mirror of
https://github.com/Stichting-MINIX-Research-Foundation/netbsd.git
synced 2025-09-10 15:46:33 -04:00
1781 lines
43 KiB
C
1781 lines
43 KiB
C
/*
|
|
* Copyright (c) 1984 through 2008, William LeFebvre
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following disclaimer
|
|
* in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* * Neither the name of William LeFebvre nor the names of other
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* top - a top users display for Unix
|
|
*
|
|
* SYNOPSIS: For FreeBSD 5.x, 6.x, 7.x, 8.x
|
|
*
|
|
* DESCRIPTION:
|
|
* Originally written for BSD4.4 system by Christos Zoulas.
|
|
* Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
|
|
* Order support hacked in from top-3.5beta6/machine/m_aix41.c
|
|
* by Monte Mitzelfelt
|
|
* Ported to FreeBSD 5.x and higher by William LeFebvre
|
|
*
|
|
* AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
|
|
* Steven Wallace <swallace@freebsd.org>
|
|
* Wolfram Schneider <wosch@FreeBSD.org>
|
|
*/
|
|
|
|
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
#include <sys/signal.h>
|
|
#include <sys/param.h>
|
|
|
|
#include "config.h"
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <nlist.h>
|
|
#include <math.h>
|
|
#include <kvm.h>
|
|
#include <pwd.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/dkstat.h>
|
|
#include <sys/file.h>
|
|
#include <sys/time.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/user.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/rtprio.h>
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
/* Swap */
|
|
#include <stdlib.h>
|
|
#include <sys/conf.h>
|
|
|
|
#include <osreldate.h> /* for changes in kernel structures */
|
|
|
|
#include "top.h"
|
|
#include "machine.h"
|
|
#include "utils.h"
|
|
#include "username.h"
|
|
#include "hash.h"
|
|
#include "display.h"
|
|
|
|
extern char* printable __P((char *));
|
|
int swapmode __P((int *retavail, int *retfree));
|
|
static int smpmode;
|
|
static int namelength;
|
|
|
|
/*
|
|
* Versions prior to 5.x do not track threads in kinfo_proc, so we
|
|
* simply do not display any information about them.
|
|
* Versions 5.x, 6.x, and 7.x track threads but the data reported
|
|
* as runtime for each thread is actually per-process and is just
|
|
* duplicated across all threads. It would be very wrong to show
|
|
* this data individually for each thread. Therefore we will show
|
|
* a THR column (number of threads) but not provide any sort of
|
|
* per-thread display. We distinguish between these three ways of
|
|
* handling threads as follows: HAS_THREADS indicates that the
|
|
* system has and tracks kernel threads (a THR column will appear
|
|
* in the display). HAS_SHOWTHREADS indicates that the system
|
|
* reports correct per-thread information and we will provide a
|
|
* per-thread display (the 'H' and 't' command) upon request.
|
|
* HAS_SHOWTHREADS implies HAS_THREADS.
|
|
*/
|
|
|
|
/* HAS_THREADS for anything 5.x and up */
|
|
#if OSMAJOR >= 5
|
|
#define HAS_THREADS
|
|
#endif
|
|
|
|
/* HAS_SHOWTHREADS for anything 8.x and up */
|
|
#if OSMAJOR >=8
|
|
#define HAS_SHOWTHREADS
|
|
#endif
|
|
|
|
/* get_process_info passes back a handle. This is what it looks like: */
|
|
|
|
struct handle
|
|
{
|
|
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
|
|
int remaining; /* number of pointers remaining */
|
|
};
|
|
|
|
/* declarations for load_avg */
|
|
#include "loadavg.h"
|
|
|
|
/*
|
|
* Macros to access process information:
|
|
* In versions 4.x and earlier the kinfo_proc structure was a collection of
|
|
* substructures (kp_proc and kp_eproc). Starting with 5.0 kinfo_proc was
|
|
* redesigned and "flattene" so that most of the information was available
|
|
* in a single structure. We use macros to access the various types of
|
|
* information and define these macros according to the OS revision. The
|
|
* names PP, EP, and VP are due to the fact that information was originally
|
|
* contained in the different substructures. We retain these names in the
|
|
* code for backward compatibility. These macros use ANSI concatenation.
|
|
* PP: proc
|
|
* EP: extented proc
|
|
* VP: vm (virtual memory information)
|
|
* PRUID: Real uid
|
|
* RP: rusage
|
|
* PPCPU: where we store calculated cpu% data
|
|
* SPPTR: where we store pointer to extra calculated data
|
|
* SP: access to the extra calculated data pointed to by SPPTR
|
|
*/
|
|
#if OSMAJOR <= 4
|
|
#define PP(pp, field) ((pp)->kp_proc . p_##field)
|
|
#define EP(pp, field) ((pp)->kp_eproc . e_##field)
|
|
#define VP(pp, field) ((pp)->kp_eproc.e_vm . vm_##field)
|
|
#define PRUID(pp) ((pp)->kp_eproc.e_pcred.p_ruid)
|
|
#else
|
|
#define PP(pp, field) ((pp)->ki_##field)
|
|
#define EP(pp, field) ((pp)->ki_##field)
|
|
#define VP(pp, field) ((pp)->ki_##field)
|
|
#define PRUID(pp) ((pp)->ki_ruid)
|
|
#define RP(pp, field) ((pp)->ki_rusage.ru_##field)
|
|
#define PPCPU(pp) ((pp)->ki_sparelongs[0])
|
|
#define SPPTR(pp) ((pp)->ki_spareptrs[0])
|
|
#define SP(pp, field) (((struct save_proc *)((pp)->ki_spareptrs[0]))->sp_##field)
|
|
#endif
|
|
|
|
/* what we consider to be process size: */
|
|
#if OSMAJOR <= 4
|
|
#define PROCSIZE(pp) (VP((pp), map.size) / 1024)
|
|
#else
|
|
#define PROCSIZE(pp) (((pp)->ki_size) / 1024)
|
|
#endif
|
|
|
|
/* calculate a per-second rate using milliseconds */
|
|
#define per_second(n, msec) (((n) * 1000) / (msec))
|
|
|
|
/* process state names for the "STATE" column of the display */
|
|
/* the extra nulls in the string "run" are for adding a slash and
|
|
the processor number when needed */
|
|
|
|
char *state_abbrev[] =
|
|
{
|
|
"?", "START", "RUN", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
|
|
};
|
|
#define NUM_STATES 8
|
|
|
|
/* kernel access */
|
|
static kvm_t *kd;
|
|
|
|
/* these are for dealing with sysctl-based data */
|
|
#define MAXMIBLEN 8
|
|
struct sysctl_mib {
|
|
char *name;
|
|
int mib[MAXMIBLEN];
|
|
size_t miblen;
|
|
};
|
|
static struct sysctl_mib mibs[] = {
|
|
{ "vm.stats.sys.v_swtch" },
|
|
#define V_SWTCH 0
|
|
{ "vm.stats.sys.v_trap" },
|
|
#define V_TRAP 1
|
|
{ "vm.stats.sys.v_intr" },
|
|
#define V_INTR 2
|
|
{ "vm.stats.sys.v_soft" },
|
|
#define V_SOFT 3
|
|
{ "vm.stats.vm.v_forks" },
|
|
#define V_FORKS 4
|
|
{ "vm.stats.vm.v_vforks" },
|
|
#define V_VFORKS 5
|
|
{ "vm.stats.vm.v_rforks" },
|
|
#define V_RFORKS 6
|
|
{ "vm.stats.vm.v_vm_faults" },
|
|
#define V_VM_FAULTS 7
|
|
{ "vm.stats.vm.v_swapin" },
|
|
#define V_SWAPIN 8
|
|
{ "vm.stats.vm.v_swapout" },
|
|
#define V_SWAPOUT 9
|
|
{ "vm.stats.vm.v_tfree" },
|
|
#define V_TFREE 10
|
|
{ "vm.stats.vm.v_vnodein" },
|
|
#define V_VNODEIN 11
|
|
{ "vm.stats.vm.v_vnodeout" },
|
|
#define V_VNODEOUT 12
|
|
{ "vm.stats.vm.v_active_count" },
|
|
#define V_ACTIVE_COUNT 13
|
|
{ "vm.stats.vm.v_inactive_count" },
|
|
#define V_INACTIVE_COUNT 14
|
|
{ "vm.stats.vm.v_wire_count" },
|
|
#define V_WIRE_COUNT 15
|
|
{ "vm.stats.vm.v_cache_count" },
|
|
#define V_CACHE_COUNT 16
|
|
{ "vm.stats.vm.v_free_count" },
|
|
#define V_FREE_COUNT 17
|
|
{ "vm.stats.vm.v_swappgsin" },
|
|
#define V_SWAPPGSIN 18
|
|
{ "vm.stats.vm.v_swappgsout" },
|
|
#define V_SWAPPGSOUT 19
|
|
{ "vfs.bufspace" },
|
|
#define VFS_BUFSPACE 20
|
|
{ "kern.cp_time" },
|
|
#define K_CP_TIME 21
|
|
#ifdef HAS_SHOWTHREADS
|
|
{ "kern.proc.all" },
|
|
#else
|
|
{ "kern.proc.proc" },
|
|
#endif
|
|
#define K_PROC 22
|
|
{ NULL }
|
|
};
|
|
|
|
|
|
/* these are for calculating cpu state percentages */
|
|
|
|
static long cp_time[CPUSTATES];
|
|
static long cp_old[CPUSTATES];
|
|
static long cp_diff[CPUSTATES];
|
|
|
|
/* these are for detailing the process states */
|
|
|
|
int process_states[8];
|
|
char *procstatenames[] = {
|
|
"", " starting, ", " running, ", " sleeping, ", " stopped, ", " zombie, ",
|
|
" waiting, ", " locked, ",
|
|
NULL
|
|
};
|
|
|
|
/* these are for detailing the cpu states */
|
|
|
|
int cpu_states[CPUSTATES];
|
|
char *cpustatenames[] = {
|
|
"user", "nice", "system", "interrupt", "idle", NULL
|
|
};
|
|
|
|
/* these are for detailing the kernel information */
|
|
|
|
int kernel_stats[9];
|
|
char *kernelnames[] = {
|
|
" ctxsw, ", " trap, ", " intr, ", " soft, ", " fork, ",
|
|
" flt, ", " pgin, ", " pgout, ", " fr",
|
|
NULL
|
|
};
|
|
|
|
/* these are for detailing the memory statistics */
|
|
|
|
long memory_stats[7];
|
|
char *memorynames[] = {
|
|
"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
|
|
NULL
|
|
};
|
|
|
|
long swap_stats[7];
|
|
char *swapnames[] = {
|
|
/* 0 1 2 3 4 5 */
|
|
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
|
|
NULL
|
|
};
|
|
|
|
|
|
/*
|
|
* pbase points to the array that holds the kinfo_proc structures. pref
|
|
* (pronounced p-ref) points to an array of kinfo_proc pointers and is where
|
|
* we build up a list of processes we wish to display. Both pbase and pref are
|
|
* potentially resized on every call to get_process_info. psize is the number
|
|
* of procs for which we currently have space allocated. pref_len is the number
|
|
* of valid pointers in pref (this is used by proc_owner). We start psize off
|
|
* at -1 to ensure that space gets allocated on the first call to
|
|
* get_process_info.
|
|
*/
|
|
|
|
static int psize = -1;
|
|
static int pref_len;
|
|
static struct kinfo_proc *pbase = NULL;
|
|
static struct kinfo_proc **pref = NULL;
|
|
|
|
/* this structure retains information from the proc array between samples */
|
|
struct save_proc {
|
|
pid_t sp_pid;
|
|
u_int64_t sp_runtime;
|
|
long sp_vcsw;
|
|
long sp_ivcsw;
|
|
long sp_inblock;
|
|
long sp_oublock;
|
|
long sp_majflt;
|
|
long sp_totalio;
|
|
long sp_old_nvcsw;
|
|
long sp_old_nivcsw;
|
|
long sp_old_inblock;
|
|
long sp_old_oublock;
|
|
long sp_old_majflt;
|
|
};
|
|
hash_table *procs;
|
|
|
|
struct proc_field {
|
|
char *name;
|
|
int width;
|
|
int rjust;
|
|
int min_screenwidth;
|
|
int (*format)(char *, int, struct kinfo_proc *);
|
|
};
|
|
|
|
/* these are for getting the memory statistics */
|
|
|
|
static int pagesize; /* kept from getpagesize */
|
|
static int pageshift; /* log base 2 of the pagesize */
|
|
|
|
/* define pagetok in terms of pageshift */
|
|
|
|
#define pagetok(size) ((size) << pageshift)
|
|
|
|
/* things that we track between updates */
|
|
static u_int ctxsws = 0;
|
|
static u_int traps = 0;
|
|
static u_int intrs = 0;
|
|
static u_int softs = 0;
|
|
static u_int64_t forks = 0;
|
|
static u_int pfaults;
|
|
static u_int pagein;
|
|
static u_int pageout;
|
|
static u_int tfreed;
|
|
static int swappgsin = -1;
|
|
static int swappgsout = -1;
|
|
extern struct timeval timeout;
|
|
static struct timeval lasttime = { 0, 0 };
|
|
static long elapsed_time;
|
|
static long elapsed_msecs;
|
|
|
|
/* things that we track during an update */
|
|
static long total_io;
|
|
static int show_fullcmd;
|
|
static struct handle handle;
|
|
static int username_length;
|
|
static int show_usernames;
|
|
static int display_mode;
|
|
static int *display_fields;
|
|
#ifdef HAS_SHOWTHREADS
|
|
static int show_threads = 0;
|
|
#endif
|
|
|
|
|
|
/* sorting orders. first is default */
|
|
char *ordernames[] = {
|
|
"cpu", "size", "res", "time", "pri", "io", "pid", NULL
|
|
};
|
|
|
|
/* compare routines */
|
|
int proc_compare(), compare_size(), compare_res(), compare_time(),
|
|
compare_prio(), compare_io(), compare_pid();
|
|
|
|
int (*proc_compares[])() = {
|
|
proc_compare,
|
|
compare_size,
|
|
compare_res,
|
|
compare_time,
|
|
compare_prio,
|
|
compare_io,
|
|
compare_pid,
|
|
NULL
|
|
};
|
|
|
|
/* swap related calculations */
|
|
|
|
static int mib_swapinfo[16];
|
|
static int *mib_swapinfo_idx;
|
|
static int mib_swapinfo_size = 0;
|
|
|
|
void
|
|
swap_init()
|
|
|
|
{
|
|
size_t m;
|
|
|
|
m = sizeof(mib_swapinfo) / sizeof(mib_swapinfo[0]);
|
|
if (sysctlnametomib("vm.swap_info", mib_swapinfo, &m) != -1)
|
|
{
|
|
mib_swapinfo_size = m + 1;
|
|
mib_swapinfo_idx = &(mib_swapinfo[m]);
|
|
}
|
|
}
|
|
|
|
int
|
|
swap_getdata(long long *retavail, long long *retfree)
|
|
|
|
{
|
|
int n;
|
|
size_t size;
|
|
long long total = 0;
|
|
long long used = 0;
|
|
struct xswdev xsw;
|
|
|
|
n = 0;
|
|
if (mib_swapinfo_size > 0)
|
|
{
|
|
*mib_swapinfo_idx = 0;
|
|
while (size = sizeof(xsw),
|
|
sysctl(mib_swapinfo, mib_swapinfo_size, &xsw, &size, NULL, 0) != -1)
|
|
{
|
|
dprintf("swap_getdata: swaparea %d: nblks %d, used %d\n",
|
|
n, xsw.xsw_nblks, xsw.xsw_used);
|
|
total += (long long)xsw.xsw_nblks;
|
|
used += (long long)xsw.xsw_used;
|
|
*mib_swapinfo_idx = ++n;
|
|
}
|
|
|
|
*retavail = pagetok(total);
|
|
*retfree = pagetok(total) - pagetok(used);
|
|
|
|
if (total > 0)
|
|
{
|
|
n = (int)((double)used * 100.0 / (double)total);
|
|
}
|
|
else
|
|
{
|
|
n = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
*retavail = 0;
|
|
*retfree = 0;
|
|
}
|
|
|
|
dprintf("swap_getdata: avail %lld, free %lld, %d%%\n",
|
|
*retavail, *retfree, n);
|
|
return(n);
|
|
}
|
|
|
|
/*
|
|
* getkval(offset, ptr, size) - get a value out of the kernel.
|
|
* "offset" is the byte offset into the kernel for the desired value,
|
|
* "ptr" points to a buffer into which the value is retrieved,
|
|
* "size" is the size of the buffer (and the object to retrieve).
|
|
* Return 0 on success, -1 on any kind of failure.
|
|
*/
|
|
|
|
static int
|
|
getkval(unsigned long offset, int *ptr, int size)
|
|
|
|
{
|
|
if (kd != NULL)
|
|
{
|
|
if (kvm_read(kd, offset, (char *) ptr, size) == size)
|
|
{
|
|
return(0);
|
|
}
|
|
}
|
|
return(-1);
|
|
}
|
|
|
|
int
|
|
get_sysctl_mibs()
|
|
|
|
{
|
|
struct sysctl_mib *mp;
|
|
size_t len;
|
|
|
|
mp = mibs;
|
|
while (mp->name != NULL)
|
|
{
|
|
len = MAXMIBLEN;
|
|
if (sysctlnametomib(mp->name, mp->mib, &len) == -1)
|
|
{
|
|
message_error(" sysctlnametomib: %s", strerror(errno));
|
|
return -1;
|
|
}
|
|
mp->miblen = len;
|
|
mp++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
get_sysctl(int idx, void *v, size_t l)
|
|
|
|
{
|
|
struct sysctl_mib *m;
|
|
size_t len;
|
|
|
|
m = &(mibs[idx]);
|
|
len = l;
|
|
if (sysctl(m->mib, m->miblen, v, &len, NULL, 0) == -1)
|
|
{
|
|
message_error(" sysctl: %s", strerror(errno));
|
|
return -1;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
size_t
|
|
get_sysctlsize(int idx)
|
|
|
|
{
|
|
size_t len;
|
|
struct sysctl_mib *m;
|
|
|
|
m = &(mibs[idx]);
|
|
if (sysctl(m->mib, m->miblen, NULL, &len, NULL, 0) == -1)
|
|
{
|
|
message_error(" sysctl (size): %s", strerror(errno));
|
|
len = 0;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
int
|
|
fmt_pid(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%6d", PP(pp, pid));
|
|
}
|
|
|
|
int
|
|
fmt_username(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%-*.*s",
|
|
username_length, username_length, username(PRUID(pp)));
|
|
}
|
|
|
|
int
|
|
fmt_uid(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%6d", PRUID(pp));
|
|
}
|
|
|
|
int
|
|
fmt_thr(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%3d", PP(pp, numthreads));
|
|
}
|
|
|
|
int
|
|
fmt_pri(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
#if OSMAJOR <= 4
|
|
return snprintf(buf, sz, "%3d", PP(pp, priority));
|
|
#else
|
|
return snprintf(buf, sz, "%3d", PP(pp, pri.pri_level));
|
|
#endif
|
|
}
|
|
|
|
int
|
|
fmt_nice(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%4d", PP(pp, nice) - NZERO);
|
|
}
|
|
|
|
int
|
|
fmt_size(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%5s", format_k(PROCSIZE(pp)));
|
|
}
|
|
|
|
int
|
|
fmt_res(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%5s", format_k(pagetok(VP(pp, rssize))));
|
|
}
|
|
|
|
int
|
|
fmt_state(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
int state;
|
|
char status[16];
|
|
|
|
state = PP(pp, stat);
|
|
switch(state)
|
|
{
|
|
case SRUN:
|
|
if (smpmode && PP(pp, oncpu) != 0xff)
|
|
sprintf(status, "CPU%d", PP(pp, oncpu));
|
|
else
|
|
strcpy(status, "RUN");
|
|
break;
|
|
|
|
case SSLEEP:
|
|
if (EP(pp, wmesg) != NULL) {
|
|
sprintf(status, "%.6s", EP(pp, wmesg));
|
|
break;
|
|
}
|
|
/* fall through */
|
|
default:
|
|
if (state >= 0 && state < NUM_STATES)
|
|
sprintf(status, "%.6s", state_abbrev[(unsigned char) state]);
|
|
else
|
|
sprintf(status, "?%-5d", state);
|
|
break;
|
|
}
|
|
|
|
return snprintf(buf, sz, "%-6.6s", status);
|
|
}
|
|
|
|
int
|
|
fmt_flags(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
long flag;
|
|
char chrs[12];
|
|
char *p;
|
|
|
|
flag = PP(pp, flag);
|
|
p = chrs;
|
|
if (PP(pp, nice) < NZERO)
|
|
*p++ = '<';
|
|
else if (PP(pp, nice) > NZERO)
|
|
*p++ = 'N';
|
|
if (flag & P_TRACED)
|
|
*p++ = 'X';
|
|
if (flag & P_WEXIT && PP(pp, stat) != SZOMB)
|
|
*p++ = 'E';
|
|
if (flag & P_PPWAIT)
|
|
*p++ = 'V';
|
|
if (flag & P_SYSTEM || PP(pp, lock) > 0)
|
|
*p++ = 'L';
|
|
if (PP(pp, kiflag) & KI_SLEADER)
|
|
*p++ = 's';
|
|
if (flag & P_CONTROLT)
|
|
*p++ = '+';
|
|
if (flag & P_JAILED)
|
|
*p++ = 'J';
|
|
*p = '\0';
|
|
|
|
return snprintf(buf, sz, "%-3.3s", chrs);
|
|
}
|
|
|
|
int
|
|
fmt_c(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%1x", PP(pp, lastcpu));
|
|
}
|
|
|
|
int
|
|
fmt_time(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%6s",
|
|
format_time((PP(pp, runtime) + 500000) / 1000000));
|
|
}
|
|
|
|
int
|
|
fmt_cpu(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%5.2f%%", (double)PPCPU(pp) / 100.0);
|
|
}
|
|
|
|
int
|
|
fmt_command(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
int inmem;
|
|
char cmd[MAX_COLS];
|
|
char *bufp;
|
|
struct pargs pargs;
|
|
int len;
|
|
|
|
#if OSMAJOR <= 4
|
|
inmem = (PP(pp, flag) & P_INMEM);
|
|
#else
|
|
inmem = (PP(pp, sflag) & PS_INMEM);
|
|
#endif
|
|
|
|
if (show_fullcmd && inmem)
|
|
{
|
|
/* get the pargs structure */
|
|
if (getkval((unsigned long)PP(pp, args), (int *)&pargs, sizeof(pargs)) != -1)
|
|
{
|
|
/* determine workable length */
|
|
if ((len = pargs.ar_length) >= MAX_COLS)
|
|
{
|
|
len = MAX_COLS - 1;
|
|
}
|
|
|
|
/* get the string from that */
|
|
if (len > 0 && getkval((unsigned long)PP(pp, args) +
|
|
sizeof(pargs.ar_ref) +
|
|
sizeof(pargs.ar_length),
|
|
(int *)cmd, len) != -1)
|
|
{
|
|
/* successfull retrieval: now convert nulls in to spaces */
|
|
bufp = cmd;
|
|
while (len-- > 0)
|
|
{
|
|
if (*bufp == '\0')
|
|
{
|
|
*bufp = ' ';
|
|
}
|
|
bufp++;
|
|
}
|
|
|
|
/* null terminate cmd */
|
|
*--bufp = '\0';
|
|
|
|
/* format cmd as our answer */
|
|
return snprintf(buf, sz, "%s", cmd);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* for anything else we just display comm */
|
|
return snprintf(buf, sz, inmem ? "%s" : "<%s>", printable(PP(pp, comm)));
|
|
}
|
|
|
|
int
|
|
fmt_vcsw(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%6ld", per_second(SP(pp, vcsw), elapsed_msecs));
|
|
}
|
|
|
|
int
|
|
fmt_ivcsw(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%6ld", per_second(SP(pp, ivcsw), elapsed_msecs));
|
|
}
|
|
|
|
int
|
|
fmt_read(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%6ld", per_second(SP(pp, inblock), elapsed_msecs));
|
|
}
|
|
|
|
int
|
|
fmt_write(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%6ld", per_second(SP(pp, oublock), elapsed_msecs));
|
|
}
|
|
|
|
int
|
|
fmt_fault(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%6ld", per_second(SP(pp, majflt), elapsed_msecs));
|
|
}
|
|
|
|
int
|
|
fmt_iototal(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%6ld", per_second(SP(pp, totalio), elapsed_msecs));
|
|
}
|
|
|
|
int
|
|
fmt_iopct(char *buf, int sz, struct kinfo_proc *pp)
|
|
|
|
{
|
|
return snprintf(buf, sz, "%6.2f", (SP(pp, totalio) * 100.) / total_io);
|
|
}
|
|
|
|
|
|
struct proc_field proc_field[] = {
|
|
{ "PID", 6, 1, 0, fmt_pid },
|
|
{ "USERNAME", 8, 0, 0, fmt_username },
|
|
#define FIELD_USERNAME 1
|
|
{ "UID", 6, 1, 0, fmt_uid },
|
|
#define FIELD_UID 2
|
|
{ "THR", 3, 1, 0, fmt_thr },
|
|
{ "PRI", 3, 1, 0, fmt_pri },
|
|
{ "NICE", 4, 1, 0, fmt_nice },
|
|
{ "SIZE", 5, 1, 0, fmt_size },
|
|
{ "RES", 5, 1, 0, fmt_res },
|
|
{ "STATE", 6, 0, 0, fmt_state },
|
|
{ "FLG", 3, 0, 84, fmt_flags },
|
|
{ "C", 1, 0, 0, fmt_c },
|
|
{ "TIME", 6, 1, 0, fmt_time },
|
|
{ "CPU", 6, 1, 0, fmt_cpu },
|
|
{ "COMMAND", 7, 0, 0, fmt_command },
|
|
{ "VCSW", 6, 1, 0, fmt_vcsw },
|
|
{ "IVCSW", 6, 1, 0, fmt_ivcsw },
|
|
{ "READ", 6, 1, 0, fmt_read },
|
|
{ "WRITE", 6, 1, 0, fmt_write },
|
|
{ "FAULT", 6, 1, 0, fmt_fault },
|
|
{ "TOTAL", 6, 1, 0, fmt_iototal },
|
|
{ "PERCENT", 7, 1, 0, fmt_iopct },
|
|
{ NULL, 0, 0, 0, NULL }
|
|
};
|
|
#define MAX_FIELDS 24
|
|
|
|
static int mode0_display[MAX_FIELDS];
|
|
static int mode0thr_display[MAX_FIELDS];
|
|
static int mode1_display[MAX_FIELDS];
|
|
|
|
int
|
|
field_index(char *col)
|
|
|
|
{
|
|
struct proc_field *fp;
|
|
int i = 0;
|
|
|
|
fp = proc_field;
|
|
while (fp->name != NULL)
|
|
{
|
|
if (strcmp(col, fp->name) == 0)
|
|
{
|
|
return i;
|
|
}
|
|
fp++;
|
|
i++;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
void
|
|
field_subst(int *fp, int old, int new)
|
|
|
|
{
|
|
while (*fp != -1)
|
|
{
|
|
if (*fp == old)
|
|
{
|
|
*fp = new;
|
|
}
|
|
fp++;
|
|
}
|
|
}
|
|
|
|
int
|
|
machine_init(struct statics *statics)
|
|
|
|
{
|
|
int i = 0;
|
|
size_t len;
|
|
int *ip;
|
|
|
|
struct timeval boottime;
|
|
|
|
len = sizeof(smpmode);
|
|
if ((sysctlbyname("machdep.smp_active", &smpmode, &len, NULL, 0) < 0 &&
|
|
sysctlbyname("smp.smp_active", &smpmode, &len, NULL, 0) < 0) ||
|
|
len != sizeof(smpmode))
|
|
{
|
|
smpmode = 0;
|
|
}
|
|
smpmode = smpmode != 0;
|
|
|
|
/* kvm_open the active kernel: its okay if this fails */
|
|
kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL);
|
|
|
|
/* get boot time */
|
|
len = sizeof(boottime);
|
|
if (sysctlbyname("kern.boottime", &boottime, &len, NULL, 0) == -1)
|
|
{
|
|
/* we have no boottime to report */
|
|
boottime.tv_sec = -1;
|
|
}
|
|
|
|
pbase = NULL;
|
|
pref = NULL;
|
|
|
|
/* get the page size with "getpagesize" and calculate pageshift from it */
|
|
i = pagesize = getpagesize();
|
|
pageshift = 0;
|
|
while (i > 1)
|
|
{
|
|
pageshift++;
|
|
i >>= 1;
|
|
}
|
|
|
|
/* translate sysctl paths to mibs for faster access */
|
|
get_sysctl_mibs();
|
|
|
|
/* initialize swap stuff */
|
|
swap_init();
|
|
|
|
/* create the hash table that remembers proc data */
|
|
procs = hash_create(2039);
|
|
|
|
/* we only need the amount of log(2)1024 for our conversion */
|
|
pageshift -= LOG1024;
|
|
|
|
/* fill in the statics information */
|
|
statics->procstate_names = procstatenames;
|
|
statics->cpustate_names = cpustatenames;
|
|
statics->memory_names = memorynames;
|
|
statics->kernel_names = kernelnames;
|
|
statics->boottime = boottime.tv_sec;
|
|
statics->swap_names = swapnames;
|
|
statics->order_names = ordernames;
|
|
statics->flags.warmup = 1;
|
|
statics->modemax = 2;
|
|
#ifdef HAS_SHOWTHREADS
|
|
statics->flags.threads = 1;
|
|
#endif
|
|
|
|
/* we need kvm descriptor in order to show full commands */
|
|
statics->flags.fullcmds = kd != NULL;
|
|
|
|
/* set up the display indices for mode0 */
|
|
ip = mode0_display;
|
|
*ip++ = field_index("PID");
|
|
*ip++ = field_index("USERNAME");
|
|
#ifdef HAS_THREADS
|
|
*ip++ = field_index("THR");
|
|
#endif
|
|
*ip++ = field_index("PRI");
|
|
*ip++ = field_index("NICE");
|
|
*ip++ = field_index("SIZE");
|
|
*ip++ = field_index("RES");
|
|
*ip++ = field_index("STATE");
|
|
*ip++ = field_index("FLG");
|
|
if (smpmode)
|
|
*ip++ = field_index("C");
|
|
*ip++ = field_index("TIME");
|
|
*ip++ = field_index("CPU");
|
|
*ip++ = field_index("COMMAND");
|
|
*ip = -1;
|
|
|
|
#ifdef HAS_SHOWTHREADS
|
|
/* set up the display indices for mode0 showing threads */
|
|
ip = mode0thr_display;
|
|
*ip++ = field_index("PID");
|
|
*ip++ = field_index("USERNAME");
|
|
*ip++ = field_index("PRI");
|
|
*ip++ = field_index("NICE");
|
|
*ip++ = field_index("SIZE");
|
|
*ip++ = field_index("RES");
|
|
*ip++ = field_index("STATE");
|
|
*ip++ = field_index("FLG");
|
|
if (smpmode)
|
|
*ip++ = field_index("C");
|
|
*ip++ = field_index("TIME");
|
|
*ip++ = field_index("CPU");
|
|
*ip++ = field_index("COMMAND");
|
|
*ip = -1;
|
|
#endif
|
|
|
|
/* set up the display indices for mode1 */
|
|
ip = mode1_display;
|
|
*ip++ = field_index("PID");
|
|
*ip++ = field_index("USERNAME");
|
|
*ip++ = field_index("VCSW");
|
|
*ip++ = field_index("IVCSW");
|
|
*ip++ = field_index("READ");
|
|
*ip++ = field_index("WRITE");
|
|
*ip++ = field_index("FAULT");
|
|
*ip++ = field_index("TOTAL");
|
|
*ip++ = field_index("PERCENT");
|
|
*ip++ = field_index("COMMAND");
|
|
*ip = -1;
|
|
|
|
/* all done! */
|
|
return(0);
|
|
}
|
|
|
|
char *format_header(char *uname_field)
|
|
|
|
{
|
|
return "";
|
|
}
|
|
|
|
void
|
|
get_vm_sum(struct vmmeter *sum)
|
|
|
|
{
|
|
#define GET_VM_STAT(v, s) (void)get_sysctl(v, &(sum->s), sizeof(sum->s))
|
|
|
|
GET_VM_STAT(V_SWTCH, v_swtch);
|
|
GET_VM_STAT(V_TRAP, v_trap);
|
|
GET_VM_STAT(V_INTR, v_intr);
|
|
GET_VM_STAT(V_SOFT, v_soft);
|
|
GET_VM_STAT(V_VFORKS, v_vforks);
|
|
GET_VM_STAT(V_FORKS, v_forks);
|
|
GET_VM_STAT(V_RFORKS, v_rforks);
|
|
GET_VM_STAT(V_VM_FAULTS, v_vm_faults);
|
|
GET_VM_STAT(V_SWAPIN, v_swapin);
|
|
GET_VM_STAT(V_SWAPOUT, v_swapout);
|
|
GET_VM_STAT(V_TFREE, v_tfree);
|
|
GET_VM_STAT(V_VNODEIN, v_vnodein);
|
|
GET_VM_STAT(V_VNODEOUT, v_vnodeout);
|
|
GET_VM_STAT(V_ACTIVE_COUNT, v_active_count);
|
|
GET_VM_STAT(V_INACTIVE_COUNT, v_inactive_count);
|
|
GET_VM_STAT(V_WIRE_COUNT, v_wire_count);
|
|
GET_VM_STAT(V_CACHE_COUNT, v_cache_count);
|
|
GET_VM_STAT(V_FREE_COUNT, v_free_count);
|
|
GET_VM_STAT(V_SWAPPGSIN, v_swappgsin);
|
|
GET_VM_STAT(V_SWAPPGSOUT, v_swappgsout);
|
|
}
|
|
|
|
void
|
|
get_system_info(struct system_info *si)
|
|
|
|
{
|
|
long total;
|
|
struct timeval thistime;
|
|
struct timeval timediff;
|
|
|
|
/* timestamp and time difference */
|
|
gettimeofday(&thistime, 0);
|
|
timersub(&thistime, &lasttime, &timediff);
|
|
elapsed_time = timediff.tv_sec * 1000000 + timediff.tv_usec;
|
|
elapsed_msecs = timediff.tv_sec * 1000 + timediff.tv_usec / 1000;
|
|
|
|
/* get the load averages */
|
|
if (getloadavg(si->load_avg, NUM_AVERAGES) == -1)
|
|
{
|
|
/* failed: fill in with zeroes */
|
|
(void) memset(si->load_avg, 0, sizeof(si->load_avg));
|
|
}
|
|
|
|
/* get the cp_time array */
|
|
(void)get_sysctl(K_CP_TIME, &cp_time, sizeof(cp_time));
|
|
|
|
/* convert cp_time counts to percentages */
|
|
total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
|
|
|
|
/* sum memory & swap statistics */
|
|
{
|
|
struct vmmeter sum;
|
|
static unsigned int swap_delay = 0;
|
|
static long long swapavail = 0;
|
|
static long long swapfree = 0;
|
|
static int bufspace = 0;
|
|
|
|
get_vm_sum(&sum);
|
|
|
|
/* get bufspace */
|
|
bufspace = 0;
|
|
(void) get_sysctl(VFS_BUFSPACE, &bufspace, sizeof(bufspace));
|
|
|
|
/* kernel stats */
|
|
dprintf("kernel: swtch %d, trap %d, intr %d, soft %d, vforks %d\n",
|
|
sum.v_swtch, sum.v_trap, sum.v_intr, sum.v_soft, sum.v_vforks);
|
|
kernel_stats[0] = per_second(sum.v_swtch - ctxsws, elapsed_msecs);
|
|
kernel_stats[1] = per_second(sum.v_trap - traps, elapsed_msecs);
|
|
kernel_stats[2] = per_second(sum.v_intr - intrs, elapsed_msecs);
|
|
kernel_stats[3] = per_second(sum.v_soft - softs, elapsed_msecs);
|
|
kernel_stats[4] = per_second(sum.v_vforks + sum.v_forks +
|
|
sum.v_rforks - forks, elapsed_msecs);
|
|
kernel_stats[5] = per_second(sum.v_vm_faults - pfaults, elapsed_msecs);
|
|
kernel_stats[6] = per_second(sum.v_swapin + sum.v_vnodein - pagein, elapsed_msecs);
|
|
kernel_stats[7] = per_second(sum.v_swapout + sum.v_vnodeout - pageout, elapsed_msecs);
|
|
kernel_stats[8] = per_second(sum.v_tfree - tfreed, elapsed_msecs);
|
|
ctxsws = sum.v_swtch;
|
|
traps = sum.v_trap;
|
|
intrs = sum.v_intr;
|
|
softs = sum.v_soft;
|
|
forks = (u_int64_t)sum.v_vforks + sum.v_forks + sum.v_rforks;
|
|
pfaults = sum.v_vm_faults;
|
|
pagein = sum.v_swapin + sum.v_vnodein;
|
|
pageout = sum.v_swapout + sum.v_vnodeout;
|
|
tfreed = sum.v_tfree;
|
|
|
|
/* convert memory stats to Kbytes */
|
|
memory_stats[0] = pagetok(sum.v_active_count);
|
|
memory_stats[1] = pagetok(sum.v_inactive_count);
|
|
memory_stats[2] = pagetok(sum.v_wire_count);
|
|
memory_stats[3] = pagetok(sum.v_cache_count);
|
|
memory_stats[4] = bufspace / 1024;
|
|
memory_stats[5] = pagetok(sum.v_free_count);
|
|
memory_stats[6] = -1;
|
|
|
|
/* first interval */
|
|
if (swappgsin < 0)
|
|
{
|
|
swap_stats[4] = 0;
|
|
swap_stats[5] = 0;
|
|
}
|
|
|
|
/* compute differences between old and new swap statistic */
|
|
else
|
|
{
|
|
swap_stats[4] = pagetok(sum.v_swappgsin - swappgsin);
|
|
swap_stats[5] = pagetok(sum.v_swappgsout - swappgsout);
|
|
}
|
|
|
|
swappgsin = sum.v_swappgsin;
|
|
swappgsout = sum.v_swappgsout;
|
|
|
|
/* call CPU heavy swap_getdata() only for changes */
|
|
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0)
|
|
{
|
|
swap_stats[3] = swap_getdata(&swapavail, &swapfree);
|
|
swap_stats[0] = swapavail;
|
|
swap_stats[1] = swapavail - swapfree;
|
|
swap_stats[2] = swapfree;
|
|
}
|
|
swap_delay = 1;
|
|
swap_stats[6] = -1;
|
|
}
|
|
|
|
/* set arrays and strings */
|
|
si->cpustates = cpu_states;
|
|
si->kernel = kernel_stats;
|
|
si->memory = memory_stats;
|
|
si->swap = swap_stats;
|
|
|
|
si->last_pid = -1;
|
|
|
|
lasttime = thistime;
|
|
}
|
|
|
|
caddr_t
|
|
get_process_info(struct system_info *si,
|
|
struct process_select *sel,
|
|
int compare_index)
|
|
|
|
{
|
|
int i;
|
|
int total_procs;
|
|
int active_procs;
|
|
struct kinfo_proc **prefp;
|
|
struct kinfo_proc *pp;
|
|
struct kinfo_proc *prev_pp = NULL;
|
|
struct save_proc *savep;
|
|
long proc_io;
|
|
pid_t pid;
|
|
size_t size;
|
|
int nproc;
|
|
|
|
/* these are copied out of sel for speed */
|
|
int show_idle;
|
|
int show_self;
|
|
int show_system;
|
|
int show_uid;
|
|
char *show_command;
|
|
|
|
/* get proc table size and give it a boost */
|
|
nproc = (int)get_sysctlsize(K_PROC) / sizeof(struct kinfo_proc);
|
|
nproc += nproc >> 4;
|
|
size = nproc * sizeof(struct kinfo_proc);
|
|
dprintf("get_process_info: nproc %d, psize %d, size %d\n", nproc, psize, size);
|
|
|
|
/* make sure we have enough space allocated */
|
|
if (nproc > psize)
|
|
{
|
|
/* reallocate both pbase and pref */
|
|
pbase = (struct kinfo_proc *)realloc(pbase, size);
|
|
pref = (struct kinfo_proc **)realloc(pref,
|
|
sizeof(struct kinfo_proc *) * nproc);
|
|
psize = nproc;
|
|
}
|
|
|
|
/* make sure we got the space we asked for */
|
|
if (pref == NULL || pbase == NULL)
|
|
{
|
|
/* abandon all hope */
|
|
message_error(" Out of memory!");
|
|
nproc = psize = 0;
|
|
si->p_total = 0;
|
|
si->p_active = 0;
|
|
return NULL;
|
|
}
|
|
|
|
/* get all process information (threads, too) */
|
|
if (size > 0)
|
|
{
|
|
nproc = get_sysctl(K_PROC, pbase, size);
|
|
if (nproc == -1)
|
|
{
|
|
nproc = 0;
|
|
}
|
|
else
|
|
{
|
|
nproc /= sizeof(struct kinfo_proc);
|
|
}
|
|
}
|
|
|
|
/* get a pointer to the states summary array */
|
|
si->procstates = process_states;
|
|
|
|
/* set up flags which define what we are going to select */
|
|
show_idle = sel->idle;
|
|
show_self = 0;
|
|
show_system = sel->system;
|
|
show_uid = sel->uid != -1;
|
|
show_fullcmd = sel->fullcmd;
|
|
show_command = sel->command;
|
|
show_usernames = sel->usernames;
|
|
display_mode = sel->mode;
|
|
#ifdef HAS_SHOWTHREADS
|
|
show_threads = sel->threads;
|
|
#endif
|
|
|
|
/* count up process states and get pointers to interesting procs */
|
|
total_procs = 0;
|
|
active_procs = 0;
|
|
total_io = 0;
|
|
memset((char *)process_states, 0, sizeof(process_states));
|
|
prefp = pref;
|
|
for (pp = pbase, i = 0; i < nproc; pp++, i++)
|
|
{
|
|
/*
|
|
* Place pointers to each valid proc structure in pref[].
|
|
* Process slots that are actually in use have a non-zero
|
|
* status field. Processes with P_SYSTEM set are system
|
|
* processes---these get ignored unless show_sysprocs is set.
|
|
*/
|
|
pid = PP(pp, pid);
|
|
if (PP(pp, stat) != 0)
|
|
{
|
|
#ifdef HAS_SHOWTHREADS
|
|
int is_thread;
|
|
lwpid_t tid;
|
|
|
|
/* get thread id */
|
|
tid = PP(pp, tid);
|
|
|
|
/* is this just a thread? */
|
|
is_thread = (prev_pp != NULL && PP(prev_pp, pid) == pid);
|
|
|
|
/* count this process and its state */
|
|
/* only count threads if we are showing them */
|
|
if (show_threads || !is_thread)
|
|
{
|
|
total_procs++;
|
|
process_states[(unsigned char) PP(pp, stat)]++;
|
|
}
|
|
|
|
/* grab old data from hash */
|
|
if ((savep = hash_lookup_lwpid(procs, tid)) != NULL)
|
|
{
|
|
/* verify that this is not a new or different thread */
|
|
/* (freebsd reuses thread ids fairly quickly) */
|
|
/* pids must match and time can't have gone backwards */
|
|
if (pid != savep->sp_pid || PP(pp, runtime) < savep->sp_runtime)
|
|
{
|
|
/* not the same thread -- reuse the save_proc structure */
|
|
memset(savep, 0, sizeof(struct save_proc));
|
|
savep->sp_pid = pid;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* havent seen this one before */
|
|
savep = (struct save_proc *)calloc(1, sizeof(struct save_proc));
|
|
savep->sp_pid = pid;
|
|
hash_add_lwpid(procs, tid, savep);
|
|
}
|
|
|
|
#else /* !HAS_SHOWTHREADS */
|
|
total_procs++;
|
|
process_states[(unsigned char) PP(pp, stat)]++;
|
|
|
|
/* grab old data from hash */
|
|
if ((savep = hash_lookup_pid(procs, pid)) == NULL)
|
|
{
|
|
/* havent seen this one before */
|
|
savep = (struct save_proc *)calloc(1, sizeof(struct save_proc));
|
|
savep->sp_pid = pid;
|
|
hash_add_pid(procs, pid, savep);
|
|
}
|
|
#endif
|
|
|
|
/* save the pointer to the sp struct */
|
|
SPPTR(pp) = (void *)savep;
|
|
|
|
/* calculate %cpu */
|
|
PPCPU(pp) = ((PP(pp, runtime) - savep->sp_runtime) * 10000) /
|
|
elapsed_time;
|
|
dprintf("%d (%d): runtime %lld, saved_pid %d, saved_runtime %lld, elapsed_time %d, ppcpu %d\n",
|
|
pid, PP(pp, tid), PP(pp, runtime), savep->sp_pid, savep->sp_runtime,
|
|
elapsed_time, PPCPU(pp));
|
|
|
|
/* calculate io differences */
|
|
proc_io = 0;
|
|
savep->sp_vcsw = (RP(pp, nvcsw) - savep->sp_old_nvcsw);
|
|
savep->sp_ivcsw = (RP(pp, nivcsw) - savep->sp_old_nivcsw);
|
|
proc_io += (savep->sp_inblock = (RP(pp, inblock) - savep->sp_old_inblock));
|
|
proc_io += (savep->sp_oublock = (RP(pp, oublock) - savep->sp_old_oublock));
|
|
proc_io += (savep->sp_majflt = (RP(pp, majflt) - savep->sp_old_majflt));
|
|
total_io += proc_io;
|
|
savep->sp_totalio = proc_io;
|
|
|
|
/* save data for next time */
|
|
savep->sp_runtime = PP(pp, runtime);
|
|
savep->sp_old_nvcsw = RP(pp, nvcsw);
|
|
savep->sp_old_nivcsw = RP(pp, nivcsw);
|
|
savep->sp_old_inblock = RP(pp, inblock);
|
|
savep->sp_old_oublock = RP(pp, oublock);
|
|
savep->sp_old_majflt = RP(pp, majflt);
|
|
|
|
/* is this one selected for viewing? */
|
|
if ((PP(pp, stat) != SZOMB) &&
|
|
(show_system || ((PP(pp, flag) & P_SYSTEM) == 0)) &&
|
|
(show_idle || (PP(pp, pctcpu) != 0) ||
|
|
(PP(pp, stat) == SRUN)) &&
|
|
(!show_uid || PRUID(pp) == (uid_t)sel->uid) &&
|
|
(show_command == NULL ||
|
|
strcasestr(PP(pp, comm), show_command) != NULL))
|
|
{
|
|
#ifdef HAS_SHOWTHREADS
|
|
/* yes, but make sure it isn't just a thread */
|
|
if (show_threads || !is_thread)
|
|
{
|
|
/* we will be showing this thread */
|
|
*prefp++ = pp;
|
|
active_procs++;
|
|
}
|
|
else
|
|
{
|
|
/* we will not be showing this thread, but we need to roll
|
|
up its cpu usage in to its process */
|
|
PP(prev_pp, pctcpu) += PP(pp, pctcpu);
|
|
}
|
|
#else /* !HAS_SHOWTHREADS */
|
|
/* we will be showing this process */
|
|
*prefp++ = pp;
|
|
active_procs++;
|
|
#endif
|
|
}
|
|
prev_pp = pp;
|
|
}
|
|
}
|
|
|
|
dprintf("total_io: %d\n", total_io);
|
|
if (total_io == 0) total_io = 1;
|
|
|
|
/* if requested, sort the "interesting" processes */
|
|
if (active_procs > 1)
|
|
{
|
|
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
|
|
proc_compares[compare_index]);
|
|
}
|
|
|
|
/* remember active and total counts */
|
|
si->p_total = total_procs;
|
|
si->p_active = pref_len = active_procs;
|
|
|
|
/* pass back a handle */
|
|
handle.next_proc = pref;
|
|
handle.remaining = active_procs;
|
|
return((caddr_t)&handle);
|
|
}
|
|
|
|
static char p_header[MAX_COLS];
|
|
|
|
char *
|
|
format_process_header(struct process_select *sel, caddr_t handle, int count)
|
|
|
|
{
|
|
int cols;
|
|
int n;
|
|
int w;
|
|
char *p;
|
|
int *fi;
|
|
struct kinfo_proc **kip;
|
|
struct proc_field *fp;
|
|
|
|
/* check for null handle */
|
|
if (handle == NULL)
|
|
{
|
|
return("");
|
|
}
|
|
|
|
/* remember how many columns there are on the display */
|
|
cols = display_columns();
|
|
|
|
/* mode & threads dictate format */
|
|
fi = display_fields =
|
|
sel->mode == 0 ?
|
|
(sel->threads == 0 ? mode0_display : mode0thr_display) :
|
|
mode1_display;
|
|
|
|
/* set username field correctly */
|
|
if (!sel->usernames)
|
|
{
|
|
/* display uids */
|
|
field_subst(fi, FIELD_USERNAME, FIELD_UID);
|
|
}
|
|
else
|
|
{
|
|
/* display usernames */
|
|
field_subst(fi, FIELD_UID, FIELD_USERNAME);
|
|
|
|
/* we also need to determine the longest username for column width */
|
|
/* calculate namelength from first "count" processes */
|
|
kip = ((struct handle *)handle)->next_proc;
|
|
n = ((struct handle *)handle)->remaining;
|
|
if (n > count)
|
|
n = count;
|
|
namelength = 0;
|
|
while (n-- > 0)
|
|
{
|
|
w = strlen(username(PRUID(*kip)));
|
|
if (w > namelength) namelength = w;
|
|
kip++;
|
|
}
|
|
dprintf("format_process_header: namelength %d\n", namelength);
|
|
|
|
/* place it in bounds */
|
|
if (namelength < 8)
|
|
{
|
|
namelength = 8;
|
|
}
|
|
|
|
/* set the column width */
|
|
proc_field[FIELD_USERNAME].width = username_length = namelength;
|
|
}
|
|
|
|
/* walk thru fields and construct header */
|
|
/* are we worried about overflow??? */
|
|
p = p_header;
|
|
while (*fi != -1)
|
|
{
|
|
fp = &(proc_field[*fi++]);
|
|
if (fp->min_screenwidth <= cols)
|
|
{
|
|
p += sprintf(p, fp->rjust ? "%*s" : "%-*s", fp->width, fp->name);
|
|
*p++ = ' ';
|
|
}
|
|
}
|
|
*--p = '\0';
|
|
|
|
return p_header;
|
|
}
|
|
|
|
static char fmt[MAX_COLS]; /* static area where result is built */
|
|
|
|
char *
|
|
format_next_process(caddr_t handle, char *(*get_userid)(int))
|
|
|
|
{
|
|
struct kinfo_proc *pp;
|
|
struct handle *hp;
|
|
struct proc_field *fp;
|
|
int *fi;
|
|
int i;
|
|
int cols;
|
|
char *p;
|
|
int len;
|
|
int x;
|
|
|
|
/* find and remember the next proc structure */
|
|
hp = (struct handle *)handle;
|
|
pp = *(hp->next_proc++);
|
|
hp->remaining--;
|
|
|
|
/* mode & threads dictate format */
|
|
fi = display_fields;
|
|
|
|
/* screen width is a consideration, too */
|
|
cols = display_columns();
|
|
|
|
/* build output by field */
|
|
p = fmt;
|
|
len = MAX_COLS;
|
|
while ((i = *fi++) != -1)
|
|
{
|
|
fp = &(proc_field[i]);
|
|
if (len > 0 && fp->min_screenwidth <= cols)
|
|
{
|
|
x = (*(fp->format))(p, len, pp);
|
|
if (x >= len)
|
|
{
|
|
dprintf("format_next_process: formatter overflow: x %d, len %d, p %08x => %08x, fmt %08x - %08x\n",
|
|
x, len, p, p + len, fmt, fmt + sizeof(fmt));
|
|
p += len;
|
|
len = 0;
|
|
}
|
|
else
|
|
{
|
|
p += x;
|
|
*p++ = ' ';
|
|
len -= x + 1;
|
|
}
|
|
}
|
|
}
|
|
*--p = '\0';
|
|
|
|
/* return the result */
|
|
return(fmt);
|
|
}
|
|
|
|
/* comparison routines for qsort */
|
|
|
|
/*
|
|
* proc_compare - comparison function for "qsort"
|
|
* Compares the resource consumption of two processes using five
|
|
* distinct keys. The keys (in descending order of importance) are:
|
|
* percent cpu, cpu ticks, state, resident set size, total virtual
|
|
* memory usage. The process states are ordered as follows (from least
|
|
* to most important): WAIT, zombie, sleep, stop, start, run. The
|
|
* array declaration below maps a process state index into a number
|
|
* that reflects this ordering.
|
|
*/
|
|
|
|
static unsigned char sorted_state[] =
|
|
{
|
|
0, /* not used */
|
|
3, /* sleep */
|
|
1, /* ABANDONED (WAIT) */
|
|
6, /* run */
|
|
5, /* start */
|
|
2, /* zombie */
|
|
4 /* stop */
|
|
};
|
|
|
|
|
|
#define ORDERKEY_PCTCPU \
|
|
if (lresult = (long) PPCPU(p2) - (long) PPCPU(p1), \
|
|
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
|
|
|
|
#define ORDERKEY_CPTICKS \
|
|
if ((result = PP(p2, runtime) > PP(p1, runtime) ? 1 : \
|
|
PP(p2, runtime) < PP(p1, runtime) ? -1 : 0) == 0)
|
|
|
|
#define ORDERKEY_STATE \
|
|
if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
|
|
sorted_state[(unsigned char) PP(p1, stat)]) == 0)
|
|
|
|
#if OSMAJOR <= 4
|
|
#define ORDERKEY_PRIO \
|
|
if ((result = PP(p2, priority) - PP(p1, priority)) == 0)
|
|
#else
|
|
#define ORDERKEY_PRIO \
|
|
if ((result = PP(p2, pri.pri_level) - PP(p1, pri.pri_level)) == 0)
|
|
#endif
|
|
|
|
#define ORDERKEY_RSSIZE \
|
|
if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
|
|
|
|
#define ORDERKEY_MEM \
|
|
if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
|
|
|
|
#define ORDERKEY_IO \
|
|
if ( (result = SP(p2, totalio) - SP(p1, totalio)) == 0)
|
|
|
|
#define ORDERKEY_PID \
|
|
if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
|
|
|
|
/* compare_cpu - the comparison function for sorting by cpu percentage */
|
|
|
|
int
|
|
proc_compare(struct proc **pp1, struct proc **pp2)
|
|
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
;
|
|
|
|
return(result);
|
|
}
|
|
|
|
/* compare_size - the comparison function for sorting by total memory usage */
|
|
|
|
int
|
|
compare_size(struct proc **pp1, struct proc **pp2)
|
|
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_MEM
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
;
|
|
|
|
return(result);
|
|
}
|
|
|
|
/* compare_res - the comparison function for sorting by resident set size */
|
|
|
|
int
|
|
compare_res(struct proc **pp1, struct proc **pp2)
|
|
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
;
|
|
|
|
return(result);
|
|
}
|
|
|
|
/* compare_time - the comparison function for sorting by total cpu time */
|
|
|
|
int
|
|
compare_time(struct proc **pp1, struct proc **pp2)
|
|
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
;
|
|
|
|
return(result);
|
|
}
|
|
|
|
/* compare_prio - the comparison function for sorting by priority */
|
|
|
|
int
|
|
compare_prio(struct proc **pp1, struct proc **pp2)
|
|
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_PRIO
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_STATE
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
;
|
|
|
|
return(result);
|
|
}
|
|
|
|
/* compare_io - the comparison function for sorting by io count */
|
|
|
|
int
|
|
compare_io(struct proc **pp1, struct proc **pp2)
|
|
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_IO
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
;
|
|
|
|
return(result);
|
|
}
|
|
|
|
/* compare_pid - the comparison function for sorting by process id */
|
|
|
|
int
|
|
compare_pid(struct proc **pp1, struct proc **pp2)
|
|
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_PID
|
|
;
|
|
|
|
return(result);
|
|
}
|
|
|
|
/*
|
|
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
|
|
* the process does not exist.
|
|
* It is EXTREMLY IMPORTANT that this function work correctly.
|
|
* If top runs setuid root (as in SVR4), then this function
|
|
* is the only thing that stands in the way of a serious
|
|
* security problem. It validates requests for the "kill"
|
|
* and "renice" commands.
|
|
*/
|
|
|
|
int
|
|
proc_owner(int pid)
|
|
|
|
{
|
|
int cnt;
|
|
struct kinfo_proc **prefp;
|
|
struct kinfo_proc *pp;
|
|
|
|
prefp = pref;
|
|
cnt = pref_len;
|
|
while (--cnt >= 0)
|
|
{
|
|
pp = *prefp++;
|
|
if (PP(pp, pid) == (pid_t)pid)
|
|
{
|
|
return((int)PRUID(pp));
|
|
}
|
|
}
|
|
return(-1);
|
|
}
|
|
|