP(pp, field) ((pp)->ki_##field)
#define EP(pp, field) ((pp)->ki_##field)
#define VP(pp, field) ((pp)->ki_##field)
#define PRUID(pp) ((pp)->ki_ruid)
#define RP(pp, field) ((pp)->ki_rusage.ru_##field)
#define PPCPU(pp) ((pp)->ki_sparelongs[0])
#define SPPTR(pp) ((pp)->ki_spareptrs[0])
#define SP(pp, field) (((struct save_proc *)((pp)->ki_spareptrs[0]))->sp_##field)
#endif
/* what we consider to be process size: */
#if OSMAJOR <= 4
#define PROCSIZE(pp) (VP((pp), map.size) / 1024)
#else
#define PROCSIZE(pp) (((pp)->ki_size) / 1024)
#endif
/* calculate a per-second rate using milliseconds */
#define per_second(n, msec) (((n) * 1000) / (msec))
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
char *state_abbrev[] =
{
"?", "START", "RUN", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
};
#define NUM_STATES 8
/* kernel access */
static kvm_t *kd;
/* these are for dealing with sysctl-based data */
#define MAXMIBLEN 8
struct sysctl_mib {
char *name;
int mib[MAXMIBLEN];
size_t miblen;
};
static struct sysctl_mib mibs[] = {
{ "vm.stats.sys.v_swtch" },
#define V_SWTCH 0
{ "vm.stats.sys.v_trap" },
#define V_TRAP 1
{ "vm.stats.sys.v_intr" },
#define V_INTR 2
{ "vm.stats.sys.v_soft" },
#define V_SOFT 3
{ "vm.stats.vm.v_forks" },
#define V_FORKS 4
{ "vm.stats.vm.v_vforks" },
#define V_VFORKS 5
{ "vm.stats.vm.v_rforks" },
#define V_RFORKS 6
{ "vm.stats.vm.v_vm_faults" },
#define V_VM_FAULTS 7
{ "vm.stats.vm.v_swapin" },
#define V_SWAPIN 8
{ "vm.stats.vm.v_swapout" },
#define V_SWAPOUT 9
{ "vm.stats.vm.v_tfree" },
#define V_TFREE 10
{ "vm.stats.vm.v_vnodein" },
#define V_VNODEIN 11
{ "vm.stats.vm.v_vnodeout" },
#define V_VNODEOUT 12
{ "vm.stats.vm.v_active_count" },
#define V_ACTIVE_COUNT 13
{ "vm.stats.vm.v_inactive_count" },
#define V_INACTIVE_COUNT 14
{ "vm.stats.vm.v_wire_count" },
#define V_WIRE_COUNT 15
{ "vm.stats.vm.v_cache_count" },
#define V_CACHE_COUNT 16
{ "vm.stats.vm.v_free_count" },
#define V_FREE_COUNT 17
{ "vm.stats.vm.v_swappgsin" },
#define V_SWAPPGSIN 18
{ "vm.stats.vm.v_swappgsout" },
#define V_SWAPPGSOUT 19
{ "vfs.bufspace" },
#define VFS_BUFSPACE 20
{ "kern.cp_time" },
#define K_CP_TIME 21
#ifdef HAS_SHOWTHREADS
{ "kern.proc.all" },
#else
{ "kern.proc.proc" },
#endif
#define K_PROC 22
{ NULL }
};
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
/* these are for detailing the process states */
int process_states[8];
char *procstatenames[] = {
"", " starting, ", " running, ", " sleeping, ", " stopped, ", " zombie, ",
" waiting, ", " locked, ",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[CPUSTATES];
char *cpustatenames[] = {
"user", "nice", "system", "interrupt", "idle", NULL
};
/* these are for detailing the kernel information */
int kernel_stats[9];
char *kernelnames[] = {
" ctxsw, ", " trap, ", " intr, ", " soft, ", " fork, ",
" flt, ", " pgin, ", " pgout, ", " fr",
NULL
};
/* these are for detailing the memory statistics */
long memory_stats[7];
char *memorynames[] = {
"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
NULL
};
long swap_stats[7];
char *swapnames[] = {
/* 0 1 2 3 4 5 */
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
NULL
};
/*
* pbase points to the array that holds the kinfo_proc structures. pref
* (pronounced p-ref) points to an array of kinfo_proc pointers and is where
* we build up a list of processes we wish to display. Both pbase and pref are
* potentially resized on every call to get_process_info. psize is the number
* of procs for which we currently have space allocated. pref_len is the number
* of valid pointers in pref (this is used by proc_owner). We start psize off
* at -1 to ensure that space gets allocated on the first call to
* get_process_info.
*/
static int psize = -1;
static int pref_len;
static struct kinfo_proc *pbase = NULL;
static struct kinfo_proc **pref = NULL;
/* this structure retains information from the proc array between samples */
struct save_proc {
pid_t sp_pid;
u_int64_t sp_runtime;
long sp_vcsw;
long sp_ivcsw;
long sp_inblock;
long sp_oublock;
long sp_majflt;
long sp_totalio;
long sp_old_nvcsw;
long sp_old_nivcsw;
long sp_old_inblock;
long sp_old_oublock;
long sp_old_majflt;
};
hash_table *procs;
struct proc_field {
char *name;
int width;
int rjust;
int min_screenwidth;
int (*format)(char *, int, struct kinfo_proc *);
};
/* these are for getting the memory statistics */
static int pagesize; /* kept from getpagesize */
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/* things that we track between updates */
static u_int ctxsws = 0;
static u_int traps = 0;
static u_int intrs = 0;
static u_int softs = 0;
static u_int64_t forks = 0;
static u_int pfaults;
static u_int pagein;
static u_int pageout;
static u_int tfreed;
static int swappgsin = -1;
static int swappgsout = -1;
extern struct timeval timeout;
static struct timeval lasttime = { 0, 0 };
static long elapsed_time;
static long elapsed_msecs;
/* things that we track during an update */
static long total_io;
static int show_fullcmd;
static struct handle handle;
static int username_length;
static int show_usernames;
static int display_mode;
static int *display_fields;
#ifdef HAS_SHOWTHREADS
static int show_threads = 0;
#endif
/* sorting orders. first is default */
char *ordernames[] = {
"cpu", "size", "res", "time", "pri", "io", "pid", NULL
};
/* compare routines */
int proc_compare(), compare_size(), compare_res(), compare_time(),
compare_prio(), compare_io(), compare_pid();
int (*proc_compares[])() = {
proc_compare,
compare_size,
compare_res,
compare_time,
compare_prio,
compare_io,
compare_pid,
NULL
};
/* swap related calculations */
static int mib_swapinfo[16];
static int *mib_swapinfo_idx;
static int mib_swapinfo_size = 0;
void
swap_init()
{
size_t m;
m = sizeof(mib_swapinfo) / sizeof(mib_swapinfo[0]);
if (sysctlnametomib("vm.swap_info", mib_swapinfo, &m) != -1)
{
mib_swapinfo_size = m + 1;
mib_swapinfo_idx = &(mib_swapinfo[m]);
}
}
int
swap_getdata(long long *retavail, long long *retfree)
{
int n;
size_t size;
long long total = 0;
long long used = 0;
struct xswdev xsw;
n = 0;
if (mib_swapinfo_size > 0)
{
*mib_swapinfo_idx = 0;
while (size = sizeof(xsw),
sysctl(mib_swapinfo, mib_swapinfo_size, &xsw, &size, NULL, 0) != -1)
{
dprintf("swap_getdata: swaparea %d: nblks %d, used %d\n",
n, xsw.xsw_nblks, xsw.xsw_used);
total += (long long)xsw.xsw_nblks;
used += (long long)xsw.xsw_used;
*mib_swapinfo_idx = ++n;
}
*retavail = pagetok(total);
*retfree = pagetok(total) - pagetok(used);
if (total > 0)
{
n = (int)((double)used * 100.0 / (double)total);
}
else
{
n = 0;
}
}
else
{
*retavail = 0;
*retfree = 0;
}
dprintf("swap_getdata: avail %lld, free %lld, %d%%\n",
*retavail, *retfree, n);
return(n);
}
/*
* getkval(offset, ptr, size) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve).
* Return 0 on success, -1 on any kind of failure.
*/
static int
getkval(unsigned long offset, int *ptr, int size)
{
if (kd != NULL)
{
if (kvm_read(kd, offset, (char *) ptr, size) == size)
{
return(0);
}
}
return(-1);
}
int
get_sysctl_mibs()
{
struct sysctl_mib *mp;
size_t len;
mp = mibs;
while (mp->name != NULL)
{
len = MAXMIBLEN;
if (sysctlnametomib(mp->name, mp->mib, &len) == -1)
{
message_error(" sysctlnametomib: %s", strerror(errno));
return -1;
}
mp->miblen = len;
mp++;
}
return 0;
}
int
get_sysctl(int idx, void *v, size_t l)
{
struct sysctl_mib *m;
size_t len;
m = &(mibs[idx]);
len = l;
if (sysctl(m->mib, m->miblen, v, &len, NULL, 0) == -1)
{
message_error(" sysctl: %s", strerror(errno));
return -1;
}
return len;
}
size_t
get_sysctlsize(int idx)
{
size_t len;
struct sysctl_mib *m;
m = &(mibs[idx]);
if (sysctl(m->mib, m->miblen, NULL, &len, NULL, 0) == -1)
{
message_error(" sysctl (size): %s", strerror(errno));
len = 0;
}
return len;
}
int
fmt_pid(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%6d", PP(pp, pid));
}
int
fmt_username(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%-*.*s",
username_length, username_length, username(PRUID(pp)));
}
int
fmt_uid(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%6d", PRUID(pp));
}
int
fmt_thr(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%3d", PP(pp, numthreads));
}
int
fmt_pri(char *buf, int sz, struct kinfo_proc *pp)
{
#if OSMAJOR <= 4
return snprintf(buf, sz, "%3d", PP(pp, priority));
#else
return snprintf(buf, sz, "%3d", PP(pp, pri.pri_level));
#endif
}
int
fmt_nice(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%4d", PP(pp, nice) - NZERO);
}
int
fmt_size(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%5s", format_k(PROCSIZE(pp)));
}
int
fmt_res(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%5s", format_k(pagetok(VP(pp, rssize))));
}
int
fmt_state(char *buf, int sz, struct kinfo_proc *pp)
{
int state;
char status[16];
state = PP(pp, stat);
switch(state)
{
case SRUN:
if (smpmode && PP(pp, oncpu) != 0xff)
sprintf(status, "CPU%d", PP(pp, oncpu));
else
strcpy(status, "RUN");
break;
case SSLEEP:
if (EP(pp, wmesg) != NULL) {
sprintf(status, "%.6s", EP(pp, wmesg));
break;
}
/* fall through */
default:
if (state >= 0 && state < NUM_STATES)
sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
else
sprintf(status, "?%-5d", state);
break;
}
return snprintf(buf, sz, "%-6.6s", status);
}
int
fmt_flags(char *buf, int sz, struct kinfo_proc *pp)
{
long flag;
char chrs[12];
char *p;
flag = PP(pp, flag);
p = chrs;
if (PP(pp, nice) < NZERO)
*p++ = '<';
else if (PP(pp, nice) > NZERO)
*p++ = 'N';
if (flag & P_TRACED)
*p++ = 'X';
if (flag & P_WEXIT && PP(pp, stat) != SZOMB)
*p++ = 'E';
if (flag & P_PPWAIT)
*p++ = 'V';
if (flag & P_SYSTEM || PP(pp, lock) > 0)
*p++ = 'L';
if (PP(pp, kiflag) & KI_SLEADER)
*p++ = 's';
if (flag & P_CONTROLT)
*p++ = '+';
if (flag & P_JAILED)
*p++ = 'J';
*p = '\0';
return snprintf(buf, sz, "%-3.3s", chrs);
}
int
fmt_c(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%1x", PP(pp, lastcpu));
}
int
fmt_time(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%6s",
format_time((PP(pp, runtime) + 500000) / 1000000));
}
int
fmt_cpu(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%5.2f%%", (double)PPCPU(pp) / 100.0);
}
int
fmt_command(char *buf, int sz, struct kinfo_proc *pp)
{
int inmem;
char cmd[MAX_COLS];
char *bufp;
struct pargs pargs;
int len;
#if OSMAJOR <= 4
inmem = (PP(pp, flag) & P_INMEM);
#else
inmem = (PP(pp, sflag) & PS_INMEM);
#endif
if (show_fullcmd && inmem)
{
/* get the pargs structure */
if (getkval((unsigned long)PP(pp, args), (int *)&pargs, sizeof(pargs)) != -1)
{
/* determine workable length */
if ((len = pargs.ar_length) >= MAX_COLS)
{
len = MAX_COLS - 1;
}
/* get the string from that */
if (len > 0 && getkval((unsigned long)PP(pp, args) +
sizeof(pargs.ar_ref) +
sizeof(pargs.ar_length),
(int *)cmd, len) != -1)
{
/* successfull retrieval: now convert nulls in to spaces */
bufp = cmd;
while (len-- > 0)
{
if (*bufp == '\0')
{
*bufp = ' ';
}
bufp++;
}
/* null terminate cmd */
*--bufp = '\0';
/* format cmd as our answer */
return snprintf(buf, sz, "%s", cmd);
}
}
}
/* for anything else we just display comm */
return snprintf(buf, sz, inmem ? "%s" : "<%s>", printable(PP(pp, comm)));
}
int
fmt_vcsw(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%6ld", per_second(SP(pp, vcsw), elapsed_msecs));
}
int
fmt_ivcsw(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%6ld", per_second(SP(pp, ivcsw), elapsed_msecs));
}
int
fmt_read(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%6ld", per_second(SP(pp, inblock), elapsed_msecs));
}
int
fmt_write(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%6ld", per_second(SP(pp, oublock), elapsed_msecs));
}
int
fmt_fault(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%6ld", per_second(SP(pp, majflt), elapsed_msecs));
}
int
fmt_iototal(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%6ld", per_second(SP(pp, totalio), elapsed_msecs));
}
int
fmt_iopct(char *buf, int sz, struct kinfo_proc *pp)
{
return snprintf(buf, sz, "%6.2f", (SP(pp, totalio) * 100.) / total_io);
}
struct proc_field proc_field[] = {
{ "PID", 6, 1, 0, fmt_pid },
{ "USERNAME", 8, 0, 0, fmt_username },
#define FIELD_USERNAME 1
{ "UID", 6, 1, 0, fmt_uid },
#define FIELD_UID 2
{ "THR", 3, 1, 0, fmt_thr },
{ "PRI", 3, 1, 0, fmt_pri },
{ "NICE", 4, 1, 0, fmt_nice },
{ "SIZE", 5, 1, 0, fmt_size },
{ "RES", 5, 1, 0, fmt_res },
{ "STATE", 6, 0, 0, fmt_state },
{ "FLG", 3, 0, 84, fmt_flags },
{ "C", 1, 0, 0, fmt_c },
{ "TIME", 6, 1, 0, fmt_time },
{ "CPU", 6, 1, 0, fmt_cpu },
{ "COMMAND", 7, 0, 0, fmt_command },
{ "VCSW", 6, 1, 0, fmt_vcsw },
{ "IVCSW", 6, 1, 0, fmt_ivcsw },
{ "READ", 6, 1, 0, fmt_read },
{ "WRITE", 6, 1, 0, fmt_write },
{ "FAULT", 6, 1, 0, fmt_fault },
{ "TOTAL", 6, 1, 0, fmt_iototal },
{ "PERCENT", 7, 1, 0, fmt_iopct },
{ NULL, 0, 0, 0, NULL }
};
#define MAX_FIELDS 24
static int mode0_display[MAX_FIELDS];
static int mode0thr_display[MAX_FIELDS];
static int mode1_display[MAX_FIELDS];
int
field_index(char *col)
{
struct proc_field *fp;
int i = 0;
fp = proc_field;
while (fp->name != NULL)
{
if (strcmp(col, fp->name) == 0)
{
return i;
}
fp++;
i++;
}
return -1;
}
void
field_subst(int *fp, int old, int new)
{
while (*fp != -1)
{
if (*fp == old)
{
*fp = new;
}
fp++;
}
}
int
machine_init(struct statics *statics)
{
int i = 0;
size_t len;
int *ip;
struct timeval boottime;
len = sizeof(smpmode);
if ((sysctlbyname("machdep.smp_active", &smpmode, &len, NULL, 0) < 0 &&
sysctlbyname("smp.smp_active", &smpmode, &len, NULL, 0) < 0) ||
len != sizeof(smpmode))
{
smpmode = 0;
}
smpmode = smpmode != 0;
/* kvm_open the active kernel: its okay if this fails */
kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL);
/* get boot time */
len = sizeof(boottime);
if (sysctlbyname("kern.boottime", &boottime, &len, NULL, 0) == -1)
{
/* we have no boottime to report */
boottime.tv_sec = -1;
}
pbase = NULL;
pref = NULL;
/* get the page size with "getpagesize" and calculate pageshift from it */
i = pagesize = getpagesize();
pageshift = 0;
while (i > 1)
{
pageshift++;
i >>= 1;
}
/* translate sysctl paths to mibs for faster access */
get_sysctl_mibs();
/* initialize swap stuff */
swap_init();
/* create the hash table that remembers proc data */
procs = hash_create(2039);
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
statics->kernel_names = kernelnames;
statics->boottime = boottime.tv_sec;
statics->swap_names = swapnames;
statics->order_names = ordernames;
statics->flags.warmup = 1;
statics->modemax = 2;
#ifdef HAS_SHOWTHREADS
statics->flags.threads = 1;
#endif
/* we need kvm descriptor in order to show full commands */
statics->flags.fullcmds = kd != NULL;
/* set up the display indices for mode0 */
ip = mode0_display;
*ip++ = field_index("PID");
*ip++ = field_index("USERNAME");
#ifdef HAS_THREADS
*ip++ = field_index("THR");
#endif
*ip++ = field_index("PRI");
*ip++ = field_index("NICE");
*ip++ = field_index("SIZE");
*ip++ = field_index("RES");
*ip++ = field_index("STATE");
*ip++ = field_index("FLG");
if (smpmode)
*ip++ = field_index("C");
*ip++ = field_index("TIME");
*ip++ = field_index("CPU");
*ip++ = field_index("COMMAND");
*ip = -1;
#ifdef HAS_SHOWTHREADS
/* set up the display indices for mode0 showing threads */
ip = mode0thr_display;
*ip++ = field_index("PID");
*ip++ = field_index("USERNAME");
*ip++ = field_index("PRI");
*ip++ = field_index("NICE");
*ip++ = field_index("SIZE");
*ip++ = field_index("RES");
*ip++ = field_index("STATE");
*ip++ = field_index("FLG");
if (smpmode)
*ip++ = field_index("C");
*ip++ = field_index("TIME");
*ip++ = field_index("CPU");
*ip++ = field_index("COMMAND");
*ip = -1;
#endif
/* set up the display indices for mode1 */
ip = mode1_display;
*ip++ = field_index("PID");
*ip++ = field_index("USERNAME");
*ip++ = field_index("VCSW");
*ip++ = field_index("IVCSW");
*ip++ = field_index("READ");
*ip++ = field_index("WRITE");
*ip++ = field_index("FAULT");
*ip++ = field_index("TOTAL");
*ip++ = field_index("PERCENT");
*ip++ = field_index("COMMAND");
*ip = -1;
/* all done! */
return(0);
}
char *format_header(char *uname_field)
{
return "";
}
void
get_vm_sum(struct vmmeter *sum)
{
#define GET_VM_STAT(v, s) (void)get_sysctl(v, &(sum->s), sizeof(sum->s))
GET_VM_STAT(V_SWTCH, v_swtch);
GET_VM_STAT(V_TRAP, v_trap);
GET_VM_STAT(V_INTR, v_intr);
GET_VM_STAT(V_SOFT, v_soft);
GET_VM_STAT(V_VFORKS, v_vforks);
GET_VM_STAT(V_FORKS, v_forks);
GET_VM_STAT(V_RFORKS, v_rforks);
GET_VM_STAT(V_VM_FAULTS, v_vm_faults);
GET_VM_STAT(V_SWAPIN, v_swapin);
GET_VM_STAT(V_SWAPOUT, v_swapout);
GET_VM_STAT(V_TFREE, v_tfree);
GET_VM_STAT(V_VNODEIN, v_vnodein);
GET_VM_STAT(V_VNODEOUT, v_vnodeout);
GET_VM_STAT(V_ACTIVE_COUNT, v_active_count);
GET_VM_STAT(V_INACTIVE_COUNT, v_inactive_count);
GET_VM_STAT(V_WIRE_COUNT, v_wire_count);
GET_VM_STAT(V_CACHE_COUNT, v_cache_count);
GET_VM_STAT(V_FREE_COUNT, v_free_count);
GET_VM_STAT(V_SWAPPGSIN, v_swappgsin);
GET_VM_STAT(V_SWAPPGSOUT, v_swappgsout);
}
void
get_system_info(struct system_info *si)
{
long total;
struct timeval thistime;
struct timeval timediff;
/* timestamp and time difference */
gettimeofday(&thistime, 0);
timersub(&thistime, &lasttime, &timediff);
elapsed_time = timediff.tv_sec * 1000000 + timediff.tv_usec;
elapsed_msecs = timediff.tv_sec * 1000 + timediff.tv_usec / 1000;
/* get the load averages */
if (getloadavg(si->load_avg, NUM_AVERAGES) == -1)
{
/* failed: fill in with zeroes */
(void) memset(si->load_avg, 0, sizeof(si->load_avg));
}
/* get the cp_time array */
(void)get_sysctl(K_CP_TIME, &cp_time, sizeof(cp_time));
/* convert cp_time counts to percentages */
total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
/* sum memory & swap statistics */
{
struct vmmeter sum;
static unsigned int swap_delay = 0;
static long long swapavail = 0;
static long long swapfree = 0;
static int bufspace = 0;
get_vm_sum(&sum);
/* get bufspace */
bufspace = 0;
(void) get_sysctl(VFS_BUFSPACE, &bufspace, sizeof(bufspace));
/* kernel stats */
dprintf("kernel: swtch %d, trap %d, intr %d, soft %d, vforks %d\n",
sum.v_swtch, sum.v_trap, sum.v_intr, sum.v_soft, sum.v_vforks);
kernel_stats[0] = per_second(sum.v_swtch - ctxsws, elapsed_msecs);
kernel_stats[1] = per_second(sum.v_trap - traps, elapsed_msecs);
kernel_stats[2] = per_second(sum.v_intr - intrs, elapsed_msecs);
kernel_stats[3] = per_second(sum.v_soft - softs, elapsed_msecs);
kernel_stats[4] = per_second(sum.v_vforks + sum.v_forks +
sum.v_rforks - forks, elapsed_msecs);
kernel_stats[5] = per_second(sum.v_vm_faults - pfaults, elapsed_msecs);
kernel_stats[6] = per_second(sum.v_swapin + sum.v_vnodein - pagein, elapsed_msecs);
kernel_stats[7] = per_second(sum.v_swapout + sum.v_vnodeout - pageout, elapsed_msecs);
kernel_stats[8] = per_second(sum.v_tfree - tfreed, elapsed_msecs);
ctxsws = sum.v_swtch;
traps = sum.v_trap;
intrs = sum.v_intr;
softs = sum.v_soft;
forks = (u_int64_t)sum.v_vforks + sum.v_forks + sum.v_rforks;
pfaults = sum.v_vm_faults;
pagein = sum.v_swapin + sum.v_vnodein;
pageout = sum.v_swapout + sum.v_vnodeout;
tfreed = sum.v_tfree;
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(sum.v_active_count);
memory_stats[1] = pagetok(sum.v_inactive_count);
memory_stats[2] = pagetok(sum.v_wire_count);
memory_stats[3] = pagetok(sum.v_cache_count);
memory_stats[4] = bufspace / 1024;
memory_stats[5] = pagetok(sum.v_free_count);
memory_stats[6] = -1;
/* first interval */
if (swappgsin < 0)
{
swap_stats[4] = 0;
swap_stats[5] = 0;
}
/* compute differences between old and new swap statistic */
else
{
swap_stats[4] = pagetok(sum.v_swappgsin - swappgsin);
swap_stats[5] = pagetok(sum.v_swappgsout - swappgsout);
}
swappgsin = sum.v_swappgsin;
swappgsout = sum.v_swappgsout;
/* call CPU heavy swap_getdata() only for changes */
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0)
{
swap_stats[3] = swap_getdata(&swapavail, &swapfree);
swap_stats[0] = swapavail;
swap_stats[1] = swapavail - swapfree;
swap_stats[2] = swapfree;
}
swap_delay = 1;
swap_stats[6] = -1;
}
/* set arrays and strings */
si->cpustates = cpu_states;
si->kernel = kernel_stats;
si->memory = memory_stats;
si->swap = swap_stats;
si->last_pid = -1;
lasttime = thistime;
}
caddr_t
get_process_info(struct system_info *si,
struct process_select *sel,
int compare_index)
{
int i;
int total_procs;
int active_procs;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
struct kinfo_proc *prev_pp = NULL;
struct save_proc *savep;
long proc_io;
pid_t pid;
size_t size;
int nproc;
/* these are copied out of sel for speed */
int show_idle;
int show_self;
int show_system;
int show_uid;
char *show_command;
/* get proc table size and give it a boost */
nproc = (int)get_sysctlsize(K_PROC) / sizeof(struct kinfo_proc);
nproc += nproc >> 4;
size = nproc * sizeof(struct kinfo_proc);
dprintf("get_process_info: nproc %d, psize %d, size %d\n", nproc, psize, size);
/* make sure we have enough space allocated */
if (nproc > psize)
{
/* reallocate both pbase and pref */
pbase = (struct kinfo_proc *)realloc(pbase, size);
pref = (struct kinfo_proc **)realloc(pref,
sizeof(struct kinfo_proc *) * nproc);
psize = nproc;
}
/* make sure we got the space we asked for */
if (pref == NULL || pbase == NULL)
{
/* abandon all hope */
message_error(" Out of memory!");
nproc = psize = 0;
si->p_total = 0;
si->p_active = 0;
return NULL;
}
/* get all process information (threads, too) */
if (size > 0)
{
nproc = get_sysctl(K_PROC, pbase, size);
if (nproc == -1)
{
nproc = 0;
}
else
{
nproc /= sizeof(struct kinfo_proc);
}
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_self = 0;
show_system = sel->system;
show_uid = sel->uid != -1;
show_fullcmd = sel->fullcmd;
show_command = sel->command;
show_usernames = sel->usernames;
display_mode = sel->mode;
#ifdef HAS_SHOWTHREADS
show_threads = sel->threads;
#endif
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
total_io = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++)
{
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with P_SYSTEM set are system
* processes---these get ignored unless show_sysprocs is set.
*/
pid = PP(pp, pid);
if (PP(pp, stat) != 0)
{
#ifdef HAS_SHOWTHREADS
int is_thread;
lwpid_t tid;
/* get thread id */
tid = PP(pp, tid);
/* is this just a thread? */
is_thread = (prev_pp != NULL && PP(prev_pp, pid) == pid);
/* count this process and its state */
/* only count threads if we are showing them */
if (show_threads || !is_thread)
{
total_procs++;
process_states[(unsigned char) PP(pp, stat)]++;
}
/* grab old data from hash */
if ((savep = hash_lookup_lwpid(procs, tid)) != NULL)
{
/* verify that this is not a new or different thread */
/* (freebsd reuses thread ids fairly quickly) */
/* pids must match and time can't have gone backwards */
if (pid != savep->sp_pid || PP(pp, runtime) < savep->sp_runtime)
{
/* not the same thread -- reuse the save_proc structure */
memset(savep, 0, sizeof(struct save_proc));
savep->sp_pid = pid;
}
}
else
{
/* havent seen this one before */
savep = (struct save_proc *)calloc(1, sizeof(struct save_proc));
savep->sp_pid = pid;
hash_add_lwpid(procs, tid, savep);
}
#else /* !HAS_SHOWTHREADS */
total_procs++;
process_states[(unsigned char) PP(pp, stat)]++;
/* grab old data from hash */
if ((savep = hash_lookup_pid(procs, pid)) == NULL)
{
/* havent seen this one before */
savep = (struct save_proc *)calloc(1, sizeof(struct save_proc));
savep->sp_pid = pid;
hash_add_pid(procs, pid, savep);
}
#endif
/* save the pointer to the sp struct */
SPPTR(pp) = (void *)savep;
/* calculate %cpu */
PPCPU(pp) = ((PP(pp, runtime) - savep->sp_runtime) * 10000) /
elapsed_time;
dprintf("%d (%d): runtime %lld, saved_pid %d, saved_runtime %lld, elapsed_time %d, ppcpu %d\n",
pid, PP(pp, tid), PP(pp, runtime), savep->sp_pid, savep->sp_runtime,
elapsed_time, PPCPU(pp));
/* calculate io differences */
proc_io = 0;
savep->sp_vcsw = (RP(pp, nvcsw) - savep->sp_old_nvcsw);
savep->sp_ivcsw = (RP(pp, nivcsw) - savep->sp_old_nivcsw);
proc_io += (savep->sp_inblock = (RP(pp, inblock) - savep->sp_old_inblock));
proc_io += (savep->sp_oublock = (RP(pp, oublock) - savep->sp_old_oublock));
proc_io += (savep->sp_majflt = (RP(pp, majflt) - savep->sp_old_majflt));
total_io += proc_io;
savep->sp_totalio = proc_io;
/* save data for next time */
savep->sp_runtime = PP(pp, runtime);
savep->sp_old_nvcsw = RP(pp, nvcsw);
savep->sp_old_nivcsw = RP(pp, nivcsw);
savep->sp_old_inblock = RP(pp, inblock);
savep->sp_old_oublock = RP(pp, oublock);
savep->sp_old_majflt = RP(pp, majflt);
/* is this one selected for viewing? */
if ((PP(pp, stat) != SZOMB) &&
(show_system || ((PP(pp, flag) & P_SYSTEM) == 0)) &&
(show_idle || (PP(pp, pctcpu) != 0) ||
(PP(pp, stat) == SRUN)) &&
(!show_uid || PRUID(pp) == (uid_t)sel->uid) &&
(show_command == NULL ||
strcasestr(PP(pp, comm), show_command) != NULL))
{
#ifdef HAS_SHOWTHREADS
/* yes, but make sure it isn't just a thread */
if (show_threads || !is_thread)
{
/* we will be showing this thread */
*prefp++ = pp;
active_procs++;
}
else
{
/* we will not be showing this thread, but we need to roll
up its cpu usage in to its process */
PP(prev_pp, pctcpu) += PP(pp, pctcpu);
}
#else /* !HAS_SHOWTHREADS */
/* we will be showing this process */
*prefp++ = pp;
active_procs++;
#endif
}
prev_pp = pp;
}
}
dprintf("total_io: %d\n", total_io);
if (total_io == 0) total_io = 1;
/* if requested, sort the "interesting" processes */
if (active_procs > 1)
{
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
proc_compares[compare_index]);
}
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return((caddr_t)&handle);
}
static char p_header[MAX_COLS];
char *
format_process_header(struct process_select *sel, caddr_t handle, int count)
{
int cols;
int n;
int w;
char *p;
int *fi;
struct kinfo_proc **kip;
struct proc_field *fp;
/* check for null handle */
if (handle == NULL)
{
return("");
}
/* remember how many columns there are on the display */
cols = display_columns();
/* mode & threads dictate format */
fi = display_fields =
sel->mode == 0 ?
(sel->threads == 0 ? mode0_display : mode0thr_display) :
mode1_display;
/* set username field correctly */
if (!sel->usernames)
{
/* display uids */
field_subst(fi, FIELD_USERNAME, FIELD_UID);
}
else
{
/* display usernames */
field_subst(fi, FIELD_UID, FIELD_USERNAME);
/* we also need to determine the longest username for column width */
/* calculate namelength from first "count" processes */
kip = ((struct handle *)handle)->next_proc;
n = ((struct handle *)handle)->remaining;
if (n > count)
n = count;
namelength = 0;
while (n-- > 0)
{
w = strlen(username(PRUID(*kip)));
if (w > namelength) namelength = w;
kip++;
}
dprintf("format_process_header: namelength %d\n", namelength);
/* place it in bounds */
if (namelength < 8)
{
namelength = 8;
}
/* set the column width */
proc_field[FIELD_USERNAME].width = username_length = namelength;
}
/* walk thru fields and construct header */
/* are we worried about overflow??? */
p = p_header;
while (*fi != -1)
{
fp = &(proc_field[*fi++]);
if (fp->min_screenwidth <= cols)
{
p += sprintf(p, fp->rjust ? "%*s" : "%-*s", fp->width, fp->name);
*p++ = ' ';
}
}
*--p = '\0';
return p_header;
}
static char fmt[MAX_COLS]; /* static area where result is built */
char *
format_next_process(caddr_t handle, char *(*get_userid)(int))
{
struct kinfo_proc *pp;
struct handle *hp;
struct proc_field *fp;
int *fi;
int i;
int cols;
char *p;
int len;
int x;
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* mode & threads dictate format */
fi = display_fields;
/* screen width is a consideration, too */
cols = display_columns();
/* build output by field */
p = fmt;
len = MAX_COLS;
while ((i = *fi++) != -1)
{
fp = &(proc_field[i]);
if (len > 0 && fp->min_screenwidth <= cols)
{
x = (*(fp->format))(p, len, pp);
if (x >= len)
{
dprintf("format_next_process: formatter overflow: x %d, len %d, p %08x => %08x, fmt %08x - %08x\n",
x, len, p, p + len, fmt, fmt + sizeof(fmt));
p += len;
len = 0;
}
else
{
p += x;
*p++ = ' ';
len -= x + 1;
}
}
}
*--p = '\0';
/* return the result */
return(fmt);
}
/* comparison routines for qsort */
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, start, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
*/
static unsigned char sorted_state[] =
{
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4 /* stop */
};
#define ORDERKEY_PCTCPU \
if (lresult = (long) PPCPU(p2) - (long) PPCPU(p1), \
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
#define ORDERKEY_CPTICKS \
if ((result = PP(p2, runtime) > PP(p1, runtime) ? 1 : \
PP(p2, runtime) < PP(p1, runtime) ? -1 : 0) == 0)
#define ORDERKEY_STATE \
if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
sorted_state[(unsigned char) PP(p1, stat)]) == 0)
#if OSMAJOR <= 4
#define ORDERKEY_PRIO \
if ((result = PP(p2, priority) - PP(p1, priority)) == 0)
#else
#define ORDERKEY_PRIO \
if ((result = PP(p2, pri.pri_level) - PP(p1, pri.pri_level)) == 0)
#endif
#define ORDERKEY_RSSIZE \
if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
#define ORDERKEY_MEM \
if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
#define ORDERKEY_IO \
if ( (result = SP(p2, totalio) - SP(p1, totalio)) == 0)
#define ORDERKEY_PID \
if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
/* compare_cpu - the comparison function for sorting by cpu percentage */
int
proc_compare(struct proc **pp1, struct proc **pp2)
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return(result);
}
/* compare_size - the comparison function for sorting by total memory usage */
int
compare_size(struct proc **pp1, struct proc **pp2)
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_MEM
ORDERKEY_RSSIZE
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return(result);
}
/* compare_res - the comparison function for sorting by resident set size */
int
compare_res(struct proc **pp1, struct proc **pp2)
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_RSSIZE
ORDERKEY_MEM
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return(result);
}
/* compare_time - the comparison function for sorting by total cpu time */
int
compare_time(struct proc **pp1, struct proc **pp2)
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return(result);
}
/* compare_prio - the comparison function for sorting by priority */
int
compare_prio(struct proc **pp1, struct proc **pp2)
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_PRIO
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return(result);
}
/* compare_io - the comparison function for sorting by io count */
int
compare_io(struct proc **pp1, struct proc **pp2)
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_IO
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return(result);
}
/* compare_pid - the comparison function for sorting by process id */
int
compare_pid(struct proc **pp1, struct proc **pp2)
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_PID
;
return(result);
}
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int
proc_owner(int pid)
{
int cnt;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
prefp = pref;
cnt = pref_len;
while (--cnt >= 0)
{
pp = *prefp++;
if (PP(pp, pid) == (pid_t)pid)
{
return((int)PRUID(pp));
}
}
return(-1);
}