mirror of
https://github.com/Stichting-MINIX-Research-Foundation/netbsd.git
synced 2025-09-11 16:15:07 -04:00
4310 lines
123 KiB
C
4310 lines
123 KiB
C
/* Subroutines used for code generation for RISC-V.
|
||
Copyright (C) 2011-2014 Free Software Foundation, Inc.
|
||
Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley.
|
||
Based on MIPS target for GNU compiler.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "insn-config.h"
|
||
#include "conditions.h"
|
||
#include "insn-attr.h"
|
||
#include "recog.h"
|
||
#include "output.h"
|
||
#include "tree.h"
|
||
//#include "varasm.h"
|
||
//#include "stor-layout.h"
|
||
//#include "calls.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "optabs.h"
|
||
#include "libfuncs.h"
|
||
#include "flags.h"
|
||
#include "reload.h"
|
||
#include "tm_p.h"
|
||
#include "ggc.h"
|
||
#include "gstab.h"
|
||
#include "hashtab.h"
|
||
#include "debug.h"
|
||
#include "target.h"
|
||
#include "target-def.h"
|
||
#include "langhooks.h"
|
||
#include "sched-int.h"
|
||
#include "bitmap.h"
|
||
#include "diagnostic.h"
|
||
#include "target-globals.h"
|
||
#include "symcat.h"
|
||
#include <stdint.h>
|
||
|
||
/* True if X is an UNSPEC wrapper around a SYMBOL_REF or LABEL_REF. */
|
||
#define UNSPEC_ADDRESS_P(X) \
|
||
(GET_CODE (X) == UNSPEC \
|
||
&& XINT (X, 1) >= UNSPEC_ADDRESS_FIRST \
|
||
&& XINT (X, 1) < UNSPEC_ADDRESS_FIRST + NUM_SYMBOL_TYPES)
|
||
|
||
/* Extract the symbol or label from UNSPEC wrapper X. */
|
||
#define UNSPEC_ADDRESS(X) \
|
||
XVECEXP (X, 0, 0)
|
||
|
||
/* Extract the symbol type from UNSPEC wrapper X. */
|
||
#define UNSPEC_ADDRESS_TYPE(X) \
|
||
((enum riscv_symbol_type) (XINT (X, 1) - UNSPEC_ADDRESS_FIRST))
|
||
|
||
/* The maximum distance between the top of the stack frame and the
|
||
value sp has when we save and restore registers. This is set by the
|
||
range of load/store offsets and must also preserve stack alignment. */
|
||
#define RISCV_MAX_FIRST_STACK_STEP (RISCV_IMM_REACH/2 - 16)
|
||
|
||
/* True if INSN is a riscv.md pattern or asm statement. */
|
||
#define USEFUL_INSN_P(INSN) \
|
||
(NONDEBUG_INSN_P (INSN) \
|
||
&& GET_CODE (PATTERN (INSN)) != USE \
|
||
&& GET_CODE (PATTERN (INSN)) != CLOBBER \
|
||
&& GET_CODE (PATTERN (INSN)) != ADDR_VEC \
|
||
&& GET_CODE (PATTERN (INSN)) != ADDR_DIFF_VEC)
|
||
|
||
/* True if bit BIT is set in VALUE. */
|
||
#define BITSET_P(VALUE, BIT) (((VALUE) & (1 << (BIT))) != 0)
|
||
|
||
/* Classifies an address.
|
||
|
||
ADDRESS_REG
|
||
A natural register + offset address. The register satisfies
|
||
riscv_valid_base_register_p and the offset is a const_arith_operand.
|
||
|
||
ADDRESS_LO_SUM
|
||
A LO_SUM rtx. The first operand is a valid base register and
|
||
the second operand is a symbolic address.
|
||
|
||
ADDRESS_CONST_INT
|
||
A signed 16-bit constant address.
|
||
|
||
ADDRESS_SYMBOLIC:
|
||
A constant symbolic address. */
|
||
enum riscv_address_type {
|
||
ADDRESS_REG,
|
||
ADDRESS_LO_SUM,
|
||
ADDRESS_CONST_INT,
|
||
ADDRESS_SYMBOLIC
|
||
};
|
||
|
||
enum riscv_code_model riscv_cmodel = TARGET_DEFAULT_CMODEL;
|
||
|
||
/* Macros to create an enumeration identifier for a function prototype. */
|
||
#define RISCV_FTYPE_NAME1(A, B) RISCV_##A##_FTYPE_##B
|
||
#define RISCV_FTYPE_NAME2(A, B, C) RISCV_##A##_FTYPE_##B##_##C
|
||
#define RISCV_FTYPE_NAME3(A, B, C, D) RISCV_##A##_FTYPE_##B##_##C##_##D
|
||
#define RISCV_FTYPE_NAME4(A, B, C, D, E) RISCV_##A##_FTYPE_##B##_##C##_##D##_##E
|
||
|
||
/* Classifies the prototype of a built-in function. */
|
||
enum riscv_function_type {
|
||
#define DEF_RISCV_FTYPE(NARGS, LIST) RISCV_FTYPE_NAME##NARGS LIST,
|
||
#include "config/riscv/riscv-ftypes.def"
|
||
#undef DEF_RISCV_FTYPE
|
||
RISCV_MAX_FTYPE_MAX
|
||
};
|
||
|
||
/* Specifies how a built-in function should be converted into rtl. */
|
||
enum riscv_builtin_type {
|
||
/* The function corresponds directly to an .md pattern. The return
|
||
value is mapped to operand 0 and the arguments are mapped to
|
||
operands 1 and above. */
|
||
RISCV_BUILTIN_DIRECT,
|
||
|
||
/* The function corresponds directly to an .md pattern. There is no return
|
||
value and the arguments are mapped to operands 0 and above. */
|
||
RISCV_BUILTIN_DIRECT_NO_TARGET
|
||
};
|
||
|
||
/* Information about a function's frame layout. */
|
||
struct GTY(()) riscv_frame_info {
|
||
/* The size of the frame in bytes. */
|
||
HOST_WIDE_INT total_size;
|
||
|
||
/* Bit X is set if the function saves or restores GPR X. */
|
||
unsigned int mask;
|
||
|
||
/* Likewise FPR X. */
|
||
unsigned int fmask;
|
||
|
||
/* Offsets of fixed-point and floating-point save areas from frame bottom */
|
||
HOST_WIDE_INT gp_sp_offset;
|
||
HOST_WIDE_INT fp_sp_offset;
|
||
|
||
/* Offset of virtual frame pointer from stack pointer/frame bottom */
|
||
HOST_WIDE_INT frame_pointer_offset;
|
||
|
||
/* Offset of hard frame pointer from stack pointer/frame bottom */
|
||
HOST_WIDE_INT hard_frame_pointer_offset;
|
||
|
||
/* The offset of arg_pointer_rtx from the bottom of the frame. */
|
||
HOST_WIDE_INT arg_pointer_offset;
|
||
};
|
||
|
||
struct GTY(()) machine_function {
|
||
/* The number of extra stack bytes taken up by register varargs.
|
||
This area is allocated by the callee at the very top of the frame. */
|
||
int varargs_size;
|
||
|
||
/* The current frame information, calculated by riscv_compute_frame_info. */
|
||
struct riscv_frame_info frame;
|
||
};
|
||
|
||
/* Information about a single argument. */
|
||
struct riscv_arg_info {
|
||
/* True if the argument is passed in a floating-point register, or
|
||
would have been if we hadn't run out of registers. */
|
||
bool fpr_p;
|
||
|
||
/* The number of words passed in registers, rounded up. */
|
||
unsigned int reg_words;
|
||
|
||
/* For EABI, the offset of the first register from GP_ARG_FIRST or
|
||
FP_ARG_FIRST. For other ABIs, the offset of the first register from
|
||
the start of the ABI's argument structure (see the CUMULATIVE_ARGS
|
||
comment for details).
|
||
|
||
The value is MAX_ARGS_IN_REGISTERS if the argument is passed entirely
|
||
on the stack. */
|
||
unsigned int reg_offset;
|
||
|
||
/* The number of words that must be passed on the stack, rounded up. */
|
||
unsigned int stack_words;
|
||
|
||
/* The offset from the start of the stack overflow area of the argument's
|
||
first stack word. Only meaningful when STACK_WORDS is nonzero. */
|
||
unsigned int stack_offset;
|
||
};
|
||
|
||
/* Information about an address described by riscv_address_type.
|
||
|
||
ADDRESS_CONST_INT
|
||
No fields are used.
|
||
|
||
ADDRESS_REG
|
||
REG is the base register and OFFSET is the constant offset.
|
||
|
||
ADDRESS_LO_SUM
|
||
REG and OFFSET are the operands to the LO_SUM and SYMBOL_TYPE
|
||
is the type of symbol it references.
|
||
|
||
ADDRESS_SYMBOLIC
|
||
SYMBOL_TYPE is the type of symbol that the address references. */
|
||
struct riscv_address_info {
|
||
enum riscv_address_type type;
|
||
rtx reg;
|
||
rtx offset;
|
||
enum riscv_symbol_type symbol_type;
|
||
};
|
||
|
||
/* One stage in a constant building sequence. These sequences have
|
||
the form:
|
||
|
||
A = VALUE[0]
|
||
A = A CODE[1] VALUE[1]
|
||
A = A CODE[2] VALUE[2]
|
||
...
|
||
|
||
where A is an accumulator, each CODE[i] is a binary rtl operation
|
||
and each VALUE[i] is a constant integer. CODE[0] is undefined. */
|
||
struct riscv_integer_op {
|
||
enum rtx_code code;
|
||
unsigned HOST_WIDE_INT value;
|
||
};
|
||
|
||
/* The largest number of operations needed to load an integer constant.
|
||
The worst case is LUI, ADDI, SLLI, ADDI, SLLI, ADDI, SLLI, ADDI,
|
||
but we may attempt and reject even worse sequences. */
|
||
#define RISCV_MAX_INTEGER_OPS 32
|
||
|
||
/* Costs of various operations on the different architectures. */
|
||
|
||
struct riscv_tune_info
|
||
{
|
||
unsigned short fp_add[2];
|
||
unsigned short fp_mul[2];
|
||
unsigned short fp_div[2];
|
||
unsigned short int_mul[2];
|
||
unsigned short int_div[2];
|
||
unsigned short issue_rate;
|
||
unsigned short branch_cost;
|
||
unsigned short fp_to_int_cost;
|
||
unsigned short memory_cost;
|
||
};
|
||
|
||
/* Information about one CPU we know about. */
|
||
struct riscv_cpu_info {
|
||
/* This CPU's canonical name. */
|
||
const char *name;
|
||
|
||
/* The RISC-V ISA and extensions supported by this CPU. */
|
||
const char *isa;
|
||
|
||
/* Tuning parameters for this CPU. */
|
||
const struct riscv_tune_info *tune_info;
|
||
};
|
||
|
||
/* Global variables for machine-dependent things. */
|
||
|
||
/* Which tuning parameters to use. */
|
||
static const struct riscv_tune_info *tune_info;
|
||
|
||
/* Index [M][R] is true if register R is allowed to hold a value of mode M. */
|
||
bool riscv_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
|
||
|
||
/* riscv_lo_relocs[X] is the relocation to use when a symbol of type X
|
||
appears in a LO_SUM. It can be null if such LO_SUMs aren't valid or
|
||
if they are matched by a special .md file pattern. */
|
||
const char *riscv_lo_relocs[NUM_SYMBOL_TYPES];
|
||
|
||
/* Likewise for HIGHs. */
|
||
const char *riscv_hi_relocs[NUM_SYMBOL_TYPES];
|
||
|
||
/* Index R is the smallest register class that contains register R. */
|
||
const enum reg_class riscv_regno_to_class[FIRST_PSEUDO_REGISTER] = {
|
||
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
||
GR_REGS, T_REGS, T_REGS, T_REGS,
|
||
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
||
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
||
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
||
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
||
GR_REGS, GR_REGS, GR_REGS, GR_REGS,
|
||
T_REGS, T_REGS, T_REGS, T_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
||
FRAME_REGS, FRAME_REGS,
|
||
};
|
||
|
||
/* Costs to use when optimizing for size. */
|
||
static const struct riscv_tune_info rocket_tune_info = {
|
||
{COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_add */
|
||
{COSTS_N_INSNS (4), COSTS_N_INSNS (5)}, /* fp_mul */
|
||
{COSTS_N_INSNS (20), COSTS_N_INSNS (20)}, /* fp_div */
|
||
{COSTS_N_INSNS (4), COSTS_N_INSNS (4)}, /* int_mul */
|
||
{COSTS_N_INSNS (6), COSTS_N_INSNS (6)}, /* int_div */
|
||
1, /* issue_rate */
|
||
3, /* branch_cost */
|
||
COSTS_N_INSNS (2), /* fp_to_int_cost */
|
||
5 /* memory_cost */
|
||
};
|
||
|
||
/* Costs to use when optimizing for size. */
|
||
static const struct riscv_tune_info optimize_size_tune_info = {
|
||
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_add */
|
||
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_mul */
|
||
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* fp_div */
|
||
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_mul */
|
||
{COSTS_N_INSNS (1), COSTS_N_INSNS (1)}, /* int_div */
|
||
1, /* issue_rate */
|
||
1, /* branch_cost */
|
||
COSTS_N_INSNS (1), /* fp_to_int_cost */
|
||
1 /* memory_cost */
|
||
};
|
||
|
||
/* A table describing all the processors GCC knows about. */
|
||
static const struct riscv_cpu_info riscv_cpu_info_table[] = {
|
||
/* Entries for generic ISAs. */
|
||
{ "rocket", "IMAFD", &rocket_tune_info },
|
||
};
|
||
|
||
/* Return the riscv_cpu_info entry for the given name string. */
|
||
|
||
static const struct riscv_cpu_info *
|
||
riscv_parse_cpu (const char *cpu_string)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < ARRAY_SIZE (riscv_cpu_info_table); i++)
|
||
if (strcmp (riscv_cpu_info_table[i].name, cpu_string) == 0)
|
||
return riscv_cpu_info_table + i;
|
||
|
||
error ("unknown cpu `%s'", cpu_string);
|
||
return riscv_cpu_info_table;
|
||
}
|
||
|
||
/* Fill CODES with a sequence of rtl operations to load VALUE.
|
||
Return the number of operations needed. */
|
||
|
||
static int
|
||
riscv_build_integer_1 (struct riscv_integer_op *codes, HOST_WIDE_INT value,
|
||
enum machine_mode mode)
|
||
{
|
||
HOST_WIDE_INT low_part = RISCV_CONST_LOW_PART (value);
|
||
int cost = INT_MAX, alt_cost;
|
||
struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS];
|
||
|
||
if (SMALL_OPERAND (value) || LUI_OPERAND (value))
|
||
{
|
||
/* Simply ADDI or LUI */
|
||
codes[0].code = UNKNOWN;
|
||
codes[0].value = value;
|
||
return 1;
|
||
}
|
||
|
||
/* End with ADDI */
|
||
if (low_part != 0
|
||
&& !(mode == HImode && (int16_t)(value - low_part) != (value - low_part)))
|
||
{
|
||
cost = 1 + riscv_build_integer_1 (codes, value - low_part, mode);
|
||
codes[cost-1].code = PLUS;
|
||
codes[cost-1].value = low_part;
|
||
}
|
||
|
||
/* End with XORI */
|
||
if (cost > 2 && (low_part < 0 || mode == HImode))
|
||
{
|
||
alt_cost = 1 + riscv_build_integer_1 (alt_codes, value ^ low_part, mode);
|
||
alt_codes[alt_cost-1].code = XOR;
|
||
alt_codes[alt_cost-1].value = low_part;
|
||
if (alt_cost < cost)
|
||
cost = alt_cost, memcpy (codes, alt_codes, sizeof(alt_codes));
|
||
}
|
||
|
||
/* Eliminate trailing zeros and end with SLLI */
|
||
if (cost > 2 && (value & 1) == 0)
|
||
{
|
||
int shift = 0;
|
||
while ((value & 1) == 0)
|
||
shift++, value >>= 1;
|
||
alt_cost = 1 + riscv_build_integer_1 (alt_codes, value, mode);
|
||
alt_codes[alt_cost-1].code = ASHIFT;
|
||
alt_codes[alt_cost-1].value = shift;
|
||
if (alt_cost < cost)
|
||
cost = alt_cost, memcpy (codes, alt_codes, sizeof(alt_codes));
|
||
}
|
||
|
||
gcc_assert (cost <= RISCV_MAX_INTEGER_OPS);
|
||
return cost;
|
||
}
|
||
|
||
static int
|
||
riscv_build_integer (struct riscv_integer_op *codes, HOST_WIDE_INT value,
|
||
enum machine_mode mode)
|
||
{
|
||
int cost = riscv_build_integer_1 (codes, value, mode);
|
||
|
||
/* Eliminate leading zeros and end with SRLI */
|
||
if (value > 0 && cost > 2)
|
||
{
|
||
struct riscv_integer_op alt_codes[RISCV_MAX_INTEGER_OPS];
|
||
int alt_cost, shift = 0;
|
||
HOST_WIDE_INT shifted_val;
|
||
|
||
/* Try filling trailing bits with 1s */
|
||
while ((value << shift) >= 0)
|
||
shift++;
|
||
shifted_val = (value << shift) | ((((HOST_WIDE_INT) 1) << shift) - 1);
|
||
alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode);
|
||
alt_codes[alt_cost-1].code = LSHIFTRT;
|
||
alt_codes[alt_cost-1].value = shift;
|
||
if (alt_cost < cost)
|
||
cost = alt_cost, memcpy (codes, alt_codes, sizeof (alt_codes));
|
||
|
||
/* Try filling trailing bits with 0s */
|
||
shifted_val = value << shift;
|
||
alt_cost = 1 + riscv_build_integer_1 (alt_codes, shifted_val, mode);
|
||
alt_codes[alt_cost-1].code = LSHIFTRT;
|
||
alt_codes[alt_cost-1].value = shift;
|
||
if (alt_cost < cost)
|
||
cost = alt_cost, memcpy (codes, alt_codes, sizeof (alt_codes));
|
||
}
|
||
|
||
return cost;
|
||
}
|
||
|
||
static int
|
||
riscv_split_integer_cost (HOST_WIDE_INT val)
|
||
{
|
||
int cost;
|
||
int32_t loval = val, hival = (val - (int32_t)val) >> 32;
|
||
struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
|
||
|
||
cost = 2 + riscv_build_integer (codes, loval, VOIDmode);
|
||
if (loval != hival)
|
||
cost += riscv_build_integer (codes, hival, VOIDmode);
|
||
|
||
return cost;
|
||
}
|
||
|
||
static int
|
||
riscv_integer_cost (HOST_WIDE_INT val)
|
||
{
|
||
struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
|
||
return MIN (riscv_build_integer (codes, val, VOIDmode),
|
||
riscv_split_integer_cost (val));
|
||
}
|
||
|
||
/* Try to split a 64b integer into 32b parts, then reassemble. */
|
||
|
||
static rtx
|
||
riscv_split_integer (HOST_WIDE_INT val, enum machine_mode mode)
|
||
{
|
||
int32_t loval = val, hival = (val - (int32_t)val) >> 32;
|
||
rtx hi = gen_reg_rtx (mode), lo = gen_reg_rtx (mode);
|
||
|
||
riscv_move_integer (hi, hi, hival);
|
||
riscv_move_integer (lo, lo, loval);
|
||
|
||
hi = gen_rtx_fmt_ee (ASHIFT, mode, hi, GEN_INT (32));
|
||
hi = force_reg (mode, hi);
|
||
|
||
return gen_rtx_fmt_ee (PLUS, mode, hi, lo);
|
||
}
|
||
|
||
/* Return true if X is a thread-local symbol. */
|
||
|
||
static bool
|
||
riscv_tls_symbol_p (const_rtx x)
|
||
{
|
||
return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
|
||
}
|
||
|
||
static bool
|
||
riscv_symbol_binds_local_p (const_rtx x)
|
||
{
|
||
return (SYMBOL_REF_DECL (x)
|
||
? targetm.binds_local_p (SYMBOL_REF_DECL (x))
|
||
: SYMBOL_REF_LOCAL_P (x));
|
||
}
|
||
|
||
/* Return the method that should be used to access SYMBOL_REF or
|
||
LABEL_REF X in context CONTEXT. */
|
||
|
||
static enum riscv_symbol_type
|
||
riscv_classify_symbol (const_rtx x)
|
||
{
|
||
if (riscv_tls_symbol_p (x))
|
||
return SYMBOL_TLS;
|
||
|
||
if (GET_CODE (x) == LABEL_REF)
|
||
{
|
||
if (LABEL_REF_NONLOCAL_P (x))
|
||
return SYMBOL_GOT_DISP;
|
||
return SYMBOL_ABSOLUTE;
|
||
}
|
||
|
||
gcc_assert (GET_CODE (x) == SYMBOL_REF);
|
||
|
||
if (flag_pic && !riscv_symbol_binds_local_p (x))
|
||
return SYMBOL_GOT_DISP;
|
||
|
||
return SYMBOL_ABSOLUTE;
|
||
}
|
||
|
||
/* Classify the base of symbolic expression X, given that X appears in
|
||
context CONTEXT. */
|
||
|
||
static enum riscv_symbol_type
|
||
riscv_classify_symbolic_expression (rtx x)
|
||
{
|
||
rtx offset;
|
||
|
||
split_const (x, &x, &offset);
|
||
if (UNSPEC_ADDRESS_P (x))
|
||
return UNSPEC_ADDRESS_TYPE (x);
|
||
|
||
return riscv_classify_symbol (x);
|
||
}
|
||
|
||
/* Return true if X is a symbolic constant that can be used in context
|
||
CONTEXT. If it is, store the type of the symbol in *SYMBOL_TYPE. */
|
||
|
||
bool
|
||
riscv_symbolic_constant_p (rtx x, enum riscv_symbol_type *symbol_type)
|
||
{
|
||
rtx offset;
|
||
|
||
split_const (x, &x, &offset);
|
||
if (UNSPEC_ADDRESS_P (x))
|
||
{
|
||
*symbol_type = UNSPEC_ADDRESS_TYPE (x);
|
||
x = UNSPEC_ADDRESS (x);
|
||
}
|
||
else if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
|
||
*symbol_type = riscv_classify_symbol (x);
|
||
else
|
||
return false;
|
||
|
||
if (offset == const0_rtx)
|
||
return true;
|
||
|
||
/* Check whether a nonzero offset is valid for the underlying
|
||
relocations. */
|
||
switch (*symbol_type)
|
||
{
|
||
case SYMBOL_ABSOLUTE:
|
||
case SYMBOL_TLS_LE:
|
||
return (int32_t) INTVAL (offset) == INTVAL (offset);
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Returns the number of instructions necessary to reference a symbol. */
|
||
|
||
static int riscv_symbol_insns (enum riscv_symbol_type type)
|
||
{
|
||
switch (type)
|
||
{
|
||
case SYMBOL_TLS: return 0; /* Depends on the TLS model. */
|
||
case SYMBOL_ABSOLUTE: return 2; /* LUI + the reference itself */
|
||
case SYMBOL_TLS_LE: return 3; /* LUI + ADD TP + the reference itself */
|
||
case SYMBOL_GOT_DISP: return 3; /* AUIPC + LD GOT + the reference itself */
|
||
default: gcc_unreachable();
|
||
}
|
||
}
|
||
|
||
/* A for_each_rtx callback. Stop the search if *X references a
|
||
thread-local symbol. */
|
||
|
||
static int
|
||
riscv_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
return riscv_tls_symbol_p (*x);
|
||
}
|
||
|
||
/* Implement TARGET_LEGITIMATE_CONSTANT_P. */
|
||
|
||
static bool
|
||
riscv_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
|
||
{
|
||
return riscv_const_insns (x) > 0;
|
||
}
|
||
|
||
/* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
|
||
|
||
static bool
|
||
riscv_cannot_force_const_mem (enum machine_mode mode, rtx x)
|
||
{
|
||
enum riscv_symbol_type type;
|
||
rtx base, offset;
|
||
|
||
/* There is no assembler syntax for expressing an address-sized
|
||
high part. */
|
||
if (GET_CODE (x) == HIGH)
|
||
return true;
|
||
|
||
/* As an optimization, reject constants that riscv_legitimize_move
|
||
can expand inline.
|
||
|
||
Suppose we have a multi-instruction sequence that loads constant C
|
||
into register R. If R does not get allocated a hard register, and
|
||
R is used in an operand that allows both registers and memory
|
||
references, reload will consider forcing C into memory and using
|
||
one of the instruction's memory alternatives. Returning false
|
||
here will force it to use an input reload instead. */
|
||
if (CONST_INT_P (x) && riscv_legitimate_constant_p (mode, x))
|
||
return true;
|
||
|
||
split_const (x, &base, &offset);
|
||
if (riscv_symbolic_constant_p (base, &type))
|
||
{
|
||
/* The same optimization as for CONST_INT. */
|
||
if (SMALL_INT (offset) && riscv_symbol_insns (type) > 0)
|
||
return true;
|
||
|
||
/* It's not worth creating additional dynamic relocations. */
|
||
if (flag_pic)
|
||
return true;
|
||
}
|
||
|
||
/* TLS symbols must be computed by riscv_legitimize_move. */
|
||
if (for_each_rtx (&x, &riscv_tls_symbol_ref_1, NULL))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if register REGNO is a valid base register for mode MODE.
|
||
STRICT_P is true if REG_OK_STRICT is in effect. */
|
||
|
||
int
|
||
riscv_regno_mode_ok_for_base_p (int regno, enum machine_mode mode ATTRIBUTE_UNUSED,
|
||
bool strict_p)
|
||
{
|
||
if (!HARD_REGISTER_NUM_P (regno))
|
||
{
|
||
if (!strict_p)
|
||
return true;
|
||
regno = reg_renumber[regno];
|
||
}
|
||
|
||
/* These fake registers will be eliminated to either the stack or
|
||
hard frame pointer, both of which are usually valid base registers.
|
||
Reload deals with the cases where the eliminated form isn't valid. */
|
||
if (regno == ARG_POINTER_REGNUM || regno == FRAME_POINTER_REGNUM)
|
||
return true;
|
||
|
||
return GP_REG_P (regno);
|
||
}
|
||
|
||
/* Return true if X is a valid base register for mode MODE.
|
||
STRICT_P is true if REG_OK_STRICT is in effect. */
|
||
|
||
static bool
|
||
riscv_valid_base_register_p (rtx x, enum machine_mode mode, bool strict_p)
|
||
{
|
||
if (!strict_p && GET_CODE (x) == SUBREG)
|
||
x = SUBREG_REG (x);
|
||
|
||
return (REG_P (x)
|
||
&& riscv_regno_mode_ok_for_base_p (REGNO (x), mode, strict_p));
|
||
}
|
||
|
||
/* Return true if, for every base register BASE_REG, (plus BASE_REG X)
|
||
can address a value of mode MODE. */
|
||
|
||
static bool
|
||
riscv_valid_offset_p (rtx x, enum machine_mode mode)
|
||
{
|
||
/* Check that X is a signed 12-bit number. */
|
||
if (!const_arith_operand (x, Pmode))
|
||
return false;
|
||
|
||
/* We may need to split multiword moves, so make sure that every word
|
||
is accessible. */
|
||
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
||
&& !SMALL_OPERAND (INTVAL (x) + GET_MODE_SIZE (mode) - UNITS_PER_WORD))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true if a LO_SUM can address a value of mode MODE when the
|
||
LO_SUM symbol has type SYMBOL_TYPE. */
|
||
|
||
static bool
|
||
riscv_valid_lo_sum_p (enum riscv_symbol_type symbol_type, enum machine_mode mode)
|
||
{
|
||
/* Check that symbols of type SYMBOL_TYPE can be used to access values
|
||
of mode MODE. */
|
||
if (riscv_symbol_insns (symbol_type) == 0)
|
||
return false;
|
||
|
||
/* Check that there is a known low-part relocation. */
|
||
if (riscv_lo_relocs[symbol_type] == NULL)
|
||
return false;
|
||
|
||
/* We may need to split multiword moves, so make sure that each word
|
||
can be accessed without inducing a carry. This is mainly needed
|
||
for o64, which has historically only guaranteed 64-bit alignment
|
||
for 128-bit types. */
|
||
if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
|
||
&& GET_MODE_BITSIZE (mode) > GET_MODE_ALIGNMENT (mode))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true if X is a valid address for machine mode MODE. If it is,
|
||
fill in INFO appropriately. STRICT_P is true if REG_OK_STRICT is in
|
||
effect. */
|
||
|
||
static bool
|
||
riscv_classify_address (struct riscv_address_info *info, rtx x,
|
||
enum machine_mode mode, bool strict_p)
|
||
{
|
||
switch (GET_CODE (x))
|
||
{
|
||
case REG:
|
||
case SUBREG:
|
||
info->type = ADDRESS_REG;
|
||
info->reg = x;
|
||
info->offset = const0_rtx;
|
||
return riscv_valid_base_register_p (info->reg, mode, strict_p);
|
||
|
||
case PLUS:
|
||
info->type = ADDRESS_REG;
|
||
info->reg = XEXP (x, 0);
|
||
info->offset = XEXP (x, 1);
|
||
return (riscv_valid_base_register_p (info->reg, mode, strict_p)
|
||
&& riscv_valid_offset_p (info->offset, mode));
|
||
|
||
case LO_SUM:
|
||
info->type = ADDRESS_LO_SUM;
|
||
info->reg = XEXP (x, 0);
|
||
info->offset = XEXP (x, 1);
|
||
/* We have to trust the creator of the LO_SUM to do something vaguely
|
||
sane. Target-independent code that creates a LO_SUM should also
|
||
create and verify the matching HIGH. Target-independent code that
|
||
adds an offset to a LO_SUM must prove that the offset will not
|
||
induce a carry. Failure to do either of these things would be
|
||
a bug, and we are not required to check for it here. The RISCV
|
||
backend itself should only create LO_SUMs for valid symbolic
|
||
constants, with the high part being either a HIGH or a copy
|
||
of _gp. */
|
||
info->symbol_type
|
||
= riscv_classify_symbolic_expression (info->offset);
|
||
return (riscv_valid_base_register_p (info->reg, mode, strict_p)
|
||
&& riscv_valid_lo_sum_p (info->symbol_type, mode));
|
||
|
||
case CONST_INT:
|
||
/* Small-integer addresses don't occur very often, but they
|
||
are legitimate if $0 is a valid base register. */
|
||
info->type = ADDRESS_CONST_INT;
|
||
return SMALL_INT (x);
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Implement TARGET_LEGITIMATE_ADDRESS_P. */
|
||
|
||
static bool
|
||
riscv_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
|
||
{
|
||
struct riscv_address_info addr;
|
||
|
||
return riscv_classify_address (&addr, x, mode, strict_p);
|
||
}
|
||
|
||
/* Return the number of instructions needed to load or store a value
|
||
of mode MODE at address X. Return 0 if X isn't valid for MODE.
|
||
Assume that multiword moves may need to be split into word moves
|
||
if MIGHT_SPLIT_P, otherwise assume that a single load or store is
|
||
enough. */
|
||
|
||
int
|
||
riscv_address_insns (rtx x, enum machine_mode mode, bool might_split_p)
|
||
{
|
||
struct riscv_address_info addr;
|
||
int n = 1;
|
||
|
||
if (!riscv_classify_address (&addr, x, mode, false))
|
||
return 0;
|
||
|
||
/* BLKmode is used for single unaligned loads and stores and should
|
||
not count as a multiword mode. */
|
||
if (mode != BLKmode && might_split_p)
|
||
n += (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
|
||
if (addr.type == ADDRESS_LO_SUM)
|
||
n += riscv_symbol_insns (addr.symbol_type) - 1;
|
||
|
||
return n;
|
||
}
|
||
|
||
/* Return the number of instructions needed to load constant X.
|
||
Return 0 if X isn't a valid constant. */
|
||
|
||
int
|
||
riscv_const_insns (rtx x)
|
||
{
|
||
enum riscv_symbol_type symbol_type;
|
||
rtx offset;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case HIGH:
|
||
if (!riscv_symbolic_constant_p (XEXP (x, 0), &symbol_type)
|
||
|| !riscv_hi_relocs[symbol_type])
|
||
return 0;
|
||
|
||
/* This is simply an LUI. */
|
||
return 1;
|
||
|
||
case CONST_INT:
|
||
{
|
||
int cost = riscv_integer_cost (INTVAL (x));
|
||
/* Force complicated constants to memory. */
|
||
return cost < 4 ? cost : 0;
|
||
}
|
||
|
||
case CONST_DOUBLE:
|
||
case CONST_VECTOR:
|
||
/* Allow zeros for normal mode, where we can use x0. */
|
||
return x == CONST0_RTX (GET_MODE (x)) ? 1 : 0;
|
||
|
||
case CONST:
|
||
/* See if we can refer to X directly. */
|
||
if (riscv_symbolic_constant_p (x, &symbol_type))
|
||
return riscv_symbol_insns (symbol_type);
|
||
|
||
/* Otherwise try splitting the constant into a base and offset.
|
||
If the offset is a 16-bit value, we can load the base address
|
||
into a register and then use (D)ADDIU to add in the offset.
|
||
If the offset is larger, we can load the base and offset
|
||
into separate registers and add them together with (D)ADDU.
|
||
However, the latter is only possible before reload; during
|
||
and after reload, we must have the option of forcing the
|
||
constant into the pool instead. */
|
||
split_const (x, &x, &offset);
|
||
if (offset != 0)
|
||
{
|
||
int n = riscv_const_insns (x);
|
||
if (n != 0)
|
||
{
|
||
if (SMALL_INT (offset))
|
||
return n + 1;
|
||
else if (!targetm.cannot_force_const_mem (GET_MODE (x), x))
|
||
return n + 1 + riscv_integer_cost (INTVAL (offset));
|
||
}
|
||
}
|
||
return 0;
|
||
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return riscv_symbol_insns (riscv_classify_symbol (x));
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* X is a doubleword constant that can be handled by splitting it into
|
||
two words and loading each word separately. Return the number of
|
||
instructions required to do this. */
|
||
|
||
int
|
||
riscv_split_const_insns (rtx x)
|
||
{
|
||
unsigned int low, high;
|
||
|
||
low = riscv_const_insns (riscv_subword (x, false));
|
||
high = riscv_const_insns (riscv_subword (x, true));
|
||
gcc_assert (low > 0 && high > 0);
|
||
return low + high;
|
||
}
|
||
|
||
/* Return the number of instructions needed to implement INSN,
|
||
given that it loads from or stores to MEM. */
|
||
|
||
int
|
||
riscv_load_store_insns (rtx mem, rtx insn)
|
||
{
|
||
enum machine_mode mode;
|
||
bool might_split_p;
|
||
rtx set;
|
||
|
||
gcc_assert (MEM_P (mem));
|
||
mode = GET_MODE (mem);
|
||
|
||
/* Try to prove that INSN does not need to be split. */
|
||
might_split_p = true;
|
||
if (GET_MODE_BITSIZE (mode) == 64)
|
||
{
|
||
set = single_set (insn);
|
||
if (set && !riscv_split_64bit_move_p (SET_DEST (set), SET_SRC (set)))
|
||
might_split_p = false;
|
||
}
|
||
|
||
return riscv_address_insns (XEXP (mem, 0), mode, might_split_p);
|
||
}
|
||
|
||
/* Emit a move from SRC to DEST. Assume that the move expanders can
|
||
handle all moves if !can_create_pseudo_p (). The distinction is
|
||
important because, unlike emit_move_insn, the move expanders know
|
||
how to force Pmode objects into the constant pool even when the
|
||
constant pool address is not itself legitimate. */
|
||
|
||
rtx
|
||
riscv_emit_move (rtx dest, rtx src)
|
||
{
|
||
return (can_create_pseudo_p ()
|
||
? emit_move_insn (dest, src)
|
||
: emit_move_insn_1 (dest, src));
|
||
}
|
||
|
||
/* Emit an instruction of the form (set TARGET (CODE OP0 OP1)). */
|
||
|
||
static void
|
||
riscv_emit_binary (enum rtx_code code, rtx target, rtx op0, rtx op1)
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, target,
|
||
gen_rtx_fmt_ee (code, GET_MODE (target), op0, op1)));
|
||
}
|
||
|
||
/* Compute (CODE OP0 OP1) and store the result in a new register
|
||
of mode MODE. Return that new register. */
|
||
|
||
static rtx
|
||
riscv_force_binary (enum machine_mode mode, enum rtx_code code, rtx op0, rtx op1)
|
||
{
|
||
rtx reg;
|
||
|
||
reg = gen_reg_rtx (mode);
|
||
riscv_emit_binary (code, reg, op0, op1);
|
||
return reg;
|
||
}
|
||
|
||
/* Copy VALUE to a register and return that register. If new pseudos
|
||
are allowed, copy it into a new register, otherwise use DEST. */
|
||
|
||
static rtx
|
||
riscv_force_temporary (rtx dest, rtx value)
|
||
{
|
||
if (can_create_pseudo_p ())
|
||
return force_reg (Pmode, value);
|
||
else
|
||
{
|
||
riscv_emit_move (dest, value);
|
||
return dest;
|
||
}
|
||
}
|
||
|
||
/* Wrap symbol or label BASE in an UNSPEC address of type SYMBOL_TYPE,
|
||
then add CONST_INT OFFSET to the result. */
|
||
|
||
static rtx
|
||
riscv_unspec_address_offset (rtx base, rtx offset,
|
||
enum riscv_symbol_type symbol_type)
|
||
{
|
||
base = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, base),
|
||
UNSPEC_ADDRESS_FIRST + symbol_type);
|
||
if (offset != const0_rtx)
|
||
base = gen_rtx_PLUS (Pmode, base, offset);
|
||
return gen_rtx_CONST (Pmode, base);
|
||
}
|
||
|
||
/* Return an UNSPEC address with underlying address ADDRESS and symbol
|
||
type SYMBOL_TYPE. */
|
||
|
||
rtx
|
||
riscv_unspec_address (rtx address, enum riscv_symbol_type symbol_type)
|
||
{
|
||
rtx base, offset;
|
||
|
||
split_const (address, &base, &offset);
|
||
return riscv_unspec_address_offset (base, offset, symbol_type);
|
||
}
|
||
|
||
/* If OP is an UNSPEC address, return the address to which it refers,
|
||
otherwise return OP itself. */
|
||
|
||
static rtx
|
||
riscv_strip_unspec_address (rtx op)
|
||
{
|
||
rtx base, offset;
|
||
|
||
split_const (op, &base, &offset);
|
||
if (UNSPEC_ADDRESS_P (base))
|
||
op = plus_constant (Pmode, UNSPEC_ADDRESS (base), INTVAL (offset));
|
||
return op;
|
||
}
|
||
|
||
/* If riscv_unspec_address (ADDR, SYMBOL_TYPE) is a 32-bit value, add the
|
||
high part to BASE and return the result. Just return BASE otherwise.
|
||
TEMP is as for riscv_force_temporary.
|
||
|
||
The returned expression can be used as the first operand to a LO_SUM. */
|
||
|
||
static rtx
|
||
riscv_unspec_offset_high (rtx temp, rtx addr, enum riscv_symbol_type symbol_type)
|
||
{
|
||
addr = gen_rtx_HIGH (Pmode, riscv_unspec_address (addr, symbol_type));
|
||
return riscv_force_temporary (temp, addr);
|
||
}
|
||
|
||
/* Load an entry from the GOT. */
|
||
static rtx riscv_got_load_tls_gd(rtx dest, rtx sym)
|
||
{
|
||
return (Pmode == DImode ? gen_got_load_tls_gddi(dest, sym) : gen_got_load_tls_gdsi(dest, sym));
|
||
}
|
||
|
||
static rtx riscv_got_load_tls_ie(rtx dest, rtx sym)
|
||
{
|
||
return (Pmode == DImode ? gen_got_load_tls_iedi(dest, sym) : gen_got_load_tls_iesi(dest, sym));
|
||
}
|
||
|
||
static rtx riscv_tls_add_tp_le(rtx dest, rtx base, rtx sym)
|
||
{
|
||
rtx tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM);
|
||
return (Pmode == DImode ? gen_tls_add_tp_ledi(dest, base, tp, sym) : gen_tls_add_tp_lesi(dest, base, tp, sym));
|
||
}
|
||
|
||
/* If MODE is MAX_MACHINE_MODE, ADDR appears as a move operand, otherwise
|
||
it appears in a MEM of that mode. Return true if ADDR is a legitimate
|
||
constant in that context and can be split into high and low parts.
|
||
If so, and if LOW_OUT is nonnull, emit the high part and store the
|
||
low part in *LOW_OUT. Leave *LOW_OUT unchanged otherwise.
|
||
|
||
TEMP is as for riscv_force_temporary and is used to load the high
|
||
part into a register.
|
||
|
||
When MODE is MAX_MACHINE_MODE, the low part is guaranteed to be
|
||
a legitimize SET_SRC for an .md pattern, otherwise the low part
|
||
is guaranteed to be a legitimate address for mode MODE. */
|
||
|
||
bool
|
||
riscv_split_symbol (rtx temp, rtx addr, enum machine_mode mode, rtx *low_out)
|
||
{
|
||
enum riscv_symbol_type symbol_type;
|
||
rtx high;
|
||
|
||
if ((GET_CODE (addr) == HIGH && mode == MAX_MACHINE_MODE)
|
||
|| !riscv_symbolic_constant_p (addr, &symbol_type)
|
||
|| riscv_symbol_insns (symbol_type) == 0
|
||
|| !riscv_hi_relocs[symbol_type])
|
||
return false;
|
||
|
||
if (low_out)
|
||
{
|
||
switch (symbol_type)
|
||
{
|
||
case SYMBOL_ABSOLUTE:
|
||
high = gen_rtx_HIGH (Pmode, copy_rtx (addr));
|
||
high = riscv_force_temporary (temp, high);
|
||
*low_out = gen_rtx_LO_SUM (Pmode, high, addr);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return a legitimate address for REG + OFFSET. TEMP is as for
|
||
riscv_force_temporary; it is only needed when OFFSET is not a
|
||
SMALL_OPERAND. */
|
||
|
||
static rtx
|
||
riscv_add_offset (rtx temp, rtx reg, HOST_WIDE_INT offset)
|
||
{
|
||
if (!SMALL_OPERAND (offset))
|
||
{
|
||
rtx high;
|
||
|
||
/* Leave OFFSET as a 16-bit offset and put the excess in HIGH.
|
||
The addition inside the macro CONST_HIGH_PART may cause an
|
||
overflow, so we need to force a sign-extension check. */
|
||
high = gen_int_mode (RISCV_CONST_HIGH_PART (offset), Pmode);
|
||
offset = RISCV_CONST_LOW_PART (offset);
|
||
high = riscv_force_temporary (temp, high);
|
||
reg = riscv_force_temporary (temp, gen_rtx_PLUS (Pmode, high, reg));
|
||
}
|
||
return plus_constant (Pmode, reg, offset);
|
||
}
|
||
|
||
/* The __tls_get_attr symbol. */
|
||
static GTY(()) rtx riscv_tls_symbol;
|
||
|
||
/* Return an instruction sequence that calls __tls_get_addr. SYM is
|
||
the TLS symbol we are referencing and TYPE is the symbol type to use
|
||
(either global dynamic or local dynamic). RESULT is an RTX for the
|
||
return value location. */
|
||
|
||
static rtx
|
||
riscv_call_tls_get_addr (rtx sym, rtx result)
|
||
{
|
||
rtx insn, a0 = gen_rtx_REG (Pmode, GP_ARG_FIRST);
|
||
|
||
if (!riscv_tls_symbol)
|
||
riscv_tls_symbol = init_one_libfunc ("__tls_get_addr");
|
||
|
||
start_sequence ();
|
||
|
||
emit_insn (riscv_got_load_tls_gd (a0, sym));
|
||
insn = riscv_expand_call (false, result, riscv_tls_symbol, const0_rtx);
|
||
RTL_CONST_CALL_P (insn) = 1;
|
||
use_reg (&CALL_INSN_FUNCTION_USAGE (insn), a0);
|
||
insn = get_insns ();
|
||
|
||
end_sequence ();
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Generate the code to access LOC, a thread-local SYMBOL_REF, and return
|
||
its address. The return value will be both a valid address and a valid
|
||
SET_SRC (either a REG or a LO_SUM). */
|
||
|
||
static rtx
|
||
riscv_legitimize_tls_address (rtx loc)
|
||
{
|
||
rtx dest, insn, tp, tmp1;
|
||
enum tls_model model = SYMBOL_REF_TLS_MODEL (loc);
|
||
|
||
/* Since we support TLS copy relocs, non-PIC TLS accesses may all use LE. */
|
||
if (!flag_pic)
|
||
model = TLS_MODEL_LOCAL_EXEC;
|
||
|
||
switch (model)
|
||
{
|
||
case TLS_MODEL_LOCAL_DYNAMIC:
|
||
/* Rely on section anchors for the optimization that LDM TLS
|
||
provides. The anchor's address is loaded with GD TLS. */
|
||
case TLS_MODEL_GLOBAL_DYNAMIC:
|
||
tmp1 = gen_rtx_REG (Pmode, GP_RETURN);
|
||
insn = riscv_call_tls_get_addr (loc, tmp1);
|
||
dest = gen_reg_rtx (Pmode);
|
||
emit_libcall_block (insn, dest, tmp1, loc);
|
||
break;
|
||
|
||
case TLS_MODEL_INITIAL_EXEC:
|
||
/* la.tls.ie; tp-relative add */
|
||
tp = gen_rtx_REG (Pmode, THREAD_POINTER_REGNUM);
|
||
tmp1 = gen_reg_rtx (Pmode);
|
||
emit_insn (riscv_got_load_tls_ie (tmp1, loc));
|
||
dest = gen_reg_rtx (Pmode);
|
||
emit_insn (gen_add3_insn (dest, tmp1, tp));
|
||
break;
|
||
|
||
case TLS_MODEL_LOCAL_EXEC:
|
||
tmp1 = riscv_unspec_offset_high (NULL, loc, SYMBOL_TLS_LE);
|
||
dest = gen_reg_rtx (Pmode);
|
||
emit_insn (riscv_tls_add_tp_le (dest, tmp1, loc));
|
||
dest = gen_rtx_LO_SUM (Pmode, dest,
|
||
riscv_unspec_address (loc, SYMBOL_TLS_LE));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
return dest;
|
||
}
|
||
|
||
/* If X is not a valid address for mode MODE, force it into a register. */
|
||
|
||
static rtx
|
||
riscv_force_address (rtx x, enum machine_mode mode)
|
||
{
|
||
if (!riscv_legitimate_address_p (mode, x, false))
|
||
x = force_reg (Pmode, x);
|
||
return x;
|
||
}
|
||
|
||
/* This function is used to implement LEGITIMIZE_ADDRESS. If X can
|
||
be legitimized in a way that the generic machinery might not expect,
|
||
return a new address, otherwise return NULL. MODE is the mode of
|
||
the memory being accessed. */
|
||
|
||
static rtx
|
||
riscv_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
|
||
enum machine_mode mode)
|
||
{
|
||
rtx addr;
|
||
|
||
if (riscv_tls_symbol_p (x))
|
||
return riscv_legitimize_tls_address (x);
|
||
|
||
/* See if the address can split into a high part and a LO_SUM. */
|
||
if (riscv_split_symbol (NULL, x, mode, &addr))
|
||
return riscv_force_address (addr, mode);
|
||
|
||
/* Handle BASE + OFFSET using riscv_add_offset. */
|
||
if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) != 0)
|
||
{
|
||
rtx base = XEXP (x, 0);
|
||
HOST_WIDE_INT offset = INTVAL (XEXP (x, 1));
|
||
|
||
if (!riscv_valid_base_register_p (base, mode, false))
|
||
base = copy_to_mode_reg (Pmode, base);
|
||
addr = riscv_add_offset (NULL, base, offset);
|
||
return riscv_force_address (addr, mode);
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Load VALUE into DEST. TEMP is as for riscv_force_temporary. */
|
||
|
||
void
|
||
riscv_move_integer (rtx temp, rtx dest, HOST_WIDE_INT value)
|
||
{
|
||
struct riscv_integer_op codes[RISCV_MAX_INTEGER_OPS];
|
||
enum machine_mode mode;
|
||
int i, num_ops;
|
||
rtx x;
|
||
|
||
mode = GET_MODE (dest);
|
||
num_ops = riscv_build_integer (codes, value, mode);
|
||
|
||
if (can_create_pseudo_p () && num_ops > 2 /* not a simple constant */
|
||
&& num_ops >= riscv_split_integer_cost (value))
|
||
x = riscv_split_integer (value, mode);
|
||
else
|
||
{
|
||
/* Apply each binary operation to X. */
|
||
x = GEN_INT (codes[0].value);
|
||
|
||
for (i = 1; i < num_ops; i++)
|
||
{
|
||
if (!can_create_pseudo_p ())
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, temp, x));
|
||
x = temp;
|
||
}
|
||
else
|
||
x = force_reg (mode, x);
|
||
|
||
x = gen_rtx_fmt_ee (codes[i].code, mode, x, GEN_INT (codes[i].value));
|
||
}
|
||
}
|
||
|
||
emit_insn (gen_rtx_SET (VOIDmode, dest, x));
|
||
}
|
||
|
||
/* Subroutine of riscv_legitimize_move. Move constant SRC into register
|
||
DEST given that SRC satisfies immediate_operand but doesn't satisfy
|
||
move_operand. */
|
||
|
||
static void
|
||
riscv_legitimize_const_move (enum machine_mode mode, rtx dest, rtx src)
|
||
{
|
||
rtx base, offset;
|
||
|
||
/* Split moves of big integers into smaller pieces. */
|
||
if (splittable_const_int_operand (src, mode))
|
||
{
|
||
riscv_move_integer (dest, dest, INTVAL (src));
|
||
return;
|
||
}
|
||
|
||
/* Split moves of symbolic constants into high/low pairs. */
|
||
if (riscv_split_symbol (dest, src, MAX_MACHINE_MODE, &src))
|
||
{
|
||
emit_insn (gen_rtx_SET (VOIDmode, dest, src));
|
||
return;
|
||
}
|
||
|
||
/* Generate the appropriate access sequences for TLS symbols. */
|
||
if (riscv_tls_symbol_p (src))
|
||
{
|
||
riscv_emit_move (dest, riscv_legitimize_tls_address (src));
|
||
return;
|
||
}
|
||
|
||
/* If we have (const (plus symbol offset)), and that expression cannot
|
||
be forced into memory, load the symbol first and add in the offset. Also
|
||
prefer to do this even if the constant _can_ be forced into memory, as it
|
||
usually produces better code. */
|
||
split_const (src, &base, &offset);
|
||
if (offset != const0_rtx
|
||
&& (targetm.cannot_force_const_mem (mode, src) || can_create_pseudo_p ()))
|
||
{
|
||
base = riscv_force_temporary (dest, base);
|
||
riscv_emit_move (dest, riscv_add_offset (NULL, base, INTVAL (offset)));
|
||
return;
|
||
}
|
||
|
||
src = force_const_mem (mode, src);
|
||
|
||
/* When using explicit relocs, constant pool references are sometimes
|
||
not legitimate addresses. */
|
||
riscv_split_symbol (dest, XEXP (src, 0), mode, &XEXP (src, 0));
|
||
riscv_emit_move (dest, src);
|
||
}
|
||
|
||
/* If (set DEST SRC) is not a valid move instruction, emit an equivalent
|
||
sequence that is valid. */
|
||
|
||
bool
|
||
riscv_legitimize_move (enum machine_mode mode, rtx dest, rtx src)
|
||
{
|
||
if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode))
|
||
{
|
||
riscv_emit_move (dest, force_reg (mode, src));
|
||
return true;
|
||
}
|
||
|
||
/* We need to deal with constants that would be legitimate
|
||
immediate_operands but aren't legitimate move_operands. */
|
||
if (CONSTANT_P (src) && !move_operand (src, mode))
|
||
{
|
||
riscv_legitimize_const_move (mode, dest, src);
|
||
set_unique_reg_note (get_last_insn (), REG_EQUAL, copy_rtx (src));
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if there is an instruction that implements CODE and accepts
|
||
X as an immediate operand. */
|
||
|
||
static int
|
||
riscv_immediate_operand_p (int code, HOST_WIDE_INT x)
|
||
{
|
||
switch (code)
|
||
{
|
||
case ASHIFT:
|
||
case ASHIFTRT:
|
||
case LSHIFTRT:
|
||
/* All shift counts are truncated to a valid constant. */
|
||
return true;
|
||
|
||
case AND:
|
||
case IOR:
|
||
case XOR:
|
||
case PLUS:
|
||
case LT:
|
||
case LTU:
|
||
/* These instructions take 12-bit signed immediates. */
|
||
return SMALL_OPERAND (x);
|
||
|
||
case LE:
|
||
/* We add 1 to the immediate and use SLT. */
|
||
return SMALL_OPERAND (x + 1);
|
||
|
||
case LEU:
|
||
/* Likewise SLTU, but reject the always-true case. */
|
||
return SMALL_OPERAND (x + 1) && x + 1 != 0;
|
||
|
||
case GE:
|
||
case GEU:
|
||
/* We can emulate an immediate of 1 by using GT/GTU against x0. */
|
||
return x == 1;
|
||
|
||
default:
|
||
/* By default assume that x0 can be used for 0. */
|
||
return x == 0;
|
||
}
|
||
}
|
||
|
||
/* Return the cost of binary operation X, given that the instruction
|
||
sequence for a word-sized or smaller operation takes SIGNLE_INSNS
|
||
instructions and that the sequence of a double-word operation takes
|
||
DOUBLE_INSNS instructions. */
|
||
|
||
static int
|
||
riscv_binary_cost (rtx x, int single_insns, int double_insns)
|
||
{
|
||
if (GET_MODE_SIZE (GET_MODE (x)) == UNITS_PER_WORD * 2)
|
||
return COSTS_N_INSNS (double_insns);
|
||
return COSTS_N_INSNS (single_insns);
|
||
}
|
||
|
||
/* Return the cost of sign-extending OP to mode MODE, not including the
|
||
cost of OP itself. */
|
||
|
||
static int
|
||
riscv_sign_extend_cost (enum machine_mode mode, rtx op)
|
||
{
|
||
if (MEM_P (op))
|
||
/* Extended loads are as cheap as unextended ones. */
|
||
return 0;
|
||
|
||
if (TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode)
|
||
/* A sign extension from SImode to DImode in 64-bit mode is free. */
|
||
return 0;
|
||
|
||
/* We need to use a shift left and a shift right. */
|
||
return COSTS_N_INSNS (2);
|
||
}
|
||
|
||
/* Return the cost of zero-extending OP to mode MODE, not including the
|
||
cost of OP itself. */
|
||
|
||
static int
|
||
riscv_zero_extend_cost (enum machine_mode mode, rtx op)
|
||
{
|
||
if (MEM_P (op))
|
||
/* Extended loads are as cheap as unextended ones. */
|
||
return 0;
|
||
|
||
if ((TARGET_64BIT && mode == DImode && GET_MODE (op) == SImode) ||
|
||
((mode == DImode || mode == SImode) && GET_MODE (op) == HImode))
|
||
/* We need a shift left by 32 bits and a shift right by 32 bits. */
|
||
return COSTS_N_INSNS (2);
|
||
|
||
/* We can use ANDI. */
|
||
return COSTS_N_INSNS (1);
|
||
}
|
||
|
||
/* Implement TARGET_RTX_COSTS. */
|
||
|
||
static bool
|
||
riscv_rtx_costs (rtx x, int code, int outer_code, int opno ATTRIBUTE_UNUSED,
|
||
int *total, bool speed)
|
||
{
|
||
enum machine_mode mode = GET_MODE (x);
|
||
bool float_mode_p = FLOAT_MODE_P (mode);
|
||
int cost;
|
||
|
||
switch (code)
|
||
{
|
||
case CONST_INT:
|
||
if (riscv_immediate_operand_p (outer_code, INTVAL (x)))
|
||
{
|
||
*total = 0;
|
||
return true;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
case CONST_DOUBLE:
|
||
case CONST:
|
||
if (speed)
|
||
*total = 1;
|
||
else if ((cost = riscv_const_insns (x)) > 0)
|
||
*total = COSTS_N_INSNS (cost);
|
||
else /* The instruction will be fetched from the constant pool. */
|
||
*total = COSTS_N_INSNS (riscv_symbol_insns (SYMBOL_ABSOLUTE));
|
||
return true;
|
||
|
||
case MEM:
|
||
/* If the address is legitimate, return the number of
|
||
instructions it needs. */
|
||
if ((cost = riscv_address_insns (XEXP (x, 0), mode, true)) > 0)
|
||
{
|
||
*total = COSTS_N_INSNS (cost + tune_info->memory_cost);
|
||
return true;
|
||
}
|
||
/* Otherwise use the default handling. */
|
||
return false;
|
||
|
||
case NOT:
|
||
*total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 2 : 1);
|
||
return false;
|
||
|
||
case AND:
|
||
case IOR:
|
||
case XOR:
|
||
/* Double-word operations use two single-word operations. */
|
||
*total = riscv_binary_cost (x, 1, 2);
|
||
return false;
|
||
|
||
case ASHIFT:
|
||
case ASHIFTRT:
|
||
case LSHIFTRT:
|
||
*total = riscv_binary_cost (x, 1, CONSTANT_P (XEXP (x, 1)) ? 4 : 9);
|
||
return false;
|
||
|
||
case ABS:
|
||
*total = COSTS_N_INSNS (float_mode_p ? 1 : 3);
|
||
return false;
|
||
|
||
case LO_SUM:
|
||
*total = set_src_cost (XEXP (x, 0), speed);
|
||
return true;
|
||
|
||
case LT:
|
||
case LTU:
|
||
case LE:
|
||
case LEU:
|
||
case GT:
|
||
case GTU:
|
||
case GE:
|
||
case GEU:
|
||
case EQ:
|
||
case NE:
|
||
case UNORDERED:
|
||
case LTGT:
|
||
/* Branch comparisons have VOIDmode, so use the first operand's
|
||
mode instead. */
|
||
mode = GET_MODE (XEXP (x, 0));
|
||
if (float_mode_p)
|
||
*total = tune_info->fp_add[mode == DFmode];
|
||
else
|
||
*total = riscv_binary_cost (x, 1, 3);
|
||
return false;
|
||
|
||
case MINUS:
|
||
if (float_mode_p
|
||
&& !HONOR_NANS (mode)
|
||
&& !HONOR_SIGNED_ZEROS (mode))
|
||
{
|
||
/* See if we can use NMADD or NMSUB. See riscv.md for the
|
||
associated patterns. */
|
||
rtx op0 = XEXP (x, 0);
|
||
rtx op1 = XEXP (x, 1);
|
||
if (GET_CODE (op0) == MULT && GET_CODE (XEXP (op0, 0)) == NEG)
|
||
{
|
||
*total = (tune_info->fp_mul[mode == DFmode]
|
||
+ set_src_cost (XEXP (XEXP (op0, 0), 0), speed)
|
||
+ set_src_cost (XEXP (op0, 1), speed)
|
||
+ set_src_cost (op1, speed));
|
||
return true;
|
||
}
|
||
if (GET_CODE (op1) == MULT)
|
||
{
|
||
*total = (tune_info->fp_mul[mode == DFmode]
|
||
+ set_src_cost (op0, speed)
|
||
+ set_src_cost (XEXP (op1, 0), speed)
|
||
+ set_src_cost (XEXP (op1, 1), speed));
|
||
return true;
|
||
}
|
||
}
|
||
/* Fall through. */
|
||
|
||
case PLUS:
|
||
if (float_mode_p)
|
||
*total = tune_info->fp_add[mode == DFmode];
|
||
else
|
||
*total = riscv_binary_cost (x, 1, 4);
|
||
return false;
|
||
|
||
case NEG:
|
||
if (float_mode_p
|
||
&& !HONOR_NANS (mode)
|
||
&& HONOR_SIGNED_ZEROS (mode))
|
||
{
|
||
/* See if we can use NMADD or NMSUB. See riscv.md for the
|
||
associated patterns. */
|
||
rtx op = XEXP (x, 0);
|
||
if ((GET_CODE (op) == PLUS || GET_CODE (op) == MINUS)
|
||
&& GET_CODE (XEXP (op, 0)) == MULT)
|
||
{
|
||
*total = (tune_info->fp_mul[mode == DFmode]
|
||
+ set_src_cost (XEXP (XEXP (op, 0), 0), speed)
|
||
+ set_src_cost (XEXP (XEXP (op, 0), 1), speed)
|
||
+ set_src_cost (XEXP (op, 1), speed));
|
||
return true;
|
||
}
|
||
}
|
||
|
||
if (float_mode_p)
|
||
*total = tune_info->fp_add[mode == DFmode];
|
||
else
|
||
*total = COSTS_N_INSNS (GET_MODE_SIZE (mode) > UNITS_PER_WORD ? 4 : 1);
|
||
return false;
|
||
|
||
case MULT:
|
||
if (float_mode_p)
|
||
*total = tune_info->fp_mul[mode == DFmode];
|
||
else if (GET_MODE_SIZE (mode) > UNITS_PER_WORD)
|
||
*total = 3 * tune_info->int_mul[0] + COSTS_N_INSNS (2);
|
||
else if (!speed)
|
||
*total = COSTS_N_INSNS (1);
|
||
else
|
||
*total = tune_info->int_mul[mode == DImode];
|
||
return false;
|
||
|
||
case DIV:
|
||
case SQRT:
|
||
case MOD:
|
||
if (float_mode_p)
|
||
{
|
||
*total = tune_info->fp_div[mode == DFmode];
|
||
return false;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case UDIV:
|
||
case UMOD:
|
||
if (speed)
|
||
*total = tune_info->int_div[mode == DImode];
|
||
else
|
||
*total = COSTS_N_INSNS (1);
|
||
return false;
|
||
|
||
case SIGN_EXTEND:
|
||
*total = riscv_sign_extend_cost (mode, XEXP (x, 0));
|
||
return false;
|
||
|
||
case ZERO_EXTEND:
|
||
*total = riscv_zero_extend_cost (mode, XEXP (x, 0));
|
||
return false;
|
||
|
||
case FLOAT:
|
||
case UNSIGNED_FLOAT:
|
||
case FIX:
|
||
case FLOAT_EXTEND:
|
||
case FLOAT_TRUNCATE:
|
||
*total = tune_info->fp_add[mode == DFmode];
|
||
return false;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Implement TARGET_ADDRESS_COST. */
|
||
|
||
static int
|
||
riscv_address_cost (rtx addr, enum machine_mode mode,
|
||
addr_space_t as ATTRIBUTE_UNUSED,
|
||
bool speed ATTRIBUTE_UNUSED)
|
||
{
|
||
return riscv_address_insns (addr, mode, false);
|
||
}
|
||
|
||
/* Return one word of double-word value OP. HIGH_P is true to select the
|
||
high part or false to select the low part. */
|
||
|
||
rtx
|
||
riscv_subword (rtx op, bool high_p)
|
||
{
|
||
unsigned int byte;
|
||
enum machine_mode mode;
|
||
|
||
mode = GET_MODE (op);
|
||
if (mode == VOIDmode)
|
||
mode = TARGET_64BIT ? TImode : DImode;
|
||
|
||
byte = high_p ? UNITS_PER_WORD : 0;
|
||
|
||
if (FP_REG_RTX_P (op))
|
||
return gen_rtx_REG (word_mode, REGNO (op) + high_p);
|
||
|
||
if (MEM_P (op))
|
||
return adjust_address (op, word_mode, byte);
|
||
|
||
return simplify_gen_subreg (word_mode, op, mode, byte);
|
||
}
|
||
|
||
/* Return true if a 64-bit move from SRC to DEST should be split into two. */
|
||
|
||
bool
|
||
riscv_split_64bit_move_p (rtx dest, rtx src)
|
||
{
|
||
/* All 64b moves are legal in 64b mode. All 64b FPR <-> FPR and
|
||
FPR <-> MEM moves are legal in 32b mode, too. Although
|
||
FPR <-> GPR moves are not available in general in 32b mode,
|
||
we can at least load 0 into an FPR with fcvt.d.w fpr, x0. */
|
||
return !(TARGET_64BIT
|
||
|| (FP_REG_RTX_P (src) && FP_REG_RTX_P (dest))
|
||
|| (FP_REG_RTX_P (dest) && MEM_P (src))
|
||
|| (FP_REG_RTX_P (src) && MEM_P (dest))
|
||
|| (FP_REG_RTX_P(dest) && src == CONST0_RTX(GET_MODE(src))));
|
||
}
|
||
|
||
/* Split a doubleword move from SRC to DEST. On 32-bit targets,
|
||
this function handles 64-bit moves for which riscv_split_64bit_move_p
|
||
holds. For 64-bit targets, this function handles 128-bit moves. */
|
||
|
||
void
|
||
riscv_split_doubleword_move (rtx dest, rtx src)
|
||
{
|
||
rtx low_dest;
|
||
|
||
/* The operation can be split into two normal moves. Decide in
|
||
which order to do them. */
|
||
low_dest = riscv_subword (dest, false);
|
||
if (REG_P (low_dest) && reg_overlap_mentioned_p (low_dest, src))
|
||
{
|
||
riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true));
|
||
riscv_emit_move (low_dest, riscv_subword (src, false));
|
||
}
|
||
else
|
||
{
|
||
riscv_emit_move (low_dest, riscv_subword (src, false));
|
||
riscv_emit_move (riscv_subword (dest, true), riscv_subword (src, true));
|
||
}
|
||
}
|
||
|
||
/* Return the appropriate instructions to move SRC into DEST. Assume
|
||
that SRC is operand 1 and DEST is operand 0. */
|
||
|
||
const char *
|
||
riscv_output_move (rtx dest, rtx src)
|
||
{
|
||
enum rtx_code dest_code, src_code;
|
||
enum machine_mode mode;
|
||
bool dbl_p;
|
||
|
||
dest_code = GET_CODE (dest);
|
||
src_code = GET_CODE (src);
|
||
mode = GET_MODE (dest);
|
||
dbl_p = (GET_MODE_SIZE (mode) == 8);
|
||
|
||
if (dbl_p && riscv_split_64bit_move_p (dest, src))
|
||
return "#";
|
||
|
||
if ((src_code == REG && GP_REG_P (REGNO (src)))
|
||
|| (src == CONST0_RTX (mode)))
|
||
{
|
||
if (dest_code == REG)
|
||
{
|
||
if (GP_REG_P (REGNO (dest)))
|
||
return "mv\t%0,%z1";
|
||
|
||
if (FP_REG_P (REGNO (dest)))
|
||
{
|
||
if (!dbl_p)
|
||
return "fmv.s.x\t%0,%z1";
|
||
if (TARGET_64BIT)
|
||
return "fmv.d.x\t%0,%z1";
|
||
/* in RV32, we can emulate fmv.d.x %0, x0 using fcvt.d.w */
|
||
gcc_assert (src == CONST0_RTX (mode));
|
||
return "fcvt.d.w\t%0,x0";
|
||
}
|
||
}
|
||
if (dest_code == MEM)
|
||
switch (GET_MODE_SIZE (mode))
|
||
{
|
||
case 1: return "sb\t%z1,%0";
|
||
case 2: return "sh\t%z1,%0";
|
||
case 4: return "sw\t%z1,%0";
|
||
case 8: return "sd\t%z1,%0";
|
||
}
|
||
}
|
||
if (dest_code == REG && GP_REG_P (REGNO (dest)))
|
||
{
|
||
if (src_code == REG)
|
||
{
|
||
if (FP_REG_P (REGNO (src)))
|
||
return dbl_p ? "fmv.x.d\t%0,%1" : "fmv.x.s\t%0,%1";
|
||
}
|
||
|
||
if (src_code == MEM)
|
||
switch (GET_MODE_SIZE (mode))
|
||
{
|
||
case 1: return "lbu\t%0,%1";
|
||
case 2: return "lhu\t%0,%1";
|
||
case 4: return "lw\t%0,%1";
|
||
case 8: return "ld\t%0,%1";
|
||
}
|
||
|
||
if (src_code == CONST_INT)
|
||
return "li\t%0,%1";
|
||
|
||
if (src_code == HIGH)
|
||
return "lui\t%0,%h1";
|
||
|
||
if (symbolic_operand (src, VOIDmode))
|
||
switch (riscv_classify_symbolic_expression (src))
|
||
{
|
||
case SYMBOL_GOT_DISP: return "la\t%0,%1";
|
||
case SYMBOL_ABSOLUTE: return "lla\t%0,%1";
|
||
default: gcc_unreachable();
|
||
}
|
||
}
|
||
if (src_code == REG && FP_REG_P (REGNO (src)))
|
||
{
|
||
if (dest_code == REG && FP_REG_P (REGNO (dest)))
|
||
return dbl_p ? "fmv.d\t%0,%1" : "fmv.s\t%0,%1";
|
||
|
||
if (dest_code == MEM)
|
||
return dbl_p ? "fsd\t%1,%0" : "fsw\t%1,%0";
|
||
}
|
||
if (dest_code == REG && FP_REG_P (REGNO (dest)))
|
||
{
|
||
if (src_code == MEM)
|
||
return dbl_p ? "fld\t%0,%1" : "flw\t%0,%1";
|
||
}
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Return true if CMP1 is a suitable second operand for integer ordering
|
||
test CODE. See also the *sCC patterns in riscv.md. */
|
||
|
||
static bool
|
||
riscv_int_order_operand_ok_p (enum rtx_code code, rtx cmp1)
|
||
{
|
||
switch (code)
|
||
{
|
||
case GT:
|
||
case GTU:
|
||
return reg_or_0_operand (cmp1, VOIDmode);
|
||
|
||
case GE:
|
||
case GEU:
|
||
return cmp1 == const1_rtx;
|
||
|
||
case LT:
|
||
case LTU:
|
||
return arith_operand (cmp1, VOIDmode);
|
||
|
||
case LE:
|
||
return sle_operand (cmp1, VOIDmode);
|
||
|
||
case LEU:
|
||
return sleu_operand (cmp1, VOIDmode);
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Return true if *CMP1 (of mode MODE) is a valid second operand for
|
||
integer ordering test *CODE, or if an equivalent combination can
|
||
be formed by adjusting *CODE and *CMP1. When returning true, update
|
||
*CODE and *CMP1 with the chosen code and operand, otherwise leave
|
||
them alone. */
|
||
|
||
static bool
|
||
riscv_canonicalize_int_order_test (enum rtx_code *code, rtx *cmp1,
|
||
enum machine_mode mode)
|
||
{
|
||
HOST_WIDE_INT plus_one;
|
||
|
||
if (riscv_int_order_operand_ok_p (*code, *cmp1))
|
||
return true;
|
||
|
||
if (CONST_INT_P (*cmp1))
|
||
switch (*code)
|
||
{
|
||
case LE:
|
||
plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
|
||
if (INTVAL (*cmp1) < plus_one)
|
||
{
|
||
*code = LT;
|
||
*cmp1 = force_reg (mode, GEN_INT (plus_one));
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
case LEU:
|
||
plus_one = trunc_int_for_mode (UINTVAL (*cmp1) + 1, mode);
|
||
if (plus_one != 0)
|
||
{
|
||
*code = LTU;
|
||
*cmp1 = force_reg (mode, GEN_INT (plus_one));
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Compare CMP0 and CMP1 using ordering test CODE and store the result
|
||
in TARGET. CMP0 and TARGET are register_operands. If INVERT_PTR
|
||
is nonnull, it's OK to set TARGET to the inverse of the result and
|
||
flip *INVERT_PTR instead. */
|
||
|
||
static void
|
||
riscv_emit_int_order_test (enum rtx_code code, bool *invert_ptr,
|
||
rtx target, rtx cmp0, rtx cmp1)
|
||
{
|
||
enum machine_mode mode;
|
||
|
||
/* First see if there is a RISCV instruction that can do this operation.
|
||
If not, try doing the same for the inverse operation. If that also
|
||
fails, force CMP1 into a register and try again. */
|
||
mode = GET_MODE (cmp0);
|
||
if (riscv_canonicalize_int_order_test (&code, &cmp1, mode))
|
||
riscv_emit_binary (code, target, cmp0, cmp1);
|
||
else
|
||
{
|
||
enum rtx_code inv_code = reverse_condition (code);
|
||
if (!riscv_canonicalize_int_order_test (&inv_code, &cmp1, mode))
|
||
{
|
||
cmp1 = force_reg (mode, cmp1);
|
||
riscv_emit_int_order_test (code, invert_ptr, target, cmp0, cmp1);
|
||
}
|
||
else if (invert_ptr == 0)
|
||
{
|
||
rtx inv_target;
|
||
|
||
inv_target = riscv_force_binary (GET_MODE (target),
|
||
inv_code, cmp0, cmp1);
|
||
riscv_emit_binary (XOR, target, inv_target, const1_rtx);
|
||
}
|
||
else
|
||
{
|
||
*invert_ptr = !*invert_ptr;
|
||
riscv_emit_binary (inv_code, target, cmp0, cmp1);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return a register that is zero iff CMP0 and CMP1 are equal.
|
||
The register will have the same mode as CMP0. */
|
||
|
||
static rtx
|
||
riscv_zero_if_equal (rtx cmp0, rtx cmp1)
|
||
{
|
||
if (cmp1 == const0_rtx)
|
||
return cmp0;
|
||
|
||
return expand_binop (GET_MODE (cmp0), sub_optab,
|
||
cmp0, cmp1, 0, 0, OPTAB_DIRECT);
|
||
}
|
||
|
||
/* Return false if we can easily emit code for the FP comparison specified
|
||
by *CODE. If not, set *CODE to its inverse and return true. */
|
||
|
||
static bool
|
||
riscv_reversed_fp_cond (enum rtx_code *code)
|
||
{
|
||
switch (*code)
|
||
{
|
||
case EQ:
|
||
case LT:
|
||
case LE:
|
||
case GT:
|
||
case GE:
|
||
case LTGT:
|
||
case ORDERED:
|
||
/* We know how to emit code for these cases... */
|
||
return false;
|
||
|
||
default:
|
||
/* ...but we must invert these and rely on the others. */
|
||
*code = reverse_condition_maybe_unordered (*code);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
/* Convert a comparison into something that can be used in a branch or
|
||
conditional move. On entry, *OP0 and *OP1 are the values being
|
||
compared and *CODE is the code used to compare them.
|
||
|
||
Update *CODE, *OP0 and *OP1 so that they describe the final comparison. */
|
||
|
||
static void
|
||
riscv_emit_compare (enum rtx_code *code, rtx *op0, rtx *op1)
|
||
{
|
||
rtx cmp_op0 = *op0;
|
||
rtx cmp_op1 = *op1;
|
||
|
||
if (GET_MODE_CLASS (GET_MODE (*op0)) == MODE_INT)
|
||
{
|
||
if (splittable_const_int_operand (cmp_op1, VOIDmode))
|
||
{
|
||
HOST_WIDE_INT rhs = INTVAL (cmp_op1), new_rhs;
|
||
enum rtx_code new_code;
|
||
|
||
switch (*code)
|
||
{
|
||
case LTU: new_rhs = rhs - 1; new_code = LEU; goto try_new_rhs;
|
||
case LEU: new_rhs = rhs + 1; new_code = LTU; goto try_new_rhs;
|
||
case GTU: new_rhs = rhs + 1; new_code = GEU; goto try_new_rhs;
|
||
case GEU: new_rhs = rhs - 1; new_code = GTU; goto try_new_rhs;
|
||
case LT: new_rhs = rhs - 1; new_code = LE; goto try_new_rhs;
|
||
case LE: new_rhs = rhs + 1; new_code = LT; goto try_new_rhs;
|
||
case GT: new_rhs = rhs + 1; new_code = GE; goto try_new_rhs;
|
||
case GE: new_rhs = rhs - 1; new_code = GT;
|
||
try_new_rhs:
|
||
/* Convert e.g. OP0 > 4095 into OP0 >= 4096. */
|
||
if ((rhs < 0) == (new_rhs < 0)
|
||
&& riscv_integer_cost (new_rhs) < riscv_integer_cost (rhs))
|
||
{
|
||
*op1 = GEN_INT (new_rhs);
|
||
*code = new_code;
|
||
}
|
||
break;
|
||
|
||
case EQ:
|
||
case NE:
|
||
/* Convert e.g. OP0 == 2048 into OP0 - 2048 == 0. */
|
||
if (SMALL_OPERAND (-rhs))
|
||
{
|
||
*op0 = gen_reg_rtx (GET_MODE (cmp_op0));
|
||
riscv_emit_binary (PLUS, *op0, cmp_op0, GEN_INT (-rhs));
|
||
*op1 = const0_rtx;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (*op1 != const0_rtx)
|
||
*op1 = force_reg (GET_MODE (cmp_op0), *op1);
|
||
}
|
||
else
|
||
{
|
||
/* For FP comparisons, set an integer register with the result of the
|
||
comparison, then branch on it. */
|
||
rtx tmp0, tmp1, final_op;
|
||
enum rtx_code fp_code = *code;
|
||
*code = riscv_reversed_fp_cond (&fp_code) ? EQ : NE;
|
||
|
||
switch (fp_code)
|
||
{
|
||
case ORDERED:
|
||
/* a == a && b == b */
|
||
tmp0 = gen_reg_rtx (SImode);
|
||
riscv_emit_binary (EQ, tmp0, cmp_op0, cmp_op0);
|
||
tmp1 = gen_reg_rtx (SImode);
|
||
riscv_emit_binary (EQ, tmp1, cmp_op1, cmp_op1);
|
||
final_op = gen_reg_rtx (SImode);
|
||
riscv_emit_binary (AND, final_op, tmp0, tmp1);
|
||
break;
|
||
|
||
case LTGT:
|
||
/* a < b || a > b */
|
||
tmp0 = gen_reg_rtx (SImode);
|
||
riscv_emit_binary (LT, tmp0, cmp_op0, cmp_op1);
|
||
tmp1 = gen_reg_rtx (SImode);
|
||
riscv_emit_binary (GT, tmp1, cmp_op0, cmp_op1);
|
||
final_op = gen_reg_rtx (SImode);
|
||
riscv_emit_binary (IOR, final_op, tmp0, tmp1);
|
||
break;
|
||
|
||
case EQ:
|
||
case LE:
|
||
case LT:
|
||
case GE:
|
||
case GT:
|
||
/* We have instructions for these cases. */
|
||
final_op = gen_reg_rtx (SImode);
|
||
riscv_emit_binary (fp_code, final_op, cmp_op0, cmp_op1);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Compare the binary result against 0. */
|
||
*op0 = final_op;
|
||
*op1 = const0_rtx;
|
||
}
|
||
}
|
||
|
||
/* Try performing the comparison in OPERANDS[1], whose arms are OPERANDS[2]
|
||
and OPERAND[3]. Store the result in OPERANDS[0].
|
||
|
||
On 64-bit targets, the mode of the comparison and target will always be
|
||
SImode, thus possibly narrower than that of the comparison's operands. */
|
||
|
||
void
|
||
riscv_expand_scc (rtx operands[])
|
||
{
|
||
rtx target = operands[0];
|
||
enum rtx_code code = GET_CODE (operands[1]);
|
||
rtx op0 = operands[2];
|
||
rtx op1 = operands[3];
|
||
|
||
gcc_assert (GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT);
|
||
|
||
if (code == EQ || code == NE)
|
||
{
|
||
rtx zie = riscv_zero_if_equal (op0, op1);
|
||
riscv_emit_binary (code, target, zie, const0_rtx);
|
||
}
|
||
else
|
||
riscv_emit_int_order_test (code, 0, target, op0, op1);
|
||
}
|
||
|
||
/* Compare OPERANDS[1] with OPERANDS[2] using comparison code
|
||
CODE and jump to OPERANDS[3] if the condition holds. */
|
||
|
||
void
|
||
riscv_expand_conditional_branch (rtx *operands)
|
||
{
|
||
enum rtx_code code = GET_CODE (operands[0]);
|
||
rtx op0 = operands[1];
|
||
rtx op1 = operands[2];
|
||
rtx condition;
|
||
|
||
riscv_emit_compare (&code, &op0, &op1);
|
||
condition = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
|
||
emit_jump_insn (gen_condjump (condition, operands[3]));
|
||
}
|
||
|
||
/* Implement TARGET_FUNCTION_ARG_BOUNDARY. Every parameter gets at
|
||
least PARM_BOUNDARY bits of alignment, but will be given anything up
|
||
to STACK_BOUNDARY bits if the type requires it. */
|
||
|
||
static unsigned int
|
||
riscv_function_arg_boundary (enum machine_mode mode, const_tree type)
|
||
{
|
||
unsigned int alignment;
|
||
|
||
alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
|
||
if (alignment < PARM_BOUNDARY)
|
||
alignment = PARM_BOUNDARY;
|
||
if (alignment > STACK_BOUNDARY)
|
||
alignment = STACK_BOUNDARY;
|
||
return alignment;
|
||
}
|
||
|
||
/* Fill INFO with information about a single argument. CUM is the
|
||
cumulative state for earlier arguments. MODE is the mode of this
|
||
argument and TYPE is its type (if known). NAMED is true if this
|
||
is a named (fixed) argument rather than a variable one. */
|
||
|
||
static void
|
||
riscv_get_arg_info (struct riscv_arg_info *info, const CUMULATIVE_ARGS *cum,
|
||
enum machine_mode mode, const_tree type, bool named)
|
||
{
|
||
bool doubleword_aligned_p;
|
||
unsigned int num_bytes, num_words, max_regs;
|
||
|
||
/* Work out the size of the argument. */
|
||
num_bytes = type ? int_size_in_bytes (type) : GET_MODE_SIZE (mode);
|
||
num_words = (num_bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
|
||
/* Scalar, complex and vector floating-point types are passed in
|
||
floating-point registers, as long as this is a named rather
|
||
than a variable argument. */
|
||
info->fpr_p = (named
|
||
&& (type == 0 || FLOAT_TYPE_P (type))
|
||
&& (GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
||
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
|
||
&& GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_FPVALUE);
|
||
|
||
/* Complex floats should only go into FPRs if there are two FPRs free,
|
||
otherwise they should be passed in the same way as a struct
|
||
containing two floats. */
|
||
if (info->fpr_p
|
||
&& GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
||
&& GET_MODE_UNIT_SIZE (mode) < UNITS_PER_FPVALUE)
|
||
{
|
||
if (cum->num_gprs >= MAX_ARGS_IN_REGISTERS - 1)
|
||
info->fpr_p = false;
|
||
else
|
||
num_words = 2;
|
||
}
|
||
|
||
/* See whether the argument has doubleword alignment. */
|
||
doubleword_aligned_p = (riscv_function_arg_boundary (mode, type)
|
||
> BITS_PER_WORD);
|
||
|
||
/* Set REG_OFFSET to the register count we're interested in.
|
||
The EABI allocates the floating-point registers separately,
|
||
but the other ABIs allocate them like integer registers. */
|
||
info->reg_offset = cum->num_gprs;
|
||
|
||
/* Advance to an even register if the argument is doubleword-aligned. */
|
||
if (doubleword_aligned_p)
|
||
info->reg_offset += info->reg_offset & 1;
|
||
|
||
/* Work out the offset of a stack argument. */
|
||
info->stack_offset = cum->stack_words;
|
||
if (doubleword_aligned_p)
|
||
info->stack_offset += info->stack_offset & 1;
|
||
|
||
max_regs = MAX_ARGS_IN_REGISTERS - info->reg_offset;
|
||
|
||
/* Partition the argument between registers and stack. */
|
||
info->reg_words = MIN (num_words, max_regs);
|
||
info->stack_words = num_words - info->reg_words;
|
||
}
|
||
|
||
/* INFO describes a register argument that has the normal format for the
|
||
argument's mode. Return the register it uses, assuming that FPRs are
|
||
available if HARD_FLOAT_P. */
|
||
|
||
static unsigned int
|
||
riscv_arg_regno (const struct riscv_arg_info *info, bool hard_float_p)
|
||
{
|
||
if (!info->fpr_p || !hard_float_p)
|
||
return GP_ARG_FIRST + info->reg_offset;
|
||
else
|
||
return FP_ARG_FIRST + info->reg_offset;
|
||
}
|
||
|
||
/* Implement TARGET_FUNCTION_ARG. */
|
||
|
||
static rtx
|
||
riscv_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
|
||
const_tree type, bool named)
|
||
{
|
||
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
||
struct riscv_arg_info info;
|
||
|
||
if (mode == VOIDmode)
|
||
return NULL;
|
||
|
||
riscv_get_arg_info (&info, cum, mode, type, named);
|
||
|
||
/* Return straight away if the whole argument is passed on the stack. */
|
||
if (info.reg_offset == MAX_ARGS_IN_REGISTERS)
|
||
return NULL;
|
||
|
||
/* The n32 and n64 ABIs say that if any 64-bit chunk of the structure
|
||
contains a double in its entirety, then that 64-bit chunk is passed
|
||
in a floating-point register. */
|
||
if (TARGET_HARD_FLOAT
|
||
&& named
|
||
&& type != 0
|
||
&& TREE_CODE (type) == RECORD_TYPE
|
||
&& TYPE_SIZE_UNIT (type)
|
||
&& host_integerp (TYPE_SIZE_UNIT (type), 1))
|
||
//&& tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
|
||
{
|
||
tree field;
|
||
|
||
/* First check to see if there is any such field. */
|
||
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
||
if (TREE_CODE (field) == FIELD_DECL
|
||
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
|
||
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD
|
||
&& host_integerp (bit_position (field), 0)
|
||
//&& tree_fits_shwi_p (bit_position (field))
|
||
&& int_bit_position (field) % BITS_PER_WORD == 0)
|
||
break;
|
||
|
||
if (field != 0)
|
||
{
|
||
/* Now handle the special case by returning a PARALLEL
|
||
indicating where each 64-bit chunk goes. INFO.REG_WORDS
|
||
chunks are passed in registers. */
|
||
unsigned int i;
|
||
HOST_WIDE_INT bitpos;
|
||
rtx ret;
|
||
|
||
/* assign_parms checks the mode of ENTRY_PARM, so we must
|
||
use the actual mode here. */
|
||
ret = gen_rtx_PARALLEL (mode, rtvec_alloc (info.reg_words));
|
||
|
||
bitpos = 0;
|
||
field = TYPE_FIELDS (type);
|
||
for (i = 0; i < info.reg_words; i++)
|
||
{
|
||
rtx reg;
|
||
|
||
for (; field; field = DECL_CHAIN (field))
|
||
if (TREE_CODE (field) == FIELD_DECL
|
||
&& int_bit_position (field) >= bitpos)
|
||
break;
|
||
|
||
if (field
|
||
&& int_bit_position (field) == bitpos
|
||
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (field))
|
||
&& TYPE_PRECISION (TREE_TYPE (field)) == BITS_PER_WORD)
|
||
reg = gen_rtx_REG (DFmode, FP_ARG_FIRST + info.reg_offset + i);
|
||
else
|
||
reg = gen_rtx_REG (DImode, GP_ARG_FIRST + info.reg_offset + i);
|
||
|
||
XVECEXP (ret, 0, i)
|
||
= gen_rtx_EXPR_LIST (VOIDmode, reg,
|
||
GEN_INT (bitpos / BITS_PER_UNIT));
|
||
|
||
bitpos += BITS_PER_WORD;
|
||
}
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
/* Handle the n32/n64 conventions for passing complex floating-point
|
||
arguments in FPR pairs. The real part goes in the lower register
|
||
and the imaginary part goes in the upper register. */
|
||
if (info.fpr_p
|
||
&& GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
||
{
|
||
rtx real, imag;
|
||
enum machine_mode inner;
|
||
unsigned int regno;
|
||
|
||
inner = GET_MODE_INNER (mode);
|
||
regno = FP_ARG_FIRST + info.reg_offset;
|
||
if (info.reg_words * UNITS_PER_WORD == GET_MODE_SIZE (inner))
|
||
{
|
||
/* Real part in registers, imaginary part on stack. */
|
||
gcc_assert (info.stack_words == info.reg_words);
|
||
return gen_rtx_REG (inner, regno);
|
||
}
|
||
else
|
||
{
|
||
gcc_assert (info.stack_words == 0);
|
||
real = gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_REG (inner, regno),
|
||
const0_rtx);
|
||
imag = gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_REG (inner,
|
||
regno + info.reg_words / 2),
|
||
GEN_INT (GET_MODE_SIZE (inner)));
|
||
return gen_rtx_PARALLEL (mode, gen_rtvec (2, real, imag));
|
||
}
|
||
}
|
||
|
||
return gen_rtx_REG (mode, riscv_arg_regno (&info, TARGET_HARD_FLOAT));
|
||
}
|
||
|
||
/* Implement TARGET_FUNCTION_ARG_ADVANCE. */
|
||
|
||
static void
|
||
riscv_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
|
||
const_tree type, bool named)
|
||
{
|
||
CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
|
||
struct riscv_arg_info info;
|
||
|
||
riscv_get_arg_info (&info, cum, mode, type, named);
|
||
|
||
/* Advance the register count. This has the effect of setting
|
||
num_gprs to MAX_ARGS_IN_REGISTERS if a doubleword-aligned
|
||
argument required us to skip the final GPR and pass the whole
|
||
argument on the stack. */
|
||
cum->num_gprs = info.reg_offset + info.reg_words;
|
||
|
||
/* Advance the stack word count. */
|
||
if (info.stack_words > 0)
|
||
cum->stack_words = info.stack_offset + info.stack_words;
|
||
}
|
||
|
||
/* Implement TARGET_ARG_PARTIAL_BYTES. */
|
||
|
||
static int
|
||
riscv_arg_partial_bytes (cumulative_args_t cum,
|
||
enum machine_mode mode, tree type, bool named)
|
||
{
|
||
struct riscv_arg_info info;
|
||
|
||
riscv_get_arg_info (&info, get_cumulative_args (cum), mode, type, named);
|
||
return info.stack_words > 0 ? info.reg_words * UNITS_PER_WORD : 0;
|
||
}
|
||
|
||
/* See whether VALTYPE is a record whose fields should be returned in
|
||
floating-point registers. If so, return the number of fields and
|
||
list them in FIELDS (which should have two elements). Return 0
|
||
otherwise.
|
||
|
||
For n32 & n64, a structure with one or two fields is returned in
|
||
floating-point registers as long as every field has a floating-point
|
||
type. */
|
||
|
||
static int
|
||
riscv_fpr_return_fields (const_tree valtype, tree *fields)
|
||
{
|
||
tree field;
|
||
int i;
|
||
|
||
if (TREE_CODE (valtype) != RECORD_TYPE)
|
||
return 0;
|
||
|
||
i = 0;
|
||
for (field = TYPE_FIELDS (valtype); field != 0; field = DECL_CHAIN (field))
|
||
{
|
||
if (TREE_CODE (field) != FIELD_DECL)
|
||
continue;
|
||
|
||
if (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (field)))
|
||
return 0;
|
||
|
||
if (i == 2)
|
||
return 0;
|
||
|
||
fields[i++] = field;
|
||
}
|
||
return i;
|
||
}
|
||
|
||
/* Return true if the function return value MODE will get returned in a
|
||
floating-point register. */
|
||
|
||
static bool
|
||
riscv_return_mode_in_fpr_p (enum machine_mode mode)
|
||
{
|
||
return ((GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
|| GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
|
||
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
||
&& GET_MODE_UNIT_SIZE (mode) <= UNITS_PER_HWFPVALUE);
|
||
}
|
||
|
||
/* Return the representation of an FPR return register when the
|
||
value being returned in FP_RETURN has mode VALUE_MODE and the
|
||
return type itself has mode TYPE_MODE. On NewABI targets,
|
||
the two modes may be different for structures like:
|
||
|
||
struct __attribute__((packed)) foo { float f; }
|
||
|
||
where we return the SFmode value of "f" in FP_RETURN, but where
|
||
the structure itself has mode BLKmode. */
|
||
|
||
static rtx
|
||
riscv_return_fpr_single (enum machine_mode type_mode,
|
||
enum machine_mode value_mode)
|
||
{
|
||
rtx x;
|
||
|
||
x = gen_rtx_REG (value_mode, FP_RETURN);
|
||
if (type_mode != value_mode)
|
||
{
|
||
x = gen_rtx_EXPR_LIST (VOIDmode, x, const0_rtx);
|
||
x = gen_rtx_PARALLEL (type_mode, gen_rtvec (1, x));
|
||
}
|
||
return x;
|
||
}
|
||
|
||
/* Return a composite value in a pair of floating-point registers.
|
||
MODE1 and OFFSET1 are the mode and byte offset for the first value,
|
||
likewise MODE2 and OFFSET2 for the second. MODE is the mode of the
|
||
complete value.
|
||
|
||
For n32 & n64, $f0 always holds the first value and $f2 the second.
|
||
Otherwise the values are packed together as closely as possible. */
|
||
|
||
static rtx
|
||
riscv_return_fpr_pair (enum machine_mode mode,
|
||
enum machine_mode mode1, HOST_WIDE_INT offset1,
|
||
enum machine_mode mode2, HOST_WIDE_INT offset2)
|
||
{
|
||
return gen_rtx_PARALLEL
|
||
(mode,
|
||
gen_rtvec (2,
|
||
gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_REG (mode1, FP_RETURN),
|
||
GEN_INT (offset1)),
|
||
gen_rtx_EXPR_LIST (VOIDmode,
|
||
gen_rtx_REG (mode2, FP_RETURN + 1),
|
||
GEN_INT (offset2))));
|
||
|
||
}
|
||
|
||
/* Implement FUNCTION_VALUE and LIBCALL_VALUE. For normal calls,
|
||
VALTYPE is the return type and MODE is VOIDmode. For libcalls,
|
||
VALTYPE is null and MODE is the mode of the return value. */
|
||
|
||
rtx
|
||
riscv_function_value (const_tree valtype, const_tree func, enum machine_mode mode)
|
||
{
|
||
if (valtype)
|
||
{
|
||
tree fields[2];
|
||
int unsigned_p;
|
||
|
||
mode = TYPE_MODE (valtype);
|
||
unsigned_p = TYPE_UNSIGNED (valtype);
|
||
|
||
/* Since TARGET_PROMOTE_FUNCTION_MODE unconditionally promotes,
|
||
return values, promote the mode here too. */
|
||
mode = promote_function_mode (valtype, mode, &unsigned_p, func, 1);
|
||
|
||
/* Handle structures whose fields are returned in $f0/$f2. */
|
||
switch (riscv_fpr_return_fields (valtype, fields))
|
||
{
|
||
case 1:
|
||
return riscv_return_fpr_single (mode,
|
||
TYPE_MODE (TREE_TYPE (fields[0])));
|
||
|
||
case 2:
|
||
return riscv_return_fpr_pair (mode,
|
||
TYPE_MODE (TREE_TYPE (fields[0])),
|
||
int_byte_position (fields[0]),
|
||
TYPE_MODE (TREE_TYPE (fields[1])),
|
||
int_byte_position (fields[1]));
|
||
}
|
||
|
||
/* Only use FPRs for scalar, complex or vector types. */
|
||
if (!FLOAT_TYPE_P (valtype))
|
||
return gen_rtx_REG (mode, GP_RETURN);
|
||
}
|
||
|
||
/* Handle long doubles for n32 & n64. */
|
||
if (mode == TFmode)
|
||
return riscv_return_fpr_pair (mode,
|
||
DImode, 0,
|
||
DImode, GET_MODE_SIZE (mode) / 2);
|
||
|
||
if (riscv_return_mode_in_fpr_p (mode))
|
||
{
|
||
if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
||
return riscv_return_fpr_pair (mode,
|
||
GET_MODE_INNER (mode), 0,
|
||
GET_MODE_INNER (mode),
|
||
GET_MODE_SIZE (mode) / 2);
|
||
else
|
||
return gen_rtx_REG (mode, FP_RETURN);
|
||
}
|
||
|
||
return gen_rtx_REG (mode, GP_RETURN);
|
||
}
|
||
|
||
/* Implement TARGET_RETURN_IN_MEMORY. Scalars and small structures
|
||
that fit in two registers are returned in a0/a1. */
|
||
|
||
static bool
|
||
riscv_return_in_memory (const_tree type, const_tree fndecl ATTRIBUTE_UNUSED)
|
||
{
|
||
return !IN_RANGE (int_size_in_bytes (type), 0, 2 * UNITS_PER_WORD);
|
||
}
|
||
|
||
/* Implement TARGET_PASS_BY_REFERENCE. */
|
||
|
||
static bool
|
||
riscv_pass_by_reference (cumulative_args_t cum ATTRIBUTE_UNUSED,
|
||
enum machine_mode mode, const_tree type,
|
||
bool named ATTRIBUTE_UNUSED)
|
||
{
|
||
if (type && riscv_return_in_memory (type, NULL_TREE))
|
||
return true;
|
||
return targetm.calls.must_pass_in_stack (mode, type);
|
||
}
|
||
|
||
/* Implement TARGET_SETUP_INCOMING_VARARGS. */
|
||
|
||
static void
|
||
riscv_setup_incoming_varargs (cumulative_args_t cum, enum machine_mode mode,
|
||
tree type, int *pretend_size ATTRIBUTE_UNUSED,
|
||
int no_rtl)
|
||
{
|
||
CUMULATIVE_ARGS local_cum;
|
||
int gp_saved;
|
||
|
||
/* The caller has advanced CUM up to, but not beyond, the last named
|
||
argument. Advance a local copy of CUM past the last "real" named
|
||
argument, to find out how many registers are left over. */
|
||
local_cum = *get_cumulative_args (cum);
|
||
riscv_function_arg_advance (pack_cumulative_args (&local_cum), mode, type, 1);
|
||
|
||
/* Found out how many registers we need to save. */
|
||
gp_saved = MAX_ARGS_IN_REGISTERS - local_cum.num_gprs;
|
||
|
||
if (!no_rtl && gp_saved > 0)
|
||
{
|
||
rtx ptr, mem;
|
||
|
||
ptr = plus_constant (Pmode, virtual_incoming_args_rtx,
|
||
REG_PARM_STACK_SPACE (cfun->decl)
|
||
- gp_saved * UNITS_PER_WORD);
|
||
mem = gen_frame_mem (BLKmode, ptr);
|
||
set_mem_alias_set (mem, get_varargs_alias_set ());
|
||
|
||
move_block_from_reg (local_cum.num_gprs + GP_ARG_FIRST,
|
||
mem, gp_saved);
|
||
}
|
||
if (REG_PARM_STACK_SPACE (cfun->decl) == 0)
|
||
cfun->machine->varargs_size = gp_saved * UNITS_PER_WORD;
|
||
}
|
||
|
||
/* Implement TARGET_EXPAND_BUILTIN_VA_START. */
|
||
|
||
static void
|
||
riscv_va_start (tree valist, rtx nextarg)
|
||
{
|
||
nextarg = plus_constant (Pmode, nextarg, -cfun->machine->varargs_size);
|
||
std_expand_builtin_va_start (valist, nextarg);
|
||
}
|
||
|
||
/* Expand a call of type TYPE. RESULT is where the result will go (null
|
||
for "call"s and "sibcall"s), ADDR is the address of the function,
|
||
ARGS_SIZE is the size of the arguments and AUX is the value passed
|
||
to us by riscv_function_arg. Return the call itself. */
|
||
|
||
rtx
|
||
riscv_expand_call (bool sibcall_p, rtx result, rtx addr, rtx args_size)
|
||
{
|
||
rtx pattern;
|
||
|
||
if (!call_insn_operand (addr, VOIDmode))
|
||
{
|
||
rtx reg = RISCV_EPILOGUE_TEMP (Pmode);
|
||
riscv_emit_move (reg, addr);
|
||
addr = reg;
|
||
}
|
||
|
||
if (result == 0)
|
||
{
|
||
rtx (*fn) (rtx, rtx);
|
||
|
||
if (sibcall_p)
|
||
fn = gen_sibcall_internal;
|
||
else
|
||
fn = gen_call_internal;
|
||
|
||
pattern = fn (addr, args_size);
|
||
}
|
||
else if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 2)
|
||
{
|
||
/* Handle return values created by riscv_return_fpr_pair. */
|
||
rtx (*fn) (rtx, rtx, rtx, rtx);
|
||
rtx reg1, reg2;
|
||
|
||
if (sibcall_p)
|
||
fn = gen_sibcall_value_multiple_internal;
|
||
else
|
||
fn = gen_call_value_multiple_internal;
|
||
|
||
reg1 = XEXP (XVECEXP (result, 0, 0), 0);
|
||
reg2 = XEXP (XVECEXP (result, 0, 1), 0);
|
||
pattern = fn (reg1, addr, args_size, reg2);
|
||
}
|
||
else
|
||
{
|
||
rtx (*fn) (rtx, rtx, rtx);
|
||
|
||
if (sibcall_p)
|
||
fn = gen_sibcall_value_internal;
|
||
else
|
||
fn = gen_call_value_internal;
|
||
|
||
/* Handle return values created by riscv_return_fpr_single. */
|
||
if (GET_CODE (result) == PARALLEL && XVECLEN (result, 0) == 1)
|
||
result = XEXP (XVECEXP (result, 0, 0), 0);
|
||
pattern = fn (result, addr, args_size);
|
||
}
|
||
|
||
return emit_call_insn (pattern);
|
||
}
|
||
|
||
/* Emit straight-line code to move LENGTH bytes from SRC to DEST.
|
||
Assume that the areas do not overlap. */
|
||
|
||
static void
|
||
riscv_block_move_straight (rtx dest, rtx src, HOST_WIDE_INT length)
|
||
{
|
||
HOST_WIDE_INT offset, delta;
|
||
unsigned HOST_WIDE_INT bits;
|
||
int i;
|
||
enum machine_mode mode;
|
||
rtx *regs;
|
||
|
||
bits = MAX( BITS_PER_UNIT,
|
||
MIN( BITS_PER_WORD, MIN( MEM_ALIGN(src),MEM_ALIGN(dest) ) ) );
|
||
|
||
mode = mode_for_size (bits, MODE_INT, 0);
|
||
delta = bits / BITS_PER_UNIT;
|
||
|
||
/* Allocate a buffer for the temporary registers. */
|
||
regs = XALLOCAVEC (rtx, length / delta);
|
||
|
||
/* Load as many BITS-sized chunks as possible. Use a normal load if
|
||
the source has enough alignment, otherwise use left/right pairs. */
|
||
for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
|
||
{
|
||
regs[i] = gen_reg_rtx (mode);
|
||
riscv_emit_move (regs[i], adjust_address (src, mode, offset));
|
||
}
|
||
|
||
/* Copy the chunks to the destination. */
|
||
for (offset = 0, i = 0; offset + delta <= length; offset += delta, i++)
|
||
riscv_emit_move (adjust_address (dest, mode, offset), regs[i]);
|
||
|
||
/* Mop up any left-over bytes. */
|
||
if (offset < length)
|
||
{
|
||
src = adjust_address (src, BLKmode, offset);
|
||
dest = adjust_address (dest, BLKmode, offset);
|
||
move_by_pieces (dest, src, length - offset,
|
||
MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), 0);
|
||
}
|
||
}
|
||
|
||
/* Helper function for doing a loop-based block operation on memory
|
||
reference MEM. Each iteration of the loop will operate on LENGTH
|
||
bytes of MEM.
|
||
|
||
Create a new base register for use within the loop and point it to
|
||
the start of MEM. Create a new memory reference that uses this
|
||
register. Store them in *LOOP_REG and *LOOP_MEM respectively. */
|
||
|
||
static void
|
||
riscv_adjust_block_mem (rtx mem, HOST_WIDE_INT length,
|
||
rtx *loop_reg, rtx *loop_mem)
|
||
{
|
||
*loop_reg = copy_addr_to_reg (XEXP (mem, 0));
|
||
|
||
/* Although the new mem does not refer to a known location,
|
||
it does keep up to LENGTH bytes of alignment. */
|
||
*loop_mem = change_address (mem, BLKmode, *loop_reg);
|
||
set_mem_align (*loop_mem, MIN (MEM_ALIGN (mem), length * BITS_PER_UNIT));
|
||
}
|
||
|
||
/* Move LENGTH bytes from SRC to DEST using a loop that moves BYTES_PER_ITER
|
||
bytes at a time. LENGTH must be at least BYTES_PER_ITER. Assume that
|
||
the memory regions do not overlap. */
|
||
|
||
static void
|
||
riscv_block_move_loop (rtx dest, rtx src, HOST_WIDE_INT length,
|
||
HOST_WIDE_INT bytes_per_iter)
|
||
{
|
||
rtx label, src_reg, dest_reg, final_src, test;
|
||
HOST_WIDE_INT leftover;
|
||
|
||
leftover = length % bytes_per_iter;
|
||
length -= leftover;
|
||
|
||
/* Create registers and memory references for use within the loop. */
|
||
riscv_adjust_block_mem (src, bytes_per_iter, &src_reg, &src);
|
||
riscv_adjust_block_mem (dest, bytes_per_iter, &dest_reg, &dest);
|
||
|
||
/* Calculate the value that SRC_REG should have after the last iteration
|
||
of the loop. */
|
||
final_src = expand_simple_binop (Pmode, PLUS, src_reg, GEN_INT (length),
|
||
0, 0, OPTAB_WIDEN);
|
||
|
||
/* Emit the start of the loop. */
|
||
label = gen_label_rtx ();
|
||
emit_label (label);
|
||
|
||
/* Emit the loop body. */
|
||
riscv_block_move_straight (dest, src, bytes_per_iter);
|
||
|
||
/* Move on to the next block. */
|
||
riscv_emit_move (src_reg, plus_constant (Pmode, src_reg, bytes_per_iter));
|
||
riscv_emit_move (dest_reg, plus_constant (Pmode, dest_reg, bytes_per_iter));
|
||
|
||
/* Emit the loop condition. */
|
||
test = gen_rtx_NE (VOIDmode, src_reg, final_src);
|
||
if (Pmode == DImode)
|
||
emit_jump_insn (gen_cbranchdi4 (test, src_reg, final_src, label));
|
||
else
|
||
emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label));
|
||
|
||
/* Mop up any left-over bytes. */
|
||
if (leftover)
|
||
riscv_block_move_straight (dest, src, leftover);
|
||
}
|
||
|
||
/* Expand a movmemsi instruction, which copies LENGTH bytes from
|
||
memory reference SRC to memory reference DEST. */
|
||
|
||
bool
|
||
riscv_expand_block_move (rtx dest, rtx src, rtx length)
|
||
{
|
||
if (CONST_INT_P (length))
|
||
{
|
||
HOST_WIDE_INT factor, align;
|
||
|
||
align = MIN (MIN (MEM_ALIGN (src), MEM_ALIGN (dest)), BITS_PER_WORD);
|
||
factor = BITS_PER_WORD / align;
|
||
|
||
if (INTVAL (length) <= RISCV_MAX_MOVE_BYTES_STRAIGHT / factor)
|
||
{
|
||
riscv_block_move_straight (dest, src, INTVAL (length));
|
||
return true;
|
||
}
|
||
else if (optimize && align >= BITS_PER_WORD)
|
||
{
|
||
riscv_block_move_loop (dest, src, INTVAL (length),
|
||
RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER / factor);
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* (Re-)Initialize riscv_lo_relocs and riscv_hi_relocs. */
|
||
|
||
static void
|
||
riscv_init_relocs (void)
|
||
{
|
||
memset (riscv_hi_relocs, '\0', sizeof (riscv_hi_relocs));
|
||
memset (riscv_lo_relocs, '\0', sizeof (riscv_lo_relocs));
|
||
|
||
if (!flag_pic && riscv_cmodel == CM_MEDLOW)
|
||
{
|
||
riscv_hi_relocs[SYMBOL_ABSOLUTE] = "%hi(";
|
||
riscv_lo_relocs[SYMBOL_ABSOLUTE] = "%lo(";
|
||
}
|
||
|
||
if (!flag_pic || flag_pie)
|
||
{
|
||
riscv_hi_relocs[SYMBOL_TLS_LE] = "%tprel_hi(";
|
||
riscv_lo_relocs[SYMBOL_TLS_LE] = "%tprel_lo(";
|
||
}
|
||
}
|
||
|
||
/* Print symbolic operand OP, which is part of a HIGH or LO_SUM
|
||
in context CONTEXT. RELOCS is the array of relocations to use. */
|
||
|
||
static void
|
||
riscv_print_operand_reloc (FILE *file, rtx op, const char **relocs)
|
||
{
|
||
enum riscv_symbol_type symbol_type;
|
||
const char *p;
|
||
|
||
symbol_type = riscv_classify_symbolic_expression (op);
|
||
gcc_assert (relocs[symbol_type]);
|
||
|
||
fputs (relocs[symbol_type], file);
|
||
output_addr_const (file, riscv_strip_unspec_address (op));
|
||
for (p = relocs[symbol_type]; *p != 0; p++)
|
||
if (*p == '(')
|
||
fputc (')', file);
|
||
}
|
||
|
||
static const char *
|
||
riscv_memory_model_suffix (enum memmodel model)
|
||
{
|
||
switch (model)
|
||
{
|
||
case MEMMODEL_ACQ_REL:
|
||
case MEMMODEL_SEQ_CST:
|
||
return ".sc";
|
||
case MEMMODEL_ACQUIRE:
|
||
case MEMMODEL_CONSUME:
|
||
return ".aq";
|
||
case MEMMODEL_RELEASE:
|
||
return ".rl";
|
||
case MEMMODEL_RELAXED:
|
||
return "";
|
||
default: gcc_unreachable();
|
||
}
|
||
}
|
||
|
||
/* Implement TARGET_PRINT_OPERAND. The RISCV-specific operand codes are:
|
||
|
||
'h' Print the high-part relocation associated with OP, after stripping
|
||
any outermost HIGH.
|
||
'R' Print the low-part relocation associated with OP.
|
||
'C' Print the integer branch condition for comparison OP.
|
||
'A' Print the atomic operation suffix for memory model OP.
|
||
'z' Print $0 if OP is zero, otherwise print OP normally. */
|
||
|
||
static void
|
||
riscv_print_operand (FILE *file, rtx op, int letter)
|
||
{
|
||
enum rtx_code code;
|
||
|
||
gcc_assert (op);
|
||
code = GET_CODE (op);
|
||
|
||
switch (letter)
|
||
{
|
||
case 'h':
|
||
if (code == HIGH)
|
||
op = XEXP (op, 0);
|
||
riscv_print_operand_reloc (file, op, riscv_hi_relocs);
|
||
break;
|
||
|
||
case 'R':
|
||
riscv_print_operand_reloc (file, op, riscv_lo_relocs);
|
||
break;
|
||
|
||
case 'C':
|
||
/* The RTL names match the instruction names. */
|
||
fputs (GET_RTX_NAME (code), file);
|
||
break;
|
||
|
||
case 'A':
|
||
fputs (riscv_memory_model_suffix ((enum memmodel)INTVAL (op)), file);
|
||
break;
|
||
|
||
default:
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
if (letter && letter != 'z')
|
||
output_operand_lossage ("invalid use of '%%%c'", letter);
|
||
fprintf (file, "%s", reg_names[REGNO (op)]);
|
||
break;
|
||
|
||
case MEM:
|
||
if (letter == 'y')
|
||
fprintf (file, "%s", reg_names[REGNO(XEXP(op, 0))]);
|
||
else if (letter && letter != 'z')
|
||
output_operand_lossage ("invalid use of '%%%c'", letter);
|
||
else
|
||
output_address (XEXP (op, 0));
|
||
break;
|
||
|
||
default:
|
||
if (letter == 'z' && op == CONST0_RTX (GET_MODE (op)))
|
||
fputs (reg_names[GP_REG_FIRST], file);
|
||
else if (letter && letter != 'z')
|
||
output_operand_lossage ("invalid use of '%%%c'", letter);
|
||
else
|
||
output_addr_const (file, riscv_strip_unspec_address (op));
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Implement TARGET_PRINT_OPERAND_ADDRESS. */
|
||
|
||
static void
|
||
riscv_print_operand_address (FILE *file, rtx x)
|
||
{
|
||
struct riscv_address_info addr;
|
||
|
||
if (riscv_classify_address (&addr, x, word_mode, true))
|
||
switch (addr.type)
|
||
{
|
||
case ADDRESS_REG:
|
||
riscv_print_operand (file, addr.offset, 0);
|
||
fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
|
||
return;
|
||
|
||
case ADDRESS_LO_SUM:
|
||
riscv_print_operand_reloc (file, addr.offset, riscv_lo_relocs);
|
||
fprintf (file, "(%s)", reg_names[REGNO (addr.reg)]);
|
||
return;
|
||
|
||
case ADDRESS_CONST_INT:
|
||
output_addr_const (file, x);
|
||
fprintf (file, "(%s)", reg_names[GP_REG_FIRST]);
|
||
return;
|
||
|
||
case ADDRESS_SYMBOLIC:
|
||
output_addr_const (file, riscv_strip_unspec_address (x));
|
||
return;
|
||
}
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
static bool
|
||
riscv_size_ok_for_small_data_p (int size)
|
||
{
|
||
return g_switch_value && IN_RANGE (size, 1, g_switch_value);
|
||
}
|
||
|
||
/* Return true if EXP should be placed in the small data section. */
|
||
|
||
static bool
|
||
riscv_in_small_data_p (const_tree x)
|
||
{
|
||
if (TREE_CODE (x) == STRING_CST || TREE_CODE (x) == FUNCTION_DECL)
|
||
return false;
|
||
|
||
if (TREE_CODE (x) == VAR_DECL && DECL_SECTION_NAME (x))
|
||
{
|
||
const char *sec = TREE_STRING_POINTER (DECL_SECTION_NAME (x));
|
||
return strcmp (sec, ".sdata") == 0 || strcmp (sec, ".sbss") == 0;
|
||
}
|
||
|
||
return riscv_size_ok_for_small_data_p (int_size_in_bytes (TREE_TYPE (x)));
|
||
}
|
||
|
||
/* Return a section for X, handling small data. */
|
||
|
||
static section *
|
||
riscv_elf_select_rtx_section (enum machine_mode mode, rtx x,
|
||
unsigned HOST_WIDE_INT align)
|
||
{
|
||
section *s = default_elf_select_rtx_section (mode, x, align);
|
||
|
||
if (riscv_size_ok_for_small_data_p (GET_MODE_SIZE (mode)))
|
||
{
|
||
if (strncmp (s->named.name, ".rodata.cst", strlen (".rodata.cst")) == 0)
|
||
{
|
||
/* Rename .rodata.cst* to .srodata.cst*. */
|
||
char name[32];
|
||
sprintf (name, ".s%s", s->named.name + 1);
|
||
return get_section (name, s->named.common.flags, NULL);
|
||
}
|
||
|
||
if (s == data_section)
|
||
return sdata_section;
|
||
}
|
||
|
||
return s;
|
||
}
|
||
|
||
/* Implement TARGET_ASM_OUTPUT_DWARF_DTPREL. */
|
||
|
||
static void ATTRIBUTE_UNUSED
|
||
riscv_output_dwarf_dtprel (FILE *file, int size, rtx x)
|
||
{
|
||
switch (size)
|
||
{
|
||
case 4:
|
||
fputs ("\t.dtprelword\t", file);
|
||
break;
|
||
|
||
case 8:
|
||
fputs ("\t.dtpreldword\t", file);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
output_addr_const (file, x);
|
||
fputs ("+0x800", file);
|
||
}
|
||
|
||
/* Make the last instruction frame-related and note that it performs
|
||
the operation described by FRAME_PATTERN. */
|
||
|
||
static void
|
||
riscv_set_frame_expr (rtx frame_pattern)
|
||
{
|
||
rtx insn;
|
||
|
||
insn = get_last_insn ();
|
||
RTX_FRAME_RELATED_P (insn) = 1;
|
||
REG_NOTES (insn) = alloc_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
||
frame_pattern,
|
||
REG_NOTES (insn));
|
||
}
|
||
|
||
/* Return a frame-related rtx that stores REG at MEM.
|
||
REG must be a single register. */
|
||
|
||
static rtx
|
||
riscv_frame_set (rtx mem, rtx reg)
|
||
{
|
||
rtx set;
|
||
|
||
set = gen_rtx_SET (VOIDmode, mem, reg);
|
||
RTX_FRAME_RELATED_P (set) = 1;
|
||
|
||
return set;
|
||
}
|
||
|
||
/* Return true if the current function must save register REGNO. */
|
||
|
||
static bool
|
||
riscv_save_reg_p (unsigned int regno)
|
||
{
|
||
bool call_saved = !global_regs[regno] && !call_really_used_regs[regno];
|
||
bool might_clobber = crtl->saves_all_registers
|
||
|| df_regs_ever_live_p (regno)
|
||
|| (regno == HARD_FRAME_POINTER_REGNUM
|
||
&& frame_pointer_needed);
|
||
|
||
return (call_saved && might_clobber)
|
||
|| (regno == RETURN_ADDR_REGNUM && crtl->calls_eh_return);
|
||
}
|
||
|
||
/* Populate the current function's riscv_frame_info structure.
|
||
|
||
RISC-V stack frames grown downward. High addresses are at the top.
|
||
|
||
+-------------------------------+
|
||
| |
|
||
| incoming stack arguments |
|
||
| |
|
||
+-------------------------------+ <-- incoming stack pointer
|
||
| |
|
||
| callee-allocated save area |
|
||
| for arguments that are |
|
||
| split between registers and |
|
||
| the stack |
|
||
| |
|
||
+-------------------------------+ <-- arg_pointer_rtx
|
||
| |
|
||
| callee-allocated save area |
|
||
| for register varargs |
|
||
| |
|
||
+-------------------------------+ <-- hard_frame_pointer_rtx;
|
||
| | stack_pointer_rtx + gp_sp_offset
|
||
| GPR save area | + UNITS_PER_WORD
|
||
| |
|
||
+-------------------------------+ <-- stack_pointer_rtx + fp_sp_offset
|
||
| | + UNITS_PER_HWVALUE
|
||
| FPR save area |
|
||
| |
|
||
+-------------------------------+ <-- frame_pointer_rtx (virtual)
|
||
| |
|
||
| local variables |
|
||
| |
|
||
P +-------------------------------+
|
||
| |
|
||
| outgoing stack arguments |
|
||
| |
|
||
+-------------------------------+ <-- stack_pointer_rtx
|
||
|
||
Dynamic stack allocations such as alloca insert data at point P.
|
||
They decrease stack_pointer_rtx but leave frame_pointer_rtx and
|
||
hard_frame_pointer_rtx unchanged. */
|
||
|
||
static void
|
||
riscv_compute_frame_info (void)
|
||
{
|
||
struct riscv_frame_info *frame;
|
||
HOST_WIDE_INT offset;
|
||
unsigned int regno, i;
|
||
|
||
frame = &cfun->machine->frame;
|
||
memset (frame, 0, sizeof (*frame));
|
||
|
||
/* Find out which GPRs we need to save. */
|
||
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST; regno++)
|
||
if (riscv_save_reg_p (regno))
|
||
frame->mask |= 1 << (regno - GP_REG_FIRST);
|
||
|
||
/* If this function calls eh_return, we must also save and restore the
|
||
EH data registers. */
|
||
if (crtl->calls_eh_return)
|
||
for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; i++)
|
||
frame->mask |= 1 << (EH_RETURN_DATA_REGNO (i) - GP_REG_FIRST);
|
||
|
||
/* Find out which FPRs we need to save. This loop must iterate over
|
||
the same space as its companion in riscv_for_each_saved_gpr_and_fpr. */
|
||
if (TARGET_HARD_FLOAT)
|
||
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
|
||
if (riscv_save_reg_p (regno))
|
||
frame->fmask |= 1 << (regno - FP_REG_FIRST);
|
||
|
||
/* At the bottom of the frame are any outgoing stack arguments. */
|
||
offset = crtl->outgoing_args_size;
|
||
/* Next are local stack variables. */
|
||
offset += RISCV_STACK_ALIGN (get_frame_size ());
|
||
/* The virtual frame pointer points above the local variables. */
|
||
frame->frame_pointer_offset = offset;
|
||
/* Next are the callee-saved FPRs. */
|
||
if (frame->fmask)
|
||
{
|
||
unsigned num_saved = __builtin_popcount(frame->fmask);
|
||
offset += RISCV_STACK_ALIGN (num_saved * UNITS_PER_FPREG);
|
||
frame->fp_sp_offset = offset - UNITS_PER_HWFPVALUE;
|
||
}
|
||
/* Next are the callee-saved GPRs. */
|
||
if (frame->mask)
|
||
{
|
||
unsigned num_saved = __builtin_popcount(frame->mask);
|
||
offset += RISCV_STACK_ALIGN (num_saved * UNITS_PER_WORD);
|
||
frame->gp_sp_offset = offset - UNITS_PER_WORD;
|
||
}
|
||
/* The hard frame pointer points above the callee-saved GPRs. */
|
||
frame->hard_frame_pointer_offset = offset;
|
||
/* Above the hard frame pointer is the callee-allocated varags save area. */
|
||
offset += RISCV_STACK_ALIGN (cfun->machine->varargs_size);
|
||
frame->arg_pointer_offset = offset;
|
||
/* Next is the callee-allocated area for pretend stack arguments. */
|
||
offset += crtl->args.pretend_args_size;
|
||
frame->total_size = offset;
|
||
/* Next points the incoming stack pointer and any incoming arguments. */
|
||
}
|
||
|
||
/* Make sure that we're not trying to eliminate to the wrong hard frame
|
||
pointer. */
|
||
|
||
static bool
|
||
riscv_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
|
||
{
|
||
return (to == HARD_FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM);
|
||
}
|
||
|
||
/* Implement INITIAL_ELIMINATION_OFFSET. FROM is either the frame pointer
|
||
or argument pointer. TO is either the stack pointer or hard frame
|
||
pointer. */
|
||
|
||
HOST_WIDE_INT
|
||
riscv_initial_elimination_offset (int from, int to)
|
||
{
|
||
HOST_WIDE_INT src, dest;
|
||
|
||
riscv_compute_frame_info ();
|
||
|
||
if (to == HARD_FRAME_POINTER_REGNUM)
|
||
dest = cfun->machine->frame.hard_frame_pointer_offset;
|
||
else if (to == STACK_POINTER_REGNUM)
|
||
dest = 0; /* this is the base of all offsets */
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
if (from == FRAME_POINTER_REGNUM)
|
||
src = cfun->machine->frame.frame_pointer_offset;
|
||
else if (from == ARG_POINTER_REGNUM)
|
||
src = cfun->machine->frame.arg_pointer_offset;
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
return src - dest;
|
||
}
|
||
|
||
/* Implement RETURN_ADDR_RTX. We do not support moving back to a
|
||
previous frame. */
|
||
|
||
rtx
|
||
riscv_return_addr (int count, rtx frame ATTRIBUTE_UNUSED)
|
||
{
|
||
if (count != 0)
|
||
return const0_rtx;
|
||
|
||
return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);
|
||
}
|
||
|
||
/* Emit code to change the current function's return address to
|
||
ADDRESS. SCRATCH is available as a scratch register, if needed.
|
||
ADDRESS and SCRATCH are both word-mode GPRs. */
|
||
|
||
void
|
||
riscv_set_return_address (rtx address, rtx scratch)
|
||
{
|
||
rtx slot_address;
|
||
|
||
gcc_assert (BITSET_P (cfun->machine->frame.mask, RETURN_ADDR_REGNUM));
|
||
slot_address = riscv_add_offset (scratch, stack_pointer_rtx,
|
||
cfun->machine->frame.gp_sp_offset);
|
||
riscv_emit_move (gen_frame_mem (GET_MODE (address), slot_address), address);
|
||
}
|
||
|
||
/* A function to save or store a register. The first argument is the
|
||
register and the second is the stack slot. */
|
||
typedef void (*riscv_save_restore_fn) (rtx, rtx);
|
||
|
||
/* Use FN to save or restore register REGNO. MODE is the register's
|
||
mode and OFFSET is the offset of its save slot from the current
|
||
stack pointer. */
|
||
|
||
static void
|
||
riscv_save_restore_reg (enum machine_mode mode, int regno,
|
||
HOST_WIDE_INT offset, riscv_save_restore_fn fn)
|
||
{
|
||
rtx mem;
|
||
|
||
mem = gen_frame_mem (mode, plus_constant (Pmode, stack_pointer_rtx, offset));
|
||
fn (gen_rtx_REG (mode, regno), mem);
|
||
}
|
||
|
||
/* Call FN for each register that is saved by the current function.
|
||
SP_OFFSET is the offset of the current stack pointer from the start
|
||
of the frame. */
|
||
|
||
static void
|
||
riscv_for_each_saved_gpr_and_fpr (HOST_WIDE_INT sp_offset,
|
||
riscv_save_restore_fn fn)
|
||
{
|
||
HOST_WIDE_INT offset;
|
||
int regno;
|
||
|
||
/* Save the link register and s-registers. */
|
||
offset = cfun->machine->frame.gp_sp_offset - sp_offset;
|
||
for (regno = GP_REG_FIRST; regno <= GP_REG_LAST-1; regno++)
|
||
if (BITSET_P (cfun->machine->frame.mask, regno - GP_REG_FIRST))
|
||
{
|
||
riscv_save_restore_reg (word_mode, regno, offset, fn);
|
||
offset -= UNITS_PER_WORD;
|
||
}
|
||
|
||
/* This loop must iterate over the same space as its companion in
|
||
riscv_compute_frame_info. */
|
||
offset = cfun->machine->frame.fp_sp_offset - sp_offset;
|
||
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
|
||
if (BITSET_P (cfun->machine->frame.fmask, regno - FP_REG_FIRST))
|
||
{
|
||
riscv_save_restore_reg (DFmode, regno, offset, fn);
|
||
offset -= GET_MODE_SIZE (DFmode);
|
||
}
|
||
}
|
||
|
||
/* Emit a move from SRC to DEST, given that one of them is a register
|
||
save slot and that the other is a register. TEMP is a temporary
|
||
GPR of the same mode that is available if need be. */
|
||
|
||
static void
|
||
riscv_emit_save_slot_move (rtx dest, rtx src, rtx temp)
|
||
{
|
||
unsigned int regno;
|
||
rtx mem;
|
||
enum reg_class rclass;
|
||
|
||
if (REG_P (src))
|
||
{
|
||
regno = REGNO (src);
|
||
mem = dest;
|
||
}
|
||
else
|
||
{
|
||
regno = REGNO (dest);
|
||
mem = src;
|
||
}
|
||
|
||
rclass = riscv_secondary_reload_class (REGNO_REG_CLASS (regno),
|
||
GET_MODE (mem), mem, mem == src);
|
||
|
||
if (rclass == NO_REGS)
|
||
riscv_emit_move (dest, src);
|
||
else
|
||
{
|
||
gcc_assert (!reg_overlap_mentioned_p (dest, temp));
|
||
riscv_emit_move (temp, src);
|
||
riscv_emit_move (dest, temp);
|
||
}
|
||
if (MEM_P (dest))
|
||
riscv_set_frame_expr (riscv_frame_set (dest, src));
|
||
}
|
||
|
||
/* Save register REG to MEM. Make the instruction frame-related. */
|
||
|
||
static void
|
||
riscv_save_reg (rtx reg, rtx mem)
|
||
{
|
||
riscv_emit_save_slot_move (mem, reg, RISCV_PROLOGUE_TEMP (GET_MODE (reg)));
|
||
}
|
||
|
||
|
||
/* Expand the "prologue" pattern. */
|
||
|
||
void
|
||
riscv_expand_prologue (void)
|
||
{
|
||
const struct riscv_frame_info *frame;
|
||
HOST_WIDE_INT size;
|
||
rtx insn;
|
||
|
||
frame = &cfun->machine->frame;
|
||
size = frame->total_size;
|
||
|
||
if (flag_stack_usage_info)
|
||
current_function_static_stack_size = size;
|
||
|
||
/* Save the registers. Allocate up to RISCV_MAX_FIRST_STACK_STEP
|
||
bytes beforehand; this is enough to cover the register save area
|
||
without going out of range. */
|
||
if ((frame->mask | frame->fmask) != 0)
|
||
{
|
||
HOST_WIDE_INT step1;
|
||
|
||
step1 = MIN (size, RISCV_MAX_FIRST_STACK_STEP);
|
||
insn = gen_add3_insn (stack_pointer_rtx,
|
||
stack_pointer_rtx,
|
||
GEN_INT (-step1));
|
||
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
|
||
size -= step1;
|
||
riscv_for_each_saved_gpr_and_fpr (size, riscv_save_reg);
|
||
}
|
||
|
||
/* Set up the frame pointer, if we're using one. */
|
||
if (frame_pointer_needed)
|
||
{
|
||
insn = gen_add3_insn (hard_frame_pointer_rtx, stack_pointer_rtx,
|
||
GEN_INT (frame->hard_frame_pointer_offset - size));
|
||
RTX_FRAME_RELATED_P (emit_insn (insn)) = 1;
|
||
}
|
||
|
||
/* Allocate the rest of the frame. */
|
||
if (size > 0)
|
||
{
|
||
if (SMALL_OPERAND (-size))
|
||
RTX_FRAME_RELATED_P (emit_insn (gen_add3_insn (stack_pointer_rtx,
|
||
stack_pointer_rtx,
|
||
GEN_INT (-size)))) = 1;
|
||
else
|
||
{
|
||
riscv_emit_move (RISCV_PROLOGUE_TEMP (Pmode), GEN_INT (size));
|
||
emit_insn (gen_sub3_insn (stack_pointer_rtx,
|
||
stack_pointer_rtx,
|
||
RISCV_PROLOGUE_TEMP (Pmode)));
|
||
|
||
/* Describe the combined effect of the previous instructions. */
|
||
riscv_set_frame_expr
|
||
(gen_rtx_SET (VOIDmode, stack_pointer_rtx,
|
||
plus_constant (Pmode, stack_pointer_rtx, -size)));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Emit instructions to restore register REG from slot MEM. */
|
||
|
||
static void
|
||
riscv_restore_reg (rtx reg, rtx mem)
|
||
{
|
||
riscv_emit_save_slot_move (reg, mem, RISCV_EPILOGUE_TEMP (GET_MODE (reg)));
|
||
}
|
||
|
||
/* Expand an "epilogue" or "sibcall_epilogue" pattern; SIBCALL_P
|
||
says which. */
|
||
|
||
void
|
||
riscv_expand_epilogue (bool sibcall_p)
|
||
{
|
||
const struct riscv_frame_info *frame;
|
||
HOST_WIDE_INT step1, step2;
|
||
|
||
if (!sibcall_p && riscv_can_use_return_insn ())
|
||
{
|
||
emit_jump_insn (gen_return ());
|
||
return;
|
||
}
|
||
|
||
/* Split the frame into two. STEP1 is the amount of stack we should
|
||
deallocate before restoring the registers. STEP2 is the amount we
|
||
should deallocate afterwards.
|
||
|
||
Start off by assuming that no registers need to be restored. */
|
||
frame = &cfun->machine->frame;
|
||
step1 = frame->total_size;
|
||
step2 = 0;
|
||
|
||
/* Move past any dynamic stack allocations. */
|
||
if (cfun->calls_alloca)
|
||
{
|
||
rtx adjust = GEN_INT (-frame->hard_frame_pointer_offset);
|
||
if (!SMALL_INT (adjust))
|
||
{
|
||
riscv_emit_move (RISCV_EPILOGUE_TEMP (Pmode), adjust);
|
||
adjust = RISCV_EPILOGUE_TEMP (Pmode);
|
||
}
|
||
|
||
emit_insn (gen_add3_insn (stack_pointer_rtx, hard_frame_pointer_rtx, adjust));
|
||
}
|
||
|
||
/* If we need to restore registers, deallocate as much stack as
|
||
possible in the second step without going out of range. */
|
||
if ((frame->mask | frame->fmask) != 0)
|
||
{
|
||
step2 = MIN (step1, RISCV_MAX_FIRST_STACK_STEP);
|
||
step1 -= step2;
|
||
}
|
||
|
||
/* Set TARGET to BASE + STEP1. */
|
||
if (step1 > 0)
|
||
{
|
||
/* Get an rtx for STEP1 that we can add to BASE. */
|
||
rtx adjust = GEN_INT (step1);
|
||
if (!SMALL_OPERAND (step1))
|
||
{
|
||
riscv_emit_move (RISCV_EPILOGUE_TEMP (Pmode), adjust);
|
||
adjust = RISCV_EPILOGUE_TEMP (Pmode);
|
||
}
|
||
|
||
emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx, adjust));
|
||
}
|
||
|
||
/* Restore the registers. */
|
||
riscv_for_each_saved_gpr_and_fpr (frame->total_size - step2,
|
||
riscv_restore_reg);
|
||
|
||
/* Deallocate the final bit of the frame. */
|
||
if (step2 > 0)
|
||
emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
|
||
GEN_INT (step2)));
|
||
|
||
/* Add in the __builtin_eh_return stack adjustment. */
|
||
if (crtl->calls_eh_return)
|
||
emit_insn (gen_add3_insn (stack_pointer_rtx, stack_pointer_rtx,
|
||
EH_RETURN_STACKADJ_RTX));
|
||
|
||
if (!sibcall_p)
|
||
{
|
||
rtx ra = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
|
||
emit_jump_insn (gen_simple_return_internal (ra));
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if this function is known to have a null epilogue.
|
||
This allows the optimizer to omit jumps to jumps if no stack
|
||
was created. */
|
||
|
||
bool
|
||
riscv_can_use_return_insn (void)
|
||
{
|
||
return reload_completed && cfun->machine->frame.total_size == 0;
|
||
}
|
||
|
||
/* Return true if register REGNO can store a value of mode MODE.
|
||
The result of this function is cached in riscv_hard_regno_mode_ok. */
|
||
|
||
static bool
|
||
riscv_hard_regno_mode_ok_p (unsigned int regno, enum machine_mode mode)
|
||
{
|
||
unsigned int size = GET_MODE_SIZE (mode);
|
||
enum mode_class mclass = GET_MODE_CLASS (mode);
|
||
|
||
/* This is hella bogus but ira_build segfaults on RV32 without it. */
|
||
if (VECTOR_MODE_P (mode))
|
||
return true;
|
||
|
||
if (GP_REG_P (regno))
|
||
{
|
||
if (size <= UNITS_PER_WORD)
|
||
return true;
|
||
|
||
/* Double-word values must be even-register-aligned. */
|
||
if (size <= 2 * UNITS_PER_WORD)
|
||
return regno % 2 == 0;
|
||
}
|
||
|
||
if (FP_REG_P (regno))
|
||
{
|
||
if (mclass == MODE_FLOAT
|
||
|| mclass == MODE_COMPLEX_FLOAT
|
||
|| mclass == MODE_VECTOR_FLOAT)
|
||
return size <= UNITS_PER_FPVALUE;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Implement HARD_REGNO_NREGS. */
|
||
|
||
unsigned int
|
||
riscv_hard_regno_nregs (int regno, enum machine_mode mode)
|
||
{
|
||
if (FP_REG_P (regno))
|
||
return (GET_MODE_SIZE (mode) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG;
|
||
|
||
/* All other registers are word-sized. */
|
||
return (GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
|
||
}
|
||
|
||
/* Implement CLASS_MAX_NREGS, taking the maximum of the cases
|
||
in riscv_hard_regno_nregs. */
|
||
|
||
int
|
||
riscv_class_max_nregs (enum reg_class rclass, enum machine_mode mode)
|
||
{
|
||
int size;
|
||
HARD_REG_SET left;
|
||
|
||
size = 0x8000;
|
||
COPY_HARD_REG_SET (left, reg_class_contents[(int) rclass]);
|
||
if (hard_reg_set_intersect_p (left, reg_class_contents[(int) FP_REGS]))
|
||
{
|
||
size = MIN (size, UNITS_PER_FPREG);
|
||
AND_COMPL_HARD_REG_SET (left, reg_class_contents[(int) FP_REGS]);
|
||
}
|
||
if (!hard_reg_set_empty_p (left))
|
||
size = MIN (size, UNITS_PER_WORD);
|
||
return (GET_MODE_SIZE (mode) + size - 1) / size;
|
||
}
|
||
|
||
/* Implement TARGET_PREFERRED_RELOAD_CLASS. */
|
||
|
||
static reg_class_t
|
||
riscv_preferred_reload_class (rtx x ATTRIBUTE_UNUSED, reg_class_t rclass)
|
||
{
|
||
return reg_class_subset_p (FP_REGS, rclass) ? FP_REGS :
|
||
reg_class_subset_p (GR_REGS, rclass) ? GR_REGS :
|
||
rclass;
|
||
}
|
||
|
||
/* RCLASS is a class involved in a REGISTER_MOVE_COST calculation.
|
||
Return a "canonical" class to represent it in later calculations. */
|
||
|
||
static reg_class_t
|
||
riscv_canonicalize_move_class (reg_class_t rclass)
|
||
{
|
||
if (reg_class_subset_p (rclass, GENERAL_REGS))
|
||
rclass = GENERAL_REGS;
|
||
|
||
return rclass;
|
||
}
|
||
|
||
/* Implement TARGET_REGISTER_MOVE_COST. Return 0 for classes that are the
|
||
maximum of the move costs for subclasses; regclass will work out
|
||
the maximum for us. */
|
||
|
||
static int
|
||
riscv_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
|
||
reg_class_t from, reg_class_t to)
|
||
{
|
||
from = riscv_canonicalize_move_class (from);
|
||
to = riscv_canonicalize_move_class (to);
|
||
|
||
if ((from == GENERAL_REGS && to == GENERAL_REGS)
|
||
|| (from == GENERAL_REGS && to == FP_REGS)
|
||
|| (from == FP_REGS && to == FP_REGS))
|
||
return COSTS_N_INSNS (1);
|
||
|
||
if (from == FP_REGS && to == GENERAL_REGS)
|
||
return tune_info->fp_to_int_cost;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Implement TARGET_MEMORY_MOVE_COST. */
|
||
|
||
static int
|
||
riscv_memory_move_cost (enum machine_mode mode, reg_class_t rclass, bool in)
|
||
{
|
||
return (tune_info->memory_cost
|
||
+ memory_move_secondary_cost (mode, rclass, in));
|
||
}
|
||
|
||
/* Return the register class required for a secondary register when
|
||
copying between one of the registers in RCLASS and value X, which
|
||
has mode MODE. X is the source of the move if IN_P, otherwise it
|
||
is the destination. Return NO_REGS if no secondary register is
|
||
needed. */
|
||
|
||
enum reg_class
|
||
riscv_secondary_reload_class (enum reg_class rclass,
|
||
enum machine_mode mode, rtx x,
|
||
bool in_p ATTRIBUTE_UNUSED)
|
||
{
|
||
int regno;
|
||
|
||
regno = true_regnum (x);
|
||
|
||
if (reg_class_subset_p (rclass, FP_REGS))
|
||
{
|
||
if (MEM_P (x) && (GET_MODE_SIZE (mode) == 4 || GET_MODE_SIZE (mode) == 8))
|
||
/* We can use flw/fld/fsw/fsd. */
|
||
return NO_REGS;
|
||
|
||
if (GP_REG_P (regno) || x == CONST0_RTX (mode))
|
||
/* We can use fmv or go through memory when mode > Pmode. */
|
||
return NO_REGS;
|
||
|
||
if (CONSTANT_P (x) && !targetm.cannot_force_const_mem (mode, x))
|
||
/* We can force the constant to memory and use flw/fld. */
|
||
return NO_REGS;
|
||
|
||
if (FP_REG_P (regno))
|
||
/* We can use fmv.fmt. */
|
||
return NO_REGS;
|
||
|
||
/* Otherwise, we need to reload through an integer register. */
|
||
return GR_REGS;
|
||
}
|
||
if (FP_REG_P (regno))
|
||
return reg_class_subset_p (rclass, GR_REGS) ? NO_REGS : GR_REGS;
|
||
|
||
return NO_REGS;
|
||
}
|
||
|
||
/* Implement TARGET_MODE_REP_EXTENDED. */
|
||
|
||
static int
|
||
riscv_mode_rep_extended (enum machine_mode mode, enum machine_mode mode_rep)
|
||
{
|
||
/* On 64-bit targets, SImode register values are sign-extended to DImode. */
|
||
if (TARGET_64BIT && mode == SImode && mode_rep == DImode)
|
||
return SIGN_EXTEND;
|
||
|
||
return UNKNOWN;
|
||
}
|
||
|
||
/* Implement TARGET_SCALAR_MODE_SUPPORTED_P. */
|
||
|
||
static bool
|
||
riscv_scalar_mode_supported_p (enum machine_mode mode)
|
||
{
|
||
if (ALL_FIXED_POINT_MODE_P (mode)
|
||
&& GET_MODE_PRECISION (mode) <= 2 * BITS_PER_WORD)
|
||
return true;
|
||
|
||
return default_scalar_mode_supported_p (mode);
|
||
}
|
||
|
||
/* Implement TARGET_SCHED_ADJUST_COST. We assume that anti and output
|
||
dependencies have no cost. */
|
||
|
||
static int
|
||
riscv_adjust_cost (rtx insn ATTRIBUTE_UNUSED, rtx link,
|
||
rtx dep ATTRIBUTE_UNUSED, int cost)
|
||
{
|
||
if (REG_NOTE_KIND (link) != 0)
|
||
return 0;
|
||
return cost;
|
||
}
|
||
|
||
/* Return the number of instructions that can be issued per cycle. */
|
||
|
||
static int
|
||
riscv_issue_rate (void)
|
||
{
|
||
return tune_info->issue_rate;
|
||
}
|
||
|
||
/* This structure describes a single built-in function. */
|
||
struct riscv_builtin_description {
|
||
/* The code of the main .md file instruction. See riscv_builtin_type
|
||
for more information. */
|
||
enum insn_code icode;
|
||
|
||
/* The name of the built-in function. */
|
||
const char *name;
|
||
|
||
/* Specifies how the function should be expanded. */
|
||
enum riscv_builtin_type builtin_type;
|
||
|
||
/* The function's prototype. */
|
||
enum riscv_function_type function_type;
|
||
|
||
/* Whether the function is available. */
|
||
unsigned int (*avail) (void);
|
||
};
|
||
|
||
static unsigned int
|
||
riscv_builtin_avail_riscv (void)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Construct a riscv_builtin_description from the given arguments.
|
||
|
||
INSN is the name of the associated instruction pattern, without the
|
||
leading CODE_FOR_riscv_.
|
||
|
||
CODE is the floating-point condition code associated with the
|
||
function. It can be 'f' if the field is not applicable.
|
||
|
||
NAME is the name of the function itself, without the leading
|
||
"__builtin_riscv_".
|
||
|
||
BUILTIN_TYPE and FUNCTION_TYPE are riscv_builtin_description fields.
|
||
|
||
AVAIL is the name of the availability predicate, without the leading
|
||
riscv_builtin_avail_. */
|
||
#define RISCV_BUILTIN(INSN, NAME, BUILTIN_TYPE, FUNCTION_TYPE, AVAIL) \
|
||
{ CODE_FOR_ ## INSN, "__builtin_riscv_" NAME, \
|
||
BUILTIN_TYPE, FUNCTION_TYPE, riscv_builtin_avail_ ## AVAIL }
|
||
|
||
/* Define __builtin_riscv_<INSN>, which is a RISCV_BUILTIN_DIRECT function
|
||
mapped to instruction CODE_FOR_<INSN>, FUNCTION_TYPE and AVAIL
|
||
are as for RISCV_BUILTIN. */
|
||
#define DIRECT_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
|
||
RISCV_BUILTIN (INSN, #INSN, RISCV_BUILTIN_DIRECT, FUNCTION_TYPE, AVAIL)
|
||
|
||
/* Define __builtin_riscv_<INSN>, which is a RISCV_BUILTIN_DIRECT_NO_TARGET
|
||
function mapped to instruction CODE_FOR_<INSN>, FUNCTION_TYPE
|
||
and AVAIL are as for RISCV_BUILTIN. */
|
||
#define DIRECT_NO_TARGET_BUILTIN(INSN, FUNCTION_TYPE, AVAIL) \
|
||
RISCV_BUILTIN (INSN, #INSN, RISCV_BUILTIN_DIRECT_NO_TARGET, \
|
||
FUNCTION_TYPE, AVAIL)
|
||
|
||
static const struct riscv_builtin_description riscv_builtins[] = {
|
||
DIRECT_NO_TARGET_BUILTIN (nop, RISCV_VOID_FTYPE_VOID, riscv),
|
||
};
|
||
|
||
/* Index I is the function declaration for riscv_builtins[I], or null if the
|
||
function isn't defined on this target. */
|
||
static GTY(()) tree riscv_builtin_decls[ARRAY_SIZE (riscv_builtins)];
|
||
|
||
|
||
/* Source-level argument types. */
|
||
#define RISCV_ATYPE_VOID void_type_node
|
||
#define RISCV_ATYPE_INT integer_type_node
|
||
#define RISCV_ATYPE_POINTER ptr_type_node
|
||
#define RISCV_ATYPE_CPOINTER const_ptr_type_node
|
||
|
||
/* Standard mode-based argument types. */
|
||
#define RISCV_ATYPE_UQI unsigned_intQI_type_node
|
||
#define RISCV_ATYPE_SI intSI_type_node
|
||
#define RISCV_ATYPE_USI unsigned_intSI_type_node
|
||
#define RISCV_ATYPE_DI intDI_type_node
|
||
#define RISCV_ATYPE_UDI unsigned_intDI_type_node
|
||
#define RISCV_ATYPE_SF float_type_node
|
||
#define RISCV_ATYPE_DF double_type_node
|
||
|
||
/* RISCV_FTYPE_ATYPESN takes N RISCV_FTYPES-like type codes and lists
|
||
their associated RISCV_ATYPEs. */
|
||
#define RISCV_FTYPE_ATYPES1(A, B) \
|
||
RISCV_ATYPE_##A, RISCV_ATYPE_##B
|
||
|
||
#define RISCV_FTYPE_ATYPES2(A, B, C) \
|
||
RISCV_ATYPE_##A, RISCV_ATYPE_##B, RISCV_ATYPE_##C
|
||
|
||
#define RISCV_FTYPE_ATYPES3(A, B, C, D) \
|
||
RISCV_ATYPE_##A, RISCV_ATYPE_##B, RISCV_ATYPE_##C, RISCV_ATYPE_##D
|
||
|
||
#define RISCV_FTYPE_ATYPES4(A, B, C, D, E) \
|
||
RISCV_ATYPE_##A, RISCV_ATYPE_##B, RISCV_ATYPE_##C, RISCV_ATYPE_##D, \
|
||
RISCV_ATYPE_##E
|
||
|
||
/* Return the function type associated with function prototype TYPE. */
|
||
|
||
static tree
|
||
riscv_build_function_type (enum riscv_function_type type)
|
||
{
|
||
static tree types[(int) RISCV_MAX_FTYPE_MAX];
|
||
|
||
if (types[(int) type] == NULL_TREE)
|
||
switch (type)
|
||
{
|
||
#define DEF_RISCV_FTYPE(NUM, ARGS) \
|
||
case RISCV_FTYPE_NAME##NUM ARGS: \
|
||
types[(int) type] \
|
||
= build_function_type_list (RISCV_FTYPE_ATYPES##NUM ARGS, \
|
||
NULL_TREE); \
|
||
break;
|
||
#include "config/riscv/riscv-ftypes.def"
|
||
#undef DEF_RISCV_FTYPE
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return types[(int) type];
|
||
}
|
||
|
||
/* Implement TARGET_INIT_BUILTINS. */
|
||
|
||
static void
|
||
riscv_init_builtins (void)
|
||
{
|
||
const struct riscv_builtin_description *d;
|
||
unsigned int i;
|
||
|
||
/* Iterate through all of the bdesc arrays, initializing all of the
|
||
builtin functions. */
|
||
for (i = 0; i < ARRAY_SIZE (riscv_builtins); i++)
|
||
{
|
||
d = &riscv_builtins[i];
|
||
if (d->avail ())
|
||
riscv_builtin_decls[i]
|
||
= add_builtin_function (d->name,
|
||
riscv_build_function_type (d->function_type),
|
||
i, BUILT_IN_MD, NULL, NULL);
|
||
}
|
||
}
|
||
|
||
/* Implement TARGET_BUILTIN_DECL. */
|
||
|
||
static tree
|
||
riscv_builtin_decl (unsigned int code, bool initialize_p ATTRIBUTE_UNUSED)
|
||
{
|
||
if (code >= ARRAY_SIZE (riscv_builtins))
|
||
return error_mark_node;
|
||
return riscv_builtin_decls[code];
|
||
}
|
||
|
||
/* Take argument ARGNO from EXP's argument list and convert it into a
|
||
form suitable for input operand OPNO of instruction ICODE. Return the
|
||
value. */
|
||
|
||
static rtx
|
||
riscv_prepare_builtin_arg (enum insn_code icode,
|
||
unsigned int opno, tree exp, unsigned int argno)
|
||
{
|
||
tree arg;
|
||
rtx value;
|
||
enum machine_mode mode;
|
||
|
||
arg = CALL_EXPR_ARG (exp, argno);
|
||
value = expand_normal (arg);
|
||
mode = insn_data[icode].operand[opno].mode;
|
||
if (!insn_data[icode].operand[opno].predicate (value, mode))
|
||
{
|
||
/* We need to get the mode from ARG for two reasons:
|
||
|
||
- to cope with address operands, where MODE is the mode of the
|
||
memory, rather than of VALUE itself.
|
||
|
||
- to cope with special predicates like pmode_register_operand,
|
||
where MODE is VOIDmode. */
|
||
value = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (arg)), value);
|
||
|
||
/* Check the predicate again. */
|
||
if (!insn_data[icode].operand[opno].predicate (value, mode))
|
||
{
|
||
error ("invalid argument to built-in function");
|
||
return const0_rtx;
|
||
}
|
||
}
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Return an rtx suitable for output operand OP of instruction ICODE.
|
||
If TARGET is non-null, try to use it where possible. */
|
||
|
||
static rtx
|
||
riscv_prepare_builtin_target (enum insn_code icode, unsigned int op, rtx target)
|
||
{
|
||
enum machine_mode mode;
|
||
|
||
mode = insn_data[icode].operand[op].mode;
|
||
if (target == 0 || !insn_data[icode].operand[op].predicate (target, mode))
|
||
target = gen_reg_rtx (mode);
|
||
|
||
return target;
|
||
}
|
||
|
||
/* Expand a RISCV_BUILTIN_DIRECT or RISCV_BUILTIN_DIRECT_NO_TARGET function;
|
||
HAS_TARGET_P says which. EXP is the CALL_EXPR that calls the function
|
||
and ICODE is the code of the associated .md pattern. TARGET, if nonnull,
|
||
suggests a good place to put the result. */
|
||
|
||
static rtx
|
||
riscv_expand_builtin_direct (enum insn_code icode, rtx target, tree exp,
|
||
bool has_target_p)
|
||
{
|
||
rtx ops[MAX_RECOG_OPERANDS];
|
||
int opno, argno;
|
||
|
||
/* Map any target to operand 0. */
|
||
opno = 0;
|
||
if (has_target_p)
|
||
{
|
||
target = riscv_prepare_builtin_target (icode, opno, target);
|
||
ops[opno] = target;
|
||
opno++;
|
||
}
|
||
|
||
/* Map the arguments to the other operands. The n_operands value
|
||
for an expander includes match_dups and match_scratches as well as
|
||
match_operands, so n_operands is only an upper bound on the number
|
||
of arguments to the expander function. */
|
||
gcc_assert (opno + call_expr_nargs (exp) <= insn_data[icode].n_operands);
|
||
for (argno = 0; argno < call_expr_nargs (exp); argno++, opno++)
|
||
ops[opno] = riscv_prepare_builtin_arg (icode, opno, exp, argno);
|
||
|
||
switch (opno)
|
||
{
|
||
case 2:
|
||
emit_insn (GEN_FCN (icode) (ops[0], ops[1]));
|
||
break;
|
||
|
||
case 3:
|
||
emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2]));
|
||
break;
|
||
|
||
case 4:
|
||
emit_insn (GEN_FCN (icode) (ops[0], ops[1], ops[2], ops[3]));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
return target;
|
||
}
|
||
|
||
/* Implement TARGET_EXPAND_BUILTIN. */
|
||
|
||
static rtx
|
||
riscv_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
|
||
enum machine_mode mode ATTRIBUTE_UNUSED,
|
||
int ignore ATTRIBUTE_UNUSED)
|
||
{
|
||
tree fndecl;
|
||
unsigned int fcode, avail;
|
||
const struct riscv_builtin_description *d;
|
||
|
||
fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
|
||
fcode = DECL_FUNCTION_CODE (fndecl);
|
||
gcc_assert (fcode < ARRAY_SIZE (riscv_builtins));
|
||
d = &riscv_builtins[fcode];
|
||
avail = d->avail ();
|
||
gcc_assert (avail != 0);
|
||
switch (d->builtin_type)
|
||
{
|
||
case RISCV_BUILTIN_DIRECT:
|
||
return riscv_expand_builtin_direct (d->icode, target, exp, true);
|
||
|
||
case RISCV_BUILTIN_DIRECT_NO_TARGET:
|
||
return riscv_expand_builtin_direct (d->icode, target, exp, false);
|
||
}
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Implement TARGET_ASM_OUTPUT_MI_THUNK. Generate rtl rather than asm text
|
||
in order to avoid duplicating too much logic from elsewhere. */
|
||
|
||
static void
|
||
riscv_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
|
||
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
|
||
tree function)
|
||
{
|
||
rtx this_rtx, temp1, temp2, insn, fnaddr;
|
||
bool use_sibcall_p;
|
||
|
||
/* Pretend to be a post-reload pass while generating rtl. */
|
||
reload_completed = 1;
|
||
|
||
/* Mark the end of the (empty) prologue. */
|
||
emit_note (NOTE_INSN_PROLOGUE_END);
|
||
|
||
/* Determine if we can use a sibcall to call FUNCTION directly. */
|
||
fnaddr = XEXP (DECL_RTL (function), 0);
|
||
use_sibcall_p = absolute_symbolic_operand (fnaddr, Pmode);
|
||
|
||
/* We need two temporary registers in some cases. */
|
||
temp1 = gen_rtx_REG (Pmode, GP_TEMP_FIRST);
|
||
temp2 = gen_rtx_REG (Pmode, GP_TEMP_FIRST + 1);
|
||
|
||
/* Find out which register contains the "this" pointer. */
|
||
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
|
||
this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST + 1);
|
||
else
|
||
this_rtx = gen_rtx_REG (Pmode, GP_ARG_FIRST);
|
||
|
||
/* Add DELTA to THIS_RTX. */
|
||
if (delta != 0)
|
||
{
|
||
rtx offset = GEN_INT (delta);
|
||
if (!SMALL_OPERAND (delta))
|
||
{
|
||
riscv_emit_move (temp1, offset);
|
||
offset = temp1;
|
||
}
|
||
emit_insn (gen_add3_insn (this_rtx, this_rtx, offset));
|
||
}
|
||
|
||
/* If needed, add *(*THIS_RTX + VCALL_OFFSET) to THIS_RTX. */
|
||
if (vcall_offset != 0)
|
||
{
|
||
rtx addr;
|
||
|
||
/* Set TEMP1 to *THIS_RTX. */
|
||
riscv_emit_move (temp1, gen_rtx_MEM (Pmode, this_rtx));
|
||
|
||
/* Set ADDR to a legitimate address for *THIS_RTX + VCALL_OFFSET. */
|
||
addr = riscv_add_offset (temp2, temp1, vcall_offset);
|
||
|
||
/* Load the offset and add it to THIS_RTX. */
|
||
riscv_emit_move (temp1, gen_rtx_MEM (Pmode, addr));
|
||
emit_insn (gen_add3_insn (this_rtx, this_rtx, temp1));
|
||
}
|
||
|
||
/* Jump to the target function. Use a sibcall if direct jumps are
|
||
allowed, otherwise load the address into a register first. */
|
||
if (use_sibcall_p)
|
||
{
|
||
insn = emit_call_insn (gen_sibcall_internal (fnaddr, const0_rtx));
|
||
SIBLING_CALL_P (insn) = 1;
|
||
}
|
||
else
|
||
{
|
||
riscv_emit_move(temp1, fnaddr);
|
||
emit_jump_insn (gen_indirect_jump (temp1));
|
||
}
|
||
|
||
/* Run just enough of rest_of_compilation. This sequence was
|
||
"borrowed" from alpha.c. */
|
||
insn = get_insns ();
|
||
split_all_insns_noflow ();
|
||
shorten_branches (insn);
|
||
final_start_function (insn, file, 1);
|
||
final (insn, file, 1);
|
||
final_end_function ();
|
||
|
||
/* Clean up the vars set above. Note that final_end_function resets
|
||
the global pointer for us. */
|
||
reload_completed = 0;
|
||
}
|
||
|
||
/* Allocate a chunk of memory for per-function machine-dependent data. */
|
||
|
||
static struct machine_function *
|
||
riscv_init_machine_status (void)
|
||
{
|
||
return ggc_alloc_cleared_machine_function ();
|
||
}
|
||
|
||
/* Implement TARGET_OPTION_OVERRIDE. */
|
||
|
||
static void
|
||
riscv_option_override (void)
|
||
{
|
||
int regno, mode;
|
||
const struct riscv_cpu_info *cpu;
|
||
|
||
#ifdef SUBTARGET_OVERRIDE_OPTIONS
|
||
SUBTARGET_OVERRIDE_OPTIONS;
|
||
#endif
|
||
|
||
flag_pcc_struct_return = 0;
|
||
|
||
if (flag_pic)
|
||
g_switch_value = 0;
|
||
|
||
/* Prefer a call to memcpy over inline code when optimizing for size,
|
||
though see MOVE_RATIO in riscv.h. */
|
||
if (optimize_size && (target_flags_explicit & MASK_MEMCPY) == 0)
|
||
target_flags |= MASK_MEMCPY;
|
||
|
||
/* Handle -mtune. */
|
||
cpu = riscv_parse_cpu (riscv_tune_string ? riscv_tune_string :
|
||
RISCV_TUNE_STRING_DEFAULT);
|
||
tune_info = optimize_size ? &optimize_size_tune_info : cpu->tune_info;
|
||
|
||
/* If the user hasn't specified a branch cost, use the processor's
|
||
default. */
|
||
if (riscv_branch_cost == 0)
|
||
riscv_branch_cost = tune_info->branch_cost;
|
||
|
||
/* Set up riscv_hard_regno_mode_ok. */
|
||
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
riscv_hard_regno_mode_ok[mode][regno]
|
||
= riscv_hard_regno_mode_ok_p (regno, (enum machine_mode) mode);
|
||
|
||
/* Function to allocate machine-dependent function status. */
|
||
init_machine_status = &riscv_init_machine_status;
|
||
|
||
if (riscv_cmodel_string)
|
||
{
|
||
if (strcmp (riscv_cmodel_string, "medlow") == 0)
|
||
riscv_cmodel = CM_MEDLOW;
|
||
else if (strcmp (riscv_cmodel_string, "medany") == 0)
|
||
riscv_cmodel = CM_MEDANY;
|
||
else
|
||
error ("unsupported code model: %s", riscv_cmodel_string);
|
||
}
|
||
|
||
if (flag_pic)
|
||
riscv_cmodel = CM_PIC;
|
||
|
||
riscv_init_relocs ();
|
||
}
|
||
|
||
/* Implement TARGET_CONDITIONAL_REGISTER_USAGE. */
|
||
|
||
static void
|
||
riscv_conditional_register_usage (void)
|
||
{
|
||
int regno;
|
||
|
||
if (!TARGET_HARD_FLOAT)
|
||
{
|
||
for (regno = FP_REG_FIRST; regno <= FP_REG_LAST; regno++)
|
||
fixed_regs[regno] = call_used_regs[regno] = 1;
|
||
}
|
||
}
|
||
|
||
/* Implement TARGET_TRAMPOLINE_INIT. */
|
||
|
||
static void
|
||
riscv_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
|
||
{
|
||
rtx addr, end_addr, mem;
|
||
rtx trampoline[4];
|
||
unsigned int i;
|
||
HOST_WIDE_INT static_chain_offset, target_function_offset;
|
||
|
||
/* Work out the offsets of the pointers from the start of the
|
||
trampoline code. */
|
||
gcc_assert (ARRAY_SIZE (trampoline) * 4 == TRAMPOLINE_CODE_SIZE);
|
||
static_chain_offset = TRAMPOLINE_CODE_SIZE;
|
||
target_function_offset = static_chain_offset + GET_MODE_SIZE (ptr_mode);
|
||
|
||
/* Get pointers to the beginning and end of the code block. */
|
||
addr = force_reg (Pmode, XEXP (m_tramp, 0));
|
||
end_addr = riscv_force_binary (Pmode, PLUS, addr, GEN_INT (TRAMPOLINE_CODE_SIZE));
|
||
|
||
#define OP(X) gen_int_mode (X, SImode)
|
||
#define MATCH_LREG ((Pmode) == DImode ? MATCH_LD : MATCH_LW)
|
||
|
||
/* auipc t0, 0
|
||
l[wd] t1, target_function_offset(t0)
|
||
l[wd] $static_chain, static_chain_offset(t0)
|
||
jr t1
|
||
*/
|
||
|
||
trampoline[0] = OP (RISCV_UTYPE (AUIPC, STATIC_CHAIN_REGNUM, 0));
|
||
trampoline[1] = OP (RISCV_ITYPE (LREG, RISCV_PROLOGUE_TEMP_REGNUM,
|
||
STATIC_CHAIN_REGNUM, target_function_offset));
|
||
trampoline[2] = OP (RISCV_ITYPE (LREG, STATIC_CHAIN_REGNUM,
|
||
STATIC_CHAIN_REGNUM, static_chain_offset));
|
||
trampoline[3] = OP (RISCV_ITYPE (JALR, 0, RISCV_PROLOGUE_TEMP_REGNUM, 0));
|
||
|
||
#undef MATCH_LREG
|
||
#undef OP
|
||
|
||
/* Copy the trampoline code. Leave any padding uninitialized. */
|
||
for (i = 0; i < ARRAY_SIZE (trampoline); i++)
|
||
{
|
||
mem = adjust_address (m_tramp, SImode, i * GET_MODE_SIZE (SImode));
|
||
riscv_emit_move (mem, trampoline[i]);
|
||
}
|
||
|
||
/* Set up the static chain pointer field. */
|
||
mem = adjust_address (m_tramp, ptr_mode, static_chain_offset);
|
||
riscv_emit_move (mem, chain_value);
|
||
|
||
/* Set up the target function field. */
|
||
mem = adjust_address (m_tramp, ptr_mode, target_function_offset);
|
||
riscv_emit_move (mem, XEXP (DECL_RTL (fndecl), 0));
|
||
|
||
/* Flush the code part of the trampoline. */
|
||
emit_insn (gen_add3_insn (end_addr, addr, GEN_INT (TRAMPOLINE_SIZE)));
|
||
emit_insn (gen_clear_cache (addr, end_addr));
|
||
}
|
||
|
||
static bool
|
||
riscv_lra_p (void)
|
||
{
|
||
return riscv_lra_flag;
|
||
}
|
||
|
||
/* Initialize the GCC target structure. */
|
||
#undef TARGET_ASM_ALIGNED_HI_OP
|
||
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
|
||
#undef TARGET_ASM_ALIGNED_SI_OP
|
||
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
|
||
#undef TARGET_ASM_ALIGNED_DI_OP
|
||
#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
|
||
|
||
#undef TARGET_OPTION_OVERRIDE
|
||
#define TARGET_OPTION_OVERRIDE riscv_option_override
|
||
|
||
#undef TARGET_LEGITIMIZE_ADDRESS
|
||
#define TARGET_LEGITIMIZE_ADDRESS riscv_legitimize_address
|
||
|
||
#undef TARGET_SCHED_ADJUST_COST
|
||
#define TARGET_SCHED_ADJUST_COST riscv_adjust_cost
|
||
#undef TARGET_SCHED_ISSUE_RATE
|
||
#define TARGET_SCHED_ISSUE_RATE riscv_issue_rate
|
||
|
||
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
|
||
#define TARGET_FUNCTION_OK_FOR_SIBCALL hook_bool_tree_tree_true
|
||
|
||
#undef TARGET_REGISTER_MOVE_COST
|
||
#define TARGET_REGISTER_MOVE_COST riscv_register_move_cost
|
||
#undef TARGET_MEMORY_MOVE_COST
|
||
#define TARGET_MEMORY_MOVE_COST riscv_memory_move_cost
|
||
#undef TARGET_RTX_COSTS
|
||
#define TARGET_RTX_COSTS riscv_rtx_costs
|
||
#undef TARGET_ADDRESS_COST
|
||
#define TARGET_ADDRESS_COST riscv_address_cost
|
||
|
||
#undef TARGET_PREFERRED_RELOAD_CLASS
|
||
#define TARGET_PREFERRED_RELOAD_CLASS riscv_preferred_reload_class
|
||
|
||
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
|
||
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
|
||
|
||
#undef TARGET_EXPAND_BUILTIN_VA_START
|
||
#define TARGET_EXPAND_BUILTIN_VA_START riscv_va_start
|
||
|
||
#undef TARGET_PROMOTE_FUNCTION_MODE
|
||
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
|
||
|
||
#undef TARGET_RETURN_IN_MEMORY
|
||
#define TARGET_RETURN_IN_MEMORY riscv_return_in_memory
|
||
|
||
#undef TARGET_ASM_OUTPUT_MI_THUNK
|
||
#define TARGET_ASM_OUTPUT_MI_THUNK riscv_output_mi_thunk
|
||
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
|
||
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
|
||
|
||
#undef TARGET_PRINT_OPERAND
|
||
#define TARGET_PRINT_OPERAND riscv_print_operand
|
||
#undef TARGET_PRINT_OPERAND_ADDRESS
|
||
#define TARGET_PRINT_OPERAND_ADDRESS riscv_print_operand_address
|
||
|
||
#undef TARGET_SETUP_INCOMING_VARARGS
|
||
#define TARGET_SETUP_INCOMING_VARARGS riscv_setup_incoming_varargs
|
||
#undef TARGET_STRICT_ARGUMENT_NAMING
|
||
#define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
|
||
#undef TARGET_MUST_PASS_IN_STACK
|
||
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
|
||
#undef TARGET_PASS_BY_REFERENCE
|
||
#define TARGET_PASS_BY_REFERENCE riscv_pass_by_reference
|
||
#undef TARGET_ARG_PARTIAL_BYTES
|
||
#define TARGET_ARG_PARTIAL_BYTES riscv_arg_partial_bytes
|
||
#undef TARGET_FUNCTION_ARG
|
||
#define TARGET_FUNCTION_ARG riscv_function_arg
|
||
#undef TARGET_FUNCTION_ARG_ADVANCE
|
||
#define TARGET_FUNCTION_ARG_ADVANCE riscv_function_arg_advance
|
||
#undef TARGET_FUNCTION_ARG_BOUNDARY
|
||
#define TARGET_FUNCTION_ARG_BOUNDARY riscv_function_arg_boundary
|
||
|
||
#undef TARGET_MODE_REP_EXTENDED
|
||
#define TARGET_MODE_REP_EXTENDED riscv_mode_rep_extended
|
||
|
||
#undef TARGET_SCALAR_MODE_SUPPORTED_P
|
||
#define TARGET_SCALAR_MODE_SUPPORTED_P riscv_scalar_mode_supported_p
|
||
|
||
#undef TARGET_INIT_BUILTINS
|
||
#define TARGET_INIT_BUILTINS riscv_init_builtins
|
||
#undef TARGET_BUILTIN_DECL
|
||
#define TARGET_BUILTIN_DECL riscv_builtin_decl
|
||
#undef TARGET_EXPAND_BUILTIN
|
||
#define TARGET_EXPAND_BUILTIN riscv_expand_builtin
|
||
|
||
#undef TARGET_HAVE_TLS
|
||
#define TARGET_HAVE_TLS HAVE_AS_TLS
|
||
|
||
#undef TARGET_CANNOT_FORCE_CONST_MEM
|
||
#define TARGET_CANNOT_FORCE_CONST_MEM riscv_cannot_force_const_mem
|
||
|
||
#undef TARGET_LEGITIMATE_CONSTANT_P
|
||
#define TARGET_LEGITIMATE_CONSTANT_P riscv_legitimate_constant_p
|
||
|
||
#undef TARGET_USE_BLOCKS_FOR_CONSTANT_P
|
||
#define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true
|
||
|
||
#ifdef HAVE_AS_DTPRELWORD
|
||
#undef TARGET_ASM_OUTPUT_DWARF_DTPREL
|
||
#define TARGET_ASM_OUTPUT_DWARF_DTPREL riscv_output_dwarf_dtprel
|
||
#endif
|
||
|
||
#undef TARGET_LEGITIMATE_ADDRESS_P
|
||
#define TARGET_LEGITIMATE_ADDRESS_P riscv_legitimate_address_p
|
||
|
||
#undef TARGET_CAN_ELIMINATE
|
||
#define TARGET_CAN_ELIMINATE riscv_can_eliminate
|
||
|
||
#undef TARGET_CONDITIONAL_REGISTER_USAGE
|
||
#define TARGET_CONDITIONAL_REGISTER_USAGE riscv_conditional_register_usage
|
||
|
||
#undef TARGET_TRAMPOLINE_INIT
|
||
#define TARGET_TRAMPOLINE_INIT riscv_trampoline_init
|
||
|
||
#undef TARGET_IN_SMALL_DATA_P
|
||
#define TARGET_IN_SMALL_DATA_P riscv_in_small_data_p
|
||
|
||
#undef TARGET_ASM_SELECT_RTX_SECTION
|
||
#define TARGET_ASM_SELECT_RTX_SECTION riscv_elf_select_rtx_section
|
||
|
||
#undef TARGET_MIN_ANCHOR_OFFSET
|
||
#define TARGET_MIN_ANCHOR_OFFSET (-RISCV_IMM_REACH/2)
|
||
|
||
#undef TARGET_MAX_ANCHOR_OFFSET
|
||
#define TARGET_MAX_ANCHOR_OFFSET (RISCV_IMM_REACH/2-1)
|
||
|
||
#undef TARGET_LRA_P
|
||
#define TARGET_LRA_P riscv_lra_p
|
||
|
||
struct gcc_target targetm = TARGET_INITIALIZER;
|
||
|
||
#include "gt-riscv.h"
|