mirror of
https://github.com/Stichting-MINIX-Research-Foundation/netbsd.git
synced 2025-09-13 00:57:28 -04:00
753 lines
16 KiB
C
753 lines
16 KiB
C
/*
|
|
* Copyright (c) 1984 through 2008, William LeFebvre
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following disclaimer
|
|
* in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* * Neither the name of William LeFebvre nor the names of other
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Top users/processes display for Unix
|
|
* Version 3
|
|
*/
|
|
|
|
/*
|
|
* This file contains various handy utilities used by top.
|
|
*/
|
|
|
|
#include "os.h"
|
|
#include <ctype.h>
|
|
#ifdef HAVE_STDARG_H
|
|
#include <stdarg.h>
|
|
#else
|
|
#undef DEBUG
|
|
#endif
|
|
#include "top.h"
|
|
#include "utils.h"
|
|
|
|
static int
|
|
alldigits(char *s)
|
|
|
|
{
|
|
int ch;
|
|
|
|
while ((ch = *s++) != '\0')
|
|
{
|
|
if (!isdigit(ch))
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
atoiwi(char *str)
|
|
|
|
{
|
|
register int len;
|
|
|
|
len = strlen(str);
|
|
if (len != 0)
|
|
{
|
|
if (strncmp(str, "infinity", len) == 0 ||
|
|
strncmp(str, "all", len) == 0 ||
|
|
strncmp(str, "maximum", len) == 0)
|
|
{
|
|
return(Infinity);
|
|
}
|
|
else if (alldigits(str))
|
|
{
|
|
return(atoi(str));
|
|
}
|
|
else
|
|
{
|
|
return(Invalid);
|
|
}
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* itoa - convert integer (decimal) to ascii string for positive numbers
|
|
* only (we don't bother with negative numbers since we know we
|
|
* don't use them).
|
|
*/
|
|
|
|
/*
|
|
* How do we know that 16 will suffice?
|
|
* Because the biggest number that we will
|
|
* ever convert will be 2^32-1, which is 10
|
|
* digits.
|
|
*/
|
|
|
|
char *
|
|
itoa(int val)
|
|
|
|
{
|
|
register char *ptr;
|
|
static char buffer[16]; /* result is built here */
|
|
/* 16 is sufficient since the largest number
|
|
we will ever convert will be 2^32-1,
|
|
which is 10 digits. */
|
|
|
|
ptr = buffer + sizeof(buffer);
|
|
*--ptr = '\0';
|
|
if (val == 0)
|
|
{
|
|
*--ptr = '0';
|
|
}
|
|
else while (val != 0)
|
|
{
|
|
*--ptr = (val % 10) + '0';
|
|
val /= 10;
|
|
}
|
|
return(ptr);
|
|
}
|
|
|
|
/*
|
|
* itoa7(val) - like itoa, except the number is right justified in a 7
|
|
* character field. This code is a duplication of itoa instead of
|
|
* a front end to a more general routine for efficiency.
|
|
*/
|
|
|
|
char *
|
|
itoa_w(int val, int w)
|
|
|
|
{
|
|
char *ptr;
|
|
char *eptr;
|
|
static char buffer[16]; /* result is built here */
|
|
/* 16 is sufficient since the largest number
|
|
we will ever convert will be 2^32-1,
|
|
which is 10 digits. */
|
|
|
|
if (w > 15)
|
|
{
|
|
w = 15;
|
|
}
|
|
eptr = ptr = buffer + sizeof(buffer);
|
|
*--ptr = '\0';
|
|
if (val == 0)
|
|
{
|
|
*--ptr = '0';
|
|
}
|
|
else while (val != 0)
|
|
{
|
|
*--ptr = (val % 10) + '0';
|
|
val /= 10;
|
|
}
|
|
while (ptr >= eptr - w)
|
|
{
|
|
*--ptr = ' ';
|
|
}
|
|
return(ptr);
|
|
}
|
|
|
|
char *
|
|
itoa7(int val)
|
|
|
|
{
|
|
return itoa_w(val, 7);
|
|
}
|
|
|
|
/*
|
|
* digits(val) - return number of decimal digits in val. Only works for
|
|
* positive numbers. If val < 0 then digits(val) == 0, but
|
|
* digits(0) == 1.
|
|
*/
|
|
|
|
int
|
|
digits(int val)
|
|
|
|
{
|
|
register int cnt = 0;
|
|
|
|
if (val == 0)
|
|
{
|
|
return 1;
|
|
}
|
|
while (val > 0)
|
|
{
|
|
cnt++;
|
|
val /= 10;
|
|
}
|
|
return(cnt);
|
|
}
|
|
|
|
/*
|
|
* printable(char *str) - make the string pointed to by "str" into one that is
|
|
* printable (i.e.: all ascii), by converting all non-printable
|
|
* characters into '?'. Replacements are done in place and a pointer
|
|
* to the original buffer is returned.
|
|
*/
|
|
|
|
char *
|
|
printable(char *str)
|
|
|
|
{
|
|
register char *ptr;
|
|
register int ch;
|
|
|
|
ptr = str;
|
|
while ((ch = *ptr) != '\0')
|
|
{
|
|
if (!isprint(ch))
|
|
{
|
|
*ptr = '?';
|
|
}
|
|
ptr++;
|
|
}
|
|
return(str);
|
|
}
|
|
|
|
/*
|
|
* strcpyend(to, from) - copy string "from" into "to" and return a pointer
|
|
* to the END of the string "to".
|
|
*/
|
|
|
|
char *
|
|
strcpyend(char *to, const char *from)
|
|
|
|
{
|
|
while ((*to++ = *from++) != '\0');
|
|
return(--to);
|
|
}
|
|
|
|
/*
|
|
* char *
|
|
* homogenize(const char *str)
|
|
*
|
|
* Remove unwanted characters from "str" and make everything lower case.
|
|
* Newly allocated string is returned: the original is not altered.
|
|
*/
|
|
|
|
char *homogenize(const char *str)
|
|
|
|
{
|
|
char *ans;
|
|
char *fr;
|
|
char *to;
|
|
int ch;
|
|
|
|
to = fr = ans = estrdup(str);
|
|
while ((ch = *fr++) != '\0')
|
|
{
|
|
if (isalnum(ch))
|
|
{
|
|
*to++ = tolower(ch);
|
|
}
|
|
}
|
|
|
|
*to = '\0';
|
|
return ans;
|
|
}
|
|
|
|
/*
|
|
* string_index(string, array) - find string in array and return index
|
|
*/
|
|
|
|
int
|
|
string_index(const char *string, const char **array)
|
|
|
|
{
|
|
register int i = 0;
|
|
|
|
while (*array != NULL)
|
|
{
|
|
if (strcmp(string, *array) == 0)
|
|
{
|
|
return(i);
|
|
}
|
|
array++;
|
|
i++;
|
|
}
|
|
return(-1);
|
|
}
|
|
|
|
/*
|
|
* char *string_list(char **strings)
|
|
*
|
|
* Create a comma-separated list of the strings in the NULL-terminated
|
|
* "strings". Returned string is malloc-ed and should be freed when the
|
|
* caller is done. Note that this is not an efficient function.
|
|
*/
|
|
|
|
char *string_list(const char **strings)
|
|
|
|
{
|
|
int cnt = 0;
|
|
const char **pp;
|
|
const char *p;
|
|
char *result = NULL;
|
|
char *resp = NULL;
|
|
|
|
pp = strings;
|
|
while ((p = *pp++) != NULL)
|
|
{
|
|
cnt += strlen(p) + 2;
|
|
}
|
|
|
|
if (cnt > 0)
|
|
{
|
|
resp = result = emalloc(cnt);
|
|
pp = strings;
|
|
while ((p = *pp++) != NULL)
|
|
{
|
|
resp = strcpyend(resp, p);
|
|
if (*pp != NULL)
|
|
{
|
|
resp = strcpyend(resp, ", ");
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* argparse(line, cntp) - parse arguments in string "line", separating them
|
|
* out into an argv-like array, and setting *cntp to the number of
|
|
* arguments encountered. This is a simple parser that doesn't understand
|
|
* squat about quotes.
|
|
*/
|
|
|
|
char **
|
|
argparse(char *line, int *cntp)
|
|
|
|
{
|
|
register char *from;
|
|
register char *to;
|
|
register int cnt;
|
|
register int ch;
|
|
int length;
|
|
int lastch;
|
|
register char **argv;
|
|
char **argarray;
|
|
char *args;
|
|
|
|
/* unfortunately, the only real way to do this is to go thru the
|
|
input string twice. */
|
|
|
|
/* step thru the string counting the white space sections */
|
|
from = line;
|
|
lastch = cnt = length = 0;
|
|
while ((ch = *from++) != '\0')
|
|
{
|
|
length++;
|
|
if (ch == ' ' && lastch != ' ')
|
|
{
|
|
cnt++;
|
|
}
|
|
lastch = ch;
|
|
}
|
|
|
|
/* add three to the count: one for the initial "dummy" argument,
|
|
one for the last argument and one for NULL */
|
|
cnt += 3;
|
|
|
|
/* allocate a char * array to hold the pointers */
|
|
argarray = emalloc(cnt * sizeof(char *));
|
|
|
|
/* allocate another array to hold the strings themselves */
|
|
args = emalloc(length+2);
|
|
|
|
/* initialization for main loop */
|
|
from = line;
|
|
to = args;
|
|
argv = argarray;
|
|
lastch = '\0';
|
|
|
|
/* create a dummy argument to keep getopt happy */
|
|
*argv++ = to;
|
|
*to++ = '\0';
|
|
cnt = 2;
|
|
|
|
/* now build argv while copying characters */
|
|
*argv++ = to;
|
|
while ((ch = *from++) != '\0')
|
|
{
|
|
if (ch != ' ')
|
|
{
|
|
if (lastch == ' ')
|
|
{
|
|
*to++ = '\0';
|
|
*argv++ = to;
|
|
cnt++;
|
|
}
|
|
*to++ = ch;
|
|
}
|
|
lastch = ch;
|
|
}
|
|
*to++ = '\0';
|
|
|
|
/* set cntp and return the allocated array */
|
|
*cntp = cnt;
|
|
return(argarray);
|
|
}
|
|
|
|
/*
|
|
* percentages(cnt, out, new, old, diffs) - calculate percentage change
|
|
* between array "old" and "new", putting the percentages i "out".
|
|
* "cnt" is size of each array and "diffs" is used for scratch space.
|
|
* The array "old" is updated on each call.
|
|
* The routine assumes modulo arithmetic. This function is especially
|
|
* useful on BSD mchines for calculating cpu state percentages.
|
|
*/
|
|
|
|
long
|
|
percentages(int cnt, int *out, long *new, long *old, long *diffs)
|
|
|
|
{
|
|
register int i;
|
|
register long change;
|
|
register long total_change;
|
|
register long *dp;
|
|
long half_total;
|
|
|
|
/* initialization */
|
|
total_change = 0;
|
|
dp = diffs;
|
|
|
|
/* calculate changes for each state and the overall change */
|
|
for (i = 0; i < cnt; i++)
|
|
{
|
|
if ((change = *new - *old) < 0)
|
|
{
|
|
/* this only happens when the counter wraps */
|
|
change = (int)
|
|
((unsigned long)*new-(unsigned long)*old);
|
|
}
|
|
total_change += (*dp++ = change);
|
|
*old++ = *new++;
|
|
}
|
|
|
|
/* avoid divide by zero potential */
|
|
if (total_change == 0)
|
|
{
|
|
total_change = 1;
|
|
}
|
|
|
|
/* calculate percentages based on overall change, rounding up */
|
|
half_total = total_change / 2l;
|
|
for (i = 0; i < cnt; i++)
|
|
{
|
|
*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
|
|
}
|
|
|
|
/* return the total in case the caller wants to use it */
|
|
return(total_change);
|
|
}
|
|
|
|
/*
|
|
* errmsg(errnum) - return an error message string appropriate to the
|
|
* error number "errnum". This is a substitute for the System V
|
|
* function "strerror". There appears to be no reliable way to
|
|
* determine if "strerror" exists at compile time, so I make do
|
|
* by providing something of similar functionality. For those
|
|
* systems that have strerror and NOT errlist, define
|
|
* -DHAVE_STRERROR in the module file and this function will
|
|
* use strerror.
|
|
*/
|
|
|
|
/* externs referenced by errmsg */
|
|
|
|
#ifndef HAVE_STRERROR
|
|
#if !HAVE_DECL_SYS_ERRLIST
|
|
extern char *sys_errlist[];
|
|
#endif
|
|
|
|
extern int sys_nerr;
|
|
#endif
|
|
|
|
const char *
|
|
errmsg(int errnum)
|
|
|
|
{
|
|
#ifdef HAVE_STRERROR
|
|
char *msg = strerror(errnum);
|
|
if (msg != NULL)
|
|
{
|
|
return msg;
|
|
}
|
|
#else
|
|
if (errnum > 0 && errnum < sys_nerr)
|
|
{
|
|
return((char *)(sys_errlist[errnum]));
|
|
}
|
|
#endif
|
|
return("No error");
|
|
}
|
|
|
|
/* format_percent(v) - format a double as a percentage in a manner that
|
|
* does not exceed 5 characters (excluding any trailing
|
|
* percent sign). Since it is possible for the value
|
|
* to exceed 100%, we format such values with no fractional
|
|
* component to fit within the 5 characters.
|
|
*/
|
|
|
|
char *
|
|
format_percent(double v)
|
|
|
|
{
|
|
static char result[10];
|
|
|
|
/* enumerate the possibilities */
|
|
if (v < 0 || v >= 100000.)
|
|
{
|
|
/* we dont want to try extreme values */
|
|
strcpy(result, " ???");
|
|
}
|
|
else if (v > 99.99)
|
|
{
|
|
sprintf(result, "%5.0f", v);
|
|
}
|
|
else
|
|
{
|
|
sprintf(result, "%5.2f", v);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* format_time(seconds) - format number of seconds into a suitable
|
|
* display that will fit within 6 characters. Note that this
|
|
* routine builds its string in a static area. If it needs
|
|
* to be called more than once without overwriting previous data,
|
|
* then we will need to adopt a technique similar to the
|
|
* one used for format_k.
|
|
*/
|
|
|
|
/* Explanation:
|
|
We want to keep the output within 6 characters. For low values we use
|
|
the format mm:ss. For values that exceed 999:59, we switch to a format
|
|
that displays hours and fractions: hhh.tH. For values that exceed
|
|
999.9, we use hhhh.t and drop the "H" designator. For values that
|
|
exceed 9999.9, we use "???".
|
|
*/
|
|
|
|
char *
|
|
format_time(long seconds)
|
|
|
|
{
|
|
static char result[10];
|
|
|
|
/* sanity protection */
|
|
if (seconds < 0 || seconds > (99999l * 360l))
|
|
{
|
|
strcpy(result, " ???");
|
|
}
|
|
else if (seconds >= (1000l * 60l))
|
|
{
|
|
/* alternate (slow) method displaying hours and tenths */
|
|
sprintf(result, "%5.1fH", (double)seconds / (double)(60l * 60l));
|
|
|
|
/* It is possible that the sprintf took more than 6 characters.
|
|
If so, then the "H" appears as result[6]. If not, then there
|
|
is a \0 in result[6]. Either way, it is safe to step on.
|
|
*/
|
|
result[6] = '\0';
|
|
}
|
|
else
|
|
{
|
|
/* standard method produces MMM:SS */
|
|
/* we avoid printf as must as possible to make this quick */
|
|
sprintf(result, "%3ld:%02ld", seconds / 60l, seconds % 60l);
|
|
}
|
|
return(result);
|
|
}
|
|
|
|
/*
|
|
* format_k(amt) - format a kilobyte memory value, returning a string
|
|
* suitable for display. Returns a pointer to a static
|
|
* area that changes each call. "amt" is converted to a
|
|
* string with a trailing "K". If "amt" is 10000 or greater,
|
|
* then it is formatted as megabytes (rounded) with a
|
|
* trailing "M".
|
|
*/
|
|
|
|
/*
|
|
* Compromise time. We need to return a string, but we don't want the
|
|
* caller to have to worry about freeing a dynamically allocated string.
|
|
* Unfortunately, we can't just return a pointer to a static area as one
|
|
* of the common uses of this function is in a large call to sprintf where
|
|
* it might get invoked several times. Our compromise is to maintain an
|
|
* array of strings and cycle thru them with each invocation. We make the
|
|
* array large enough to handle the above mentioned case. The constant
|
|
* NUM_STRINGS defines the number of strings in this array: we can tolerate
|
|
* up to NUM_STRINGS calls before we start overwriting old information.
|
|
* Keeping NUM_STRINGS a power of two will allow an intelligent optimizer
|
|
* to convert the modulo operation into something quicker. What a hack!
|
|
*/
|
|
|
|
#define NUM_STRINGS 8
|
|
|
|
char *
|
|
format_k(long amt)
|
|
|
|
{
|
|
static char retarray[NUM_STRINGS][16];
|
|
static int idx = 0;
|
|
register char *ret;
|
|
register char tag = 'K';
|
|
|
|
ret = retarray[idx];
|
|
idx = (idx + 1) % NUM_STRINGS;
|
|
|
|
if (amt >= 10000)
|
|
{
|
|
amt = (amt + 512) / 1024;
|
|
tag = 'M';
|
|
if (amt >= 10000)
|
|
{
|
|
amt = (amt + 512) / 1024;
|
|
tag = 'G';
|
|
}
|
|
}
|
|
|
|
snprintf(ret, sizeof(retarray[idx])-1, "%ld%c", amt, tag);
|
|
|
|
return(ret);
|
|
}
|
|
|
|
/*
|
|
* Time keeping functions.
|
|
*/
|
|
|
|
static struct timeval lasttime = { 0, 0 };
|
|
static unsigned int elapsed_msecs = 0;
|
|
|
|
void
|
|
time_get(struct timeval *tv)
|
|
|
|
{
|
|
/* get the current time */
|
|
#ifdef HAVE_GETTIMEOFDAY
|
|
gettimeofday(tv, NULL);
|
|
#else
|
|
tv->tv_sec = (long)time(NULL);
|
|
tv->tv_usec = 0;
|
|
#endif
|
|
}
|
|
|
|
void
|
|
time_mark(struct timeval *tv)
|
|
|
|
{
|
|
struct timeval thistime;
|
|
struct timeval timediff;
|
|
|
|
/* if the caller didnt provide one then use our own */
|
|
if (tv == NULL)
|
|
{
|
|
tv = &thistime;
|
|
}
|
|
|
|
/* get the current time */
|
|
#ifdef HAVE_GETTIMEOFDAY
|
|
gettimeofday(tv, NULL);
|
|
#else
|
|
tv->tv_sec = (long)time(NULL);
|
|
tv->tv_usec = 0;
|
|
#endif
|
|
|
|
/* calculate the difference */
|
|
timediff.tv_sec = tv->tv_sec - lasttime.tv_sec;
|
|
timediff.tv_usec = tv->tv_usec - lasttime.tv_usec;
|
|
if (timediff.tv_usec < 0) {
|
|
timediff.tv_sec--;
|
|
timediff.tv_usec += 1000000;
|
|
}
|
|
|
|
/* convert to milliseconds */
|
|
elapsed_msecs = timediff.tv_sec * 1000 + timediff.tv_usec / 1000;
|
|
if (elapsed_msecs == 0)
|
|
{
|
|
elapsed_msecs = 1;
|
|
}
|
|
|
|
/* save for next time */
|
|
lasttime = *tv;
|
|
}
|
|
|
|
unsigned int
|
|
time_elapsed()
|
|
|
|
{
|
|
return elapsed_msecs;
|
|
}
|
|
|
|
unsigned int
|
|
diff_per_second(unsigned int x, unsigned int y)
|
|
|
|
{
|
|
return (y > x ? UINT_MAX - y + x + 1 : x - y) * 1000 / elapsed_msecs;
|
|
}
|
|
|
|
void
|
|
double2tv(struct timeval *tv, double d)
|
|
{
|
|
tv->tv_sec = (int)d;
|
|
tv->tv_usec = (d - tv->tv_sec) * 1000000;
|
|
}
|
|
|
|
static int debug_on = 0;
|
|
|
|
#ifdef DEBUG
|
|
FILE *debugfile;
|
|
#endif
|
|
|
|
void
|
|
debug_set(int i)
|
|
|
|
{
|
|
debug_on = i;
|
|
#ifdef DEBUG
|
|
debugfile = fopen("/tmp/top.debug", "w");
|
|
#endif
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
void
|
|
xdprintf(char *fmt, ...)
|
|
|
|
{
|
|
va_list argp;
|
|
|
|
va_start(argp, fmt);
|
|
|
|
if (debug_on)
|
|
{
|
|
vfprintf(debugfile, fmt, argp);
|
|
fflush(debugfile);
|
|
}
|
|
|
|
va_end(argp);
|
|
}
|
|
#endif
|
|
|