mirror of
https://github.com/Stichting-MINIX-Research-Foundation/netbsd.git
synced 2025-09-12 00:24:52 -04:00
1133 lines
40 KiB
C++
1133 lines
40 KiB
C++
/* Definition of RISC-V target for GNU compiler.
|
||
Copyright (C) 2011-2014 Free Software Foundation, Inc.
|
||
Contributed by Andrew Waterman (waterman@cs.berkeley.edu) at UC Berkeley.
|
||
Based on MIPS target for GNU compiler.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* TARGET_HARD_FLOAT and TARGET_SOFT_FLOAT reflect whether the FPU is
|
||
directly accessible, while the command-line options select
|
||
TARGET_HARD_FLOAT_ABI and TARGET_SOFT_FLOAT_ABI to reflect the ABI
|
||
in use. */
|
||
#define TARGET_HARD_FLOAT TARGET_HARD_FLOAT_ABI
|
||
#define TARGET_SOFT_FLOAT TARGET_SOFT_FLOAT_ABI
|
||
|
||
/* Target CPU builtins. */
|
||
#define TARGET_CPU_CPP_BUILTINS() \
|
||
do \
|
||
{ \
|
||
builtin_assert ("machine=riscv"); \
|
||
\
|
||
builtin_assert ("cpu=riscv"); \
|
||
builtin_define ("__riscv__"); \
|
||
builtin_define ("__riscv"); \
|
||
builtin_define ("_riscv"); \
|
||
\
|
||
if (TARGET_64BIT) \
|
||
{ \
|
||
builtin_define ("__riscv64"); \
|
||
builtin_define ("_RISCV_SIM=_ABI64"); \
|
||
} \
|
||
else \
|
||
builtin_define ("_RISCV_SIM=_ABI32"); \
|
||
\
|
||
builtin_define ("_ABI32=1"); \
|
||
builtin_define ("_ABI64=3"); \
|
||
\
|
||
\
|
||
builtin_define_with_int_value ("_RISCV_SZINT", INT_TYPE_SIZE); \
|
||
builtin_define_with_int_value ("_RISCV_SZLONG", LONG_TYPE_SIZE); \
|
||
builtin_define_with_int_value ("_RISCV_SZPTR", POINTER_SIZE); \
|
||
builtin_define_with_int_value ("_RISCV_FPSET", 32); \
|
||
\
|
||
if (TARGET_ATOMIC) { \
|
||
builtin_define ("__riscv_atomic"); \
|
||
} \
|
||
\
|
||
/* These defines reflect the ABI in use, not whether the \
|
||
FPU is directly accessible. */ \
|
||
if (TARGET_HARD_FLOAT_ABI) { \
|
||
builtin_define ("__riscv_hard_float"); \
|
||
if (TARGET_FDIV) { \
|
||
builtin_define ("__riscv_fdiv"); \
|
||
builtin_define ("__riscv_fsqrt"); \
|
||
} \
|
||
} else \
|
||
builtin_define ("__riscv_soft_float"); \
|
||
\
|
||
/* The base RISC-V ISA is always little-endian. */ \
|
||
builtin_define_std ("RISCVEL"); \
|
||
builtin_define ("_RISCVEL"); \
|
||
\
|
||
/* Macros dependent on the C dialect. */ \
|
||
if (preprocessing_asm_p ()) \
|
||
{ \
|
||
builtin_define_std ("LANGUAGE_ASSEMBLY"); \
|
||
builtin_define ("_LANGUAGE_ASSEMBLY"); \
|
||
} \
|
||
else if (c_dialect_cxx ()) \
|
||
{ \
|
||
builtin_define ("_LANGUAGE_C_PLUS_PLUS"); \
|
||
builtin_define ("__LANGUAGE_C_PLUS_PLUS"); \
|
||
builtin_define ("__LANGUAGE_C_PLUS_PLUS__"); \
|
||
} \
|
||
else \
|
||
{ \
|
||
builtin_define_std ("LANGUAGE_C"); \
|
||
builtin_define ("_LANGUAGE_C"); \
|
||
} \
|
||
if (c_dialect_objc ()) \
|
||
{ \
|
||
builtin_define ("_LANGUAGE_OBJECTIVE_C"); \
|
||
builtin_define ("__LANGUAGE_OBJECTIVE_C"); \
|
||
/* Bizarre, but needed at least for Irix. */ \
|
||
builtin_define_std ("LANGUAGE_C"); \
|
||
builtin_define ("_LANGUAGE_C"); \
|
||
} \
|
||
if (riscv_cmodel == CM_MEDANY) \
|
||
builtin_define ("_RISCV_CMODEL_MEDANY"); \
|
||
} \
|
||
while (0)
|
||
|
||
/* Default target_flags if no switches are specified */
|
||
|
||
#ifndef TARGET_DEFAULT
|
||
#define TARGET_DEFAULT 0
|
||
#endif
|
||
|
||
#ifndef RISCV_ARCH_STRING_DEFAULT
|
||
#define RISCV_ARCH_STRING_DEFAULT "IMAFD"
|
||
#endif
|
||
|
||
#ifndef RISCV_TUNE_STRING_DEFAULT
|
||
#define RISCV_TUNE_STRING_DEFAULT "rocket"
|
||
#endif
|
||
|
||
#ifndef TARGET_64BIT_DEFAULT
|
||
#define TARGET_64BIT_DEFAULT 1
|
||
#endif
|
||
|
||
#if TARGET_64BIT_DEFAULT
|
||
# define MULTILIB_ARCH_DEFAULT "m64"
|
||
# define OPT_ARCH64 "!m32"
|
||
# define OPT_ARCH32 "m32"
|
||
#else
|
||
# define MULTILIB_ARCH_DEFAULT "m32"
|
||
# define OPT_ARCH64 "m64"
|
||
# define OPT_ARCH32 "!m64"
|
||
#endif
|
||
|
||
#ifndef MULTILIB_DEFAULTS
|
||
#define MULTILIB_DEFAULTS \
|
||
{ MULTILIB_ARCH_DEFAULT }
|
||
#endif
|
||
|
||
|
||
/* Support for a compile-time default CPU, et cetera. The rules are:
|
||
--with-arch is ignored if -march is specified.
|
||
--with-tune is ignored if -mtune is specified.
|
||
--with-float is ignored if -mhard-float or -msoft-float are specified. */
|
||
#define OPTION_DEFAULT_SPECS \
|
||
{"arch_32", "%{" OPT_ARCH32 ":%{m32}}" }, \
|
||
{"arch_64", "%{" OPT_ARCH64 ":%{m64}}" }, \
|
||
{"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
|
||
{"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
|
||
|
||
#define DRIVER_SELF_SPECS ""
|
||
|
||
#ifdef IN_LIBGCC2
|
||
#undef TARGET_64BIT
|
||
/* Make this compile time constant for libgcc2 */
|
||
#ifdef __riscv64
|
||
#define TARGET_64BIT 1
|
||
#else
|
||
#define TARGET_64BIT 0
|
||
#endif
|
||
#endif /* IN_LIBGCC2 */
|
||
|
||
/* Tell collect what flags to pass to nm. */
|
||
#ifndef NM_FLAGS
|
||
#define NM_FLAGS "-Bn"
|
||
#endif
|
||
|
||
#undef ASM_SPEC
|
||
#define ASM_SPEC "\
|
||
%(subtarget_asm_debugging_spec) \
|
||
%{m32} %{m64} %{!m32:%{!m64: %(asm_abi_default_spec)}} \
|
||
%{fPIC|fpic|fPIE|fpie:-fpic} \
|
||
%{march=*} \
|
||
%(subtarget_asm_spec)"
|
||
|
||
/* Extra switches sometimes passed to the linker. */
|
||
|
||
#ifndef LINK_SPEC
|
||
#define LINK_SPEC "\
|
||
%{!T:-dT riscv.ld} \
|
||
%{m64:-melf64lriscv} \
|
||
%{m32:-melf32lriscv} \
|
||
%{shared}"
|
||
#endif /* LINK_SPEC defined */
|
||
|
||
/* This macro defines names of additional specifications to put in the specs
|
||
that can be used in various specifications like CC1_SPEC. Its definition
|
||
is an initializer with a subgrouping for each command option.
|
||
|
||
Each subgrouping contains a string constant, that defines the
|
||
specification name, and a string constant that used by the GCC driver
|
||
program.
|
||
|
||
Do not define this macro if it does not need to do anything. */
|
||
|
||
#define EXTRA_SPECS \
|
||
{ "asm_abi_default_spec", "-" MULTILIB_ARCH_DEFAULT }, \
|
||
SUBTARGET_EXTRA_SPECS
|
||
|
||
#ifndef SUBTARGET_EXTRA_SPECS
|
||
#define SUBTARGET_EXTRA_SPECS
|
||
#endif
|
||
|
||
#define TARGET_DEFAULT_CMODEL CM_MEDLOW
|
||
|
||
/* By default, turn on GDB extensions. */
|
||
#define DEFAULT_GDB_EXTENSIONS 1
|
||
|
||
#define LOCAL_LABEL_PREFIX "."
|
||
#define USER_LABEL_PREFIX ""
|
||
|
||
#define DWARF2_DEBUGGING_INFO 1
|
||
#define DWARF2_ASM_LINE_DEBUG_INFO 0
|
||
|
||
/* The mapping from gcc register number to DWARF 2 CFA column number. */
|
||
#define DWARF_FRAME_REGNUM(REGNO) \
|
||
(GP_REG_P (REGNO) || FP_REG_P (REGNO) ? REGNO : INVALID_REGNUM)
|
||
|
||
/* The DWARF 2 CFA column which tracks the return address. */
|
||
#define DWARF_FRAME_RETURN_COLUMN RETURN_ADDR_REGNUM
|
||
|
||
/* Don't emit .cfi_sections, as it does not work */
|
||
#undef HAVE_GAS_CFI_SECTIONS_DIRECTIVE
|
||
#define HAVE_GAS_CFI_SECTIONS_DIRECTIVE 0
|
||
|
||
/* Before the prologue, RA lives in r31. */
|
||
#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (VOIDmode, RETURN_ADDR_REGNUM)
|
||
|
||
/* Describe how we implement __builtin_eh_return. */
|
||
#define EH_RETURN_DATA_REGNO(N) \
|
||
((N) < 4 ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
|
||
|
||
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_ARG_FIRST + 4)
|
||
|
||
/* Target machine storage layout */
|
||
|
||
#define BITS_BIG_ENDIAN 0
|
||
#define BYTES_BIG_ENDIAN 0
|
||
#define WORDS_BIG_ENDIAN 0
|
||
|
||
#define MAX_BITS_PER_WORD 64
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
|
||
#ifndef IN_LIBGCC2
|
||
#define MIN_UNITS_PER_WORD 4
|
||
#endif
|
||
|
||
/* We currently require both or neither of the `F' and `D' extensions. */
|
||
#define UNITS_PER_FPREG 8
|
||
|
||
/* If FP regs aren't wide enough for a given FP argument, it is passed in
|
||
integer registers. */
|
||
#define MIN_FPRS_PER_FMT 1
|
||
|
||
/* The largest size of value that can be held in floating-point
|
||
registers and moved with a single instruction. */
|
||
#define UNITS_PER_HWFPVALUE \
|
||
(TARGET_SOFT_FLOAT_ABI ? 0 : UNITS_PER_FPREG)
|
||
|
||
/* The largest size of value that can be held in floating-point
|
||
registers. */
|
||
#define UNITS_PER_FPVALUE \
|
||
(TARGET_SOFT_FLOAT_ABI ? 0 \
|
||
: LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
|
||
|
||
/* The number of bytes in a double. */
|
||
#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
|
||
|
||
/* Set the sizes of the core types. */
|
||
#define SHORT_TYPE_SIZE 16
|
||
#define INT_TYPE_SIZE 32
|
||
#define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
|
||
#define LONG_LONG_TYPE_SIZE 64
|
||
|
||
#define FLOAT_TYPE_SIZE 32
|
||
#define DOUBLE_TYPE_SIZE 64
|
||
/* XXX The ABI says long doubles are IEEE-754-2008 float128s. */
|
||
#define LONG_DOUBLE_TYPE_SIZE 64
|
||
|
||
#ifdef IN_LIBGCC2
|
||
# define LIBGCC2_LONG_DOUBLE_TYPE_SIZE LONG_DOUBLE_TYPE_SIZE
|
||
#endif
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY BITS_PER_WORD
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
/* There is no point aligning anything to a rounder boundary than this. */
|
||
#define BIGGEST_ALIGNMENT 128
|
||
|
||
/* All accesses must be aligned. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* Define this if you wish to imitate the way many other C compilers
|
||
handle alignment of bitfields and the structures that contain
|
||
them.
|
||
|
||
The behavior is that the type written for a bit-field (`int',
|
||
`short', or other integer type) imposes an alignment for the
|
||
entire structure, as if the structure really did contain an
|
||
ordinary field of that type. In addition, the bit-field is placed
|
||
within the structure so that it would fit within such a field,
|
||
not crossing a boundary for it.
|
||
|
||
Thus, on most machines, a bit-field whose type is written as `int'
|
||
would not cross a four-byte boundary, and would force four-byte
|
||
alignment for the whole structure. (The alignment used may not
|
||
be four bytes; it is controlled by the other alignment
|
||
parameters.)
|
||
|
||
If the macro is defined, its definition should be a C expression;
|
||
a nonzero value for the expression enables this behavior. */
|
||
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* If defined, a C expression to compute the alignment given to a
|
||
constant that is being placed in memory. CONSTANT is the constant
|
||
and ALIGN is the alignment that the object would ordinarily have.
|
||
The value of this macro is used instead of that alignment to align
|
||
the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
The typical use of this macro is to increase alignment for string
|
||
constants to be word aligned so that `strcpy' calls that copy
|
||
constants can be done inline. */
|
||
|
||
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
||
((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
|
||
&& (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
|
||
|
||
/* If defined, a C expression to compute the alignment for a static
|
||
variable. TYPE is the data type, and ALIGN is the alignment that
|
||
the object would ordinarily have. The value of this macro is used
|
||
instead of that alignment to align the object.
|
||
|
||
If this macro is not defined, then ALIGN is used.
|
||
|
||
One use of this macro is to increase alignment of medium-size
|
||
data to make it all fit in fewer cache lines. Another is to
|
||
cause character arrays to be word-aligned so that `strcpy' calls
|
||
that copy constants to character arrays can be done inline. */
|
||
|
||
#undef DATA_ALIGNMENT
|
||
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
||
((((ALIGN) < BITS_PER_WORD) \
|
||
&& (TREE_CODE (TYPE) == ARRAY_TYPE \
|
||
|| TREE_CODE (TYPE) == UNION_TYPE \
|
||
|| TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
|
||
|
||
/* We need this for the same reason as DATA_ALIGNMENT, namely to cause
|
||
character arrays to be word-aligned so that `strcpy' calls that copy
|
||
constants to character arrays can be done inline, and 'strcmp' can be
|
||
optimised to use word loads. */
|
||
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
|
||
DATA_ALIGNMENT (TYPE, ALIGN)
|
||
|
||
/* Define if operations between registers always perform the operation
|
||
on the full register even if a narrower mode is specified. */
|
||
#define WORD_REGISTER_OPERATIONS
|
||
|
||
/* When in 64-bit mode, move insns will sign extend SImode and CCmode
|
||
moves. All other references are zero extended. */
|
||
#define LOAD_EXTEND_OP(MODE) \
|
||
(TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
|
||
? SIGN_EXTEND : ZERO_EXTEND)
|
||
|
||
/* Define this macro if it is advisable to hold scalars in registers
|
||
in a wider mode than that declared by the program. In such cases,
|
||
the value is constrained to be within the bounds of the declared
|
||
type, but kept valid in the wider mode. The signedness of the
|
||
extension may differ from that of the type. */
|
||
|
||
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
|
||
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
||
&& GET_MODE_SIZE (MODE) < 4) \
|
||
{ \
|
||
(MODE) = Pmode; \
|
||
}
|
||
|
||
/* Pmode is always the same as ptr_mode, but not always the same as word_mode.
|
||
Extensions of pointers to word_mode must be signed. */
|
||
#define POINTERS_EXTEND_UNSIGNED false
|
||
|
||
/* RV32 double-precision FP <-> integer moves go through memory */
|
||
#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
|
||
(!TARGET_64BIT && GET_MODE_SIZE (MODE) == 8 && \
|
||
(((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
|
||
|| ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)))
|
||
|
||
/* Define if loading short immediate values into registers sign extends. */
|
||
#define SHORT_IMMEDIATES_SIGN_EXTEND
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of hardware registers. We have:
|
||
|
||
- 32 integer registers
|
||
- 32 floating point registers
|
||
- 32 vector integer registers
|
||
- 32 vector floating point registers
|
||
- 2 fake registers:
|
||
- ARG_POINTER_REGNUM
|
||
- FRAME_POINTER_REGNUM */
|
||
|
||
#define FIRST_PSEUDO_REGISTER 66
|
||
|
||
/* x0, sp, gp, and tp are fixed. */
|
||
|
||
#define FIXED_REGISTERS \
|
||
{ /* General registers. */ \
|
||
1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* Floating-point registers. */ \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
|
||
/* Others. */ \
|
||
1, 1 \
|
||
}
|
||
|
||
|
||
/* a0-a7, t0-a6, fa0-fa7, and ft0-ft11 are volatile across calls.
|
||
The call RTLs themselves clobber ra. */
|
||
|
||
#define CALL_USED_REGISTERS \
|
||
{ /* General registers. */ \
|
||
1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
|
||
/* Floating-point registers. */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
|
||
/* Others. */ \
|
||
1, 1 \
|
||
}
|
||
|
||
#define CALL_REALLY_USED_REGISTERS \
|
||
{ /* General registers. */ \
|
||
1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
|
||
/* Floating-point registers. */ \
|
||
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, \
|
||
/* Others. */ \
|
||
1, 1 \
|
||
}
|
||
|
||
/* Internal macros to classify an ISA register's type. */
|
||
|
||
#define GP_REG_FIRST 0
|
||
#define GP_REG_LAST 31
|
||
#define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
|
||
|
||
#define FP_REG_FIRST 32
|
||
#define FP_REG_LAST 63
|
||
#define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
|
||
|
||
/* The DWARF 2 CFA column which tracks the return address from a
|
||
signal handler context. This means that to maintain backwards
|
||
compatibility, no hard register can be assigned this column if it
|
||
would need to be handled by the DWARF unwinder. */
|
||
#define DWARF_ALT_FRAME_RETURN_COLUMN 64
|
||
|
||
#define GP_REG_P(REGNO) \
|
||
((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
|
||
#define FP_REG_P(REGNO) \
|
||
((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
|
||
|
||
#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
|
||
|
||
/* Return coprocessor number from register number. */
|
||
|
||
#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO) \
|
||
(COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2' \
|
||
: COP3_REG_P (REGNO) ? '3' : '?')
|
||
|
||
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) riscv_hard_regno_nregs (REGNO, MODE)
|
||
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
riscv_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
|
||
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
((MODE1) == (MODE2) || (GET_MODE_CLASS (MODE1) == MODE_INT \
|
||
&& GET_MODE_CLASS (MODE2) == MODE_INT))
|
||
|
||
/* Use s0 as the frame pointer if it is so requested. */
|
||
#define HARD_FRAME_POINTER_REGNUM 8
|
||
#define STACK_POINTER_REGNUM 2
|
||
#define THREAD_POINTER_REGNUM 4
|
||
|
||
/* These two registers don't really exist: they get eliminated to either
|
||
the stack or hard frame pointer. */
|
||
#define ARG_POINTER_REGNUM 64
|
||
#define FRAME_POINTER_REGNUM 65
|
||
|
||
#define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
|
||
#define HARD_FRAME_POINTER_IS_ARG_POINTER 0
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
#define STATIC_CHAIN_REGNUM GP_TEMP_FIRST
|
||
|
||
/* Registers used as temporaries in prologue/epilogue code.
|
||
|
||
The prologue registers mustn't conflict with any
|
||
incoming arguments, the static chain pointer, or the frame pointer.
|
||
The epilogue temporary mustn't conflict with the return registers,
|
||
the frame pointer, the EH stack adjustment, or the EH data registers. */
|
||
|
||
#define RISCV_PROLOGUE_TEMP_REGNUM (GP_TEMP_FIRST + 1)
|
||
#define RISCV_EPILOGUE_TEMP_REGNUM RISCV_PROLOGUE_TEMP_REGNUM
|
||
|
||
#define RISCV_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_PROLOGUE_TEMP_REGNUM)
|
||
#define RISCV_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, RISCV_EPILOGUE_TEMP_REGNUM)
|
||
|
||
#define FUNCTION_PROFILER(STREAM, LABELNO) \
|
||
{ \
|
||
sorry ("profiler support for RISC-V"); \
|
||
}
|
||
|
||
/* Define this macro if it is as good or better to call a constant
|
||
function address than to call an address kept in a register. */
|
||
#define NO_FUNCTION_CSE 1
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
enum reg_class
|
||
{
|
||
NO_REGS, /* no registers in set */
|
||
T_REGS, /* registers used by indirect sibcalls */
|
||
GR_REGS, /* integer registers */
|
||
FP_REGS, /* floating point registers */
|
||
FRAME_REGS, /* $arg and $frame */
|
||
ALL_REGS, /* all registers */
|
||
LIM_REG_CLASSES /* max value + 1 */
|
||
};
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
#define GENERAL_REGS GR_REGS
|
||
|
||
/* An initializer containing the names of the register classes as C
|
||
string constants. These names are used in writing some of the
|
||
debugging dumps. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{ \
|
||
"NO_REGS", \
|
||
"T_REGS", \
|
||
"GR_REGS", \
|
||
"FP_REGS", \
|
||
"FRAME_REGS", \
|
||
"ALL_REGS" \
|
||
}
|
||
|
||
/* An initializer containing the contents of the register classes,
|
||
as integers which are bit masks. The Nth integer specifies the
|
||
contents of class N. The way the integer MASK is interpreted is
|
||
that register R is in the class if `MASK & (1 << R)' is 1.
|
||
|
||
When the machine has more than 32 registers, an integer does not
|
||
suffice. Then the integers are replaced by sub-initializers,
|
||
braced groupings containing several integers. Each
|
||
sub-initializer must be suitable as an initializer for the type
|
||
`HARD_REG_SET' which is defined in `hard-reg-set.h'. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
{ 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
|
||
{ 0xf00000e0, 0x00000000, 0x00000000 }, /* T_REGS */ \
|
||
{ 0xffffffff, 0x00000000, 0x00000000 }, /* GR_REGS */ \
|
||
{ 0x00000000, 0xffffffff, 0x00000000 }, /* FP_REGS */ \
|
||
{ 0x00000000, 0x00000000, 0x00000003 }, /* FRAME_REGS */ \
|
||
{ 0xffffffff, 0xffffffff, 0x00000003 } /* ALL_REGS */ \
|
||
}
|
||
|
||
/* A C expression whose value is a register class containing hard
|
||
register REGNO. In general there is more that one such class;
|
||
choose a class which is "minimal", meaning that no smaller class
|
||
also contains the register. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) riscv_regno_to_class[ (REGNO) ]
|
||
|
||
/* A macro whose definition is the name of the class to which a
|
||
valid base register must belong. A base register is one used in
|
||
an address which is the register value plus a displacement. */
|
||
|
||
#define BASE_REG_CLASS GR_REGS
|
||
|
||
/* A macro whose definition is the name of the class to which a
|
||
valid index register must belong. An index register is one used
|
||
in an address where its value is either multiplied by a scale
|
||
factor or added to another register (as well as added to a
|
||
displacement). */
|
||
|
||
#define INDEX_REG_CLASS NO_REGS
|
||
|
||
/* We generally want to put call-clobbered registers ahead of
|
||
call-saved ones. (IRA expects this.) */
|
||
|
||
#define REG_ALLOC_ORDER \
|
||
{ \
|
||
/* Call-clobbered GPRs. */ \
|
||
15, 14, 13, 12, 11, 10, 16, 17, 5, 6, 7, 28, 29, 30, 31, 1, \
|
||
/* Call-saved GPRs. */ \
|
||
8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, \
|
||
/* GPRs that can never be exposed to the register allocator. */ \
|
||
0, 2, 3, 4, \
|
||
/* Call-clobbered FPRs. */ \
|
||
32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, \
|
||
60, 61, 62, 63, \
|
||
/* Call-saved FPRs. */ \
|
||
40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, \
|
||
/* None of the remaining classes have defined call-saved \
|
||
registers. */ \
|
||
64, 65 \
|
||
}
|
||
|
||
/* True if VALUE is a signed 16-bit number. */
|
||
|
||
#include "opcode-riscv.h"
|
||
#define SMALL_OPERAND(VALUE) \
|
||
((unsigned HOST_WIDE_INT) (VALUE) + RISCV_IMM_REACH/2 < RISCV_IMM_REACH)
|
||
|
||
/* True if VALUE can be loaded into a register using LUI. */
|
||
|
||
#define LUI_OPERAND(VALUE) \
|
||
(((VALUE) | ((1UL<<31) - RISCV_IMM_REACH)) == ((1UL<<31) - RISCV_IMM_REACH) \
|
||
|| ((VALUE) | ((1UL<<31) - RISCV_IMM_REACH)) + RISCV_IMM_REACH == 0)
|
||
|
||
/* Return a value X with the low 16 bits clear, and such that
|
||
VALUE - X is a signed 16-bit value. */
|
||
|
||
#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
|
||
#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
|
||
|
||
/* The HI and LO registers can only be reloaded via the general
|
||
registers. Condition code registers can only be loaded to the
|
||
general registers, and from the floating point registers. */
|
||
|
||
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
riscv_secondary_reload_class (CLASS, MODE, X, true)
|
||
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
|
||
riscv_secondary_reload_class (CLASS, MODE, X, false)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) riscv_class_max_nregs (CLASS, MODE)
|
||
|
||
/* It is undefined to interpret an FP register in a different format than
|
||
that which it was created to be. */
|
||
|
||
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
|
||
reg_classes_intersect_p (FP_REGS, CLASS)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
#define FRAME_GROWS_DOWNWARD 1
|
||
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
#define RETURN_ADDR_RTX riscv_return_addr
|
||
|
||
#define ELIMINABLE_REGS \
|
||
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
||
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
||
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
|
||
|
||
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
||
(OFFSET) = riscv_initial_elimination_offset (FROM, TO)
|
||
|
||
/* Allocate stack space for arguments at the beginning of each function. */
|
||
#define ACCUMULATE_OUTGOING_ARGS 1
|
||
|
||
/* The argument pointer always points to the first argument. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) 0
|
||
|
||
#define REG_PARM_STACK_SPACE(FNDECL) 0
|
||
|
||
/* Define this if it is the responsibility of the caller to
|
||
allocate the area reserved for arguments passed in registers.
|
||
If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
|
||
of this macro is to determine whether the space is included in
|
||
`crtl->outgoing_args_size'. */
|
||
#define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
|
||
|
||
#define STACK_BOUNDARY 128
|
||
|
||
/* Symbolic macros for the registers used to return integer and floating
|
||
point values. */
|
||
|
||
#define GP_RETURN GP_ARG_FIRST
|
||
#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : FP_ARG_FIRST)
|
||
|
||
#define MAX_ARGS_IN_REGISTERS 8
|
||
|
||
/* Symbolic macros for the first/last argument registers. */
|
||
|
||
#define GP_ARG_FIRST (GP_REG_FIRST + 10)
|
||
#define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
|
||
#define GP_TEMP_FIRST (GP_REG_FIRST + 5)
|
||
#define FP_ARG_FIRST (FP_REG_FIRST + 10)
|
||
#define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
riscv_function_value (NULL_TREE, NULL_TREE, MODE)
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
riscv_function_value (VALTYPE, FUNC, VOIDmode)
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN)
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
We have no FP argument registers when soft-float. When FP registers
|
||
are 32 bits, we can't directly reference the odd numbered ones. */
|
||
|
||
/* Accept arguments in a0-a7 and/or fa0-fa7. */
|
||
#define FUNCTION_ARG_REGNO_P(N) \
|
||
(IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST) \
|
||
|| IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST))
|
||
|
||
/* The ABI views the arguments as a structure, of which the first 8
|
||
words go in registers and the rest go on the stack. If I < 8, N, the Ith
|
||
word might go in the Ith integer argument register or the Ith
|
||
floating-point argument register. */
|
||
|
||
typedef struct {
|
||
/* Number of integer registers used so far, up to MAX_ARGS_IN_REGISTERS. */
|
||
unsigned int num_gprs;
|
||
|
||
/* Number of words passed on the stack. */
|
||
unsigned int stack_words;
|
||
} CUMULATIVE_ARGS;
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
|
||
memset (&(CUM), 0, sizeof (CUM))
|
||
|
||
#define EPILOGUE_USES(REGNO) ((REGNO) == RETURN_ADDR_REGNUM)
|
||
|
||
/* ABI requires 16-byte alignment, even on ven on RV32. */
|
||
#define RISCV_STACK_ALIGN(LOC) (((LOC) + 15) & -16)
|
||
|
||
#define NO_PROFILE_COUNTERS 1
|
||
|
||
/* Define this macro if the code for function profiling should come
|
||
before the function prologue. Normally, the profiling code comes
|
||
after. */
|
||
|
||
/* #define PROFILE_BEFORE_PROLOGUE */
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
|
||
/* Trampolines are a block of code followed by two pointers. */
|
||
|
||
#define TRAMPOLINE_CODE_SIZE 16
|
||
#define TRAMPOLINE_SIZE (TRAMPOLINE_CODE_SIZE + POINTER_SIZE * 2)
|
||
#define TRAMPOLINE_ALIGNMENT POINTER_SIZE
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
|
||
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
|
||
riscv_regno_mode_ok_for_base_p (REGNO, MODE, 1)
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects them all.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Some source files that are used after register allocation
|
||
need to be strict. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
|
||
#else
|
||
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
|
||
riscv_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
|
||
#endif
|
||
|
||
#define REG_OK_FOR_INDEX_P(X) 0
|
||
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 1
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(CONSTANT_P (X) && memory_address_p (SImode, X))
|
||
|
||
/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
|
||
'the start of the function that this code is output in'. */
|
||
|
||
#define ASM_OUTPUT_LABELREF(FILE,NAME) \
|
||
if (strcmp (NAME, "..CURRENT_FUNCTION") == 0) \
|
||
asm_fprintf ((FILE), "%U%s", \
|
||
XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0)); \
|
||
else \
|
||
asm_fprintf ((FILE), "%U%s", (NAME))
|
||
|
||
/* This flag marks functions that cannot be lazily bound. */
|
||
#define SYMBOL_FLAG_BIND_NOW (SYMBOL_FLAG_MACH_DEP << 1)
|
||
#define SYMBOL_REF_BIND_NOW_P(RTX) \
|
||
((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_BIND_NOW) != 0)
|
||
|
||
#define JUMP_TABLES_IN_TEXT_SECTION 0
|
||
#define CASE_VECTOR_MODE SImode
|
||
#define CASE_VECTOR_PC_RELATIVE (riscv_cmodel != CM_MEDLOW)
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 0
|
||
|
||
/* Consider using fld/fsd to move 8 bytes at a time for RV32IFD. */
|
||
#define MOVE_MAX UNITS_PER_WORD
|
||
#define MAX_MOVE_MAX 8
|
||
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
#define SHIFT_COUNT_TRUNCATED 1
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
|
||
(TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) < 32) : 1)
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
|
||
#ifndef Pmode
|
||
#define Pmode (TARGET_64BIT ? DImode : SImode)
|
||
#endif
|
||
|
||
/* Give call MEMs SImode since it is the "most permissive" mode
|
||
for both 32-bit and 64-bit targets. */
|
||
|
||
#define FUNCTION_MODE SImode
|
||
|
||
/* A C expression for the cost of a branch instruction. A value of 2
|
||
seems to minimize code size. */
|
||
|
||
#define BRANCH_COST(speed_p, predictable_p) \
|
||
((!(speed_p) || (predictable_p)) ? 2 : riscv_branch_cost)
|
||
|
||
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#ifndef ASM_APP_ON
|
||
#define ASM_APP_ON " #APP\n"
|
||
#endif
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#ifndef ASM_APP_OFF
|
||
#define ASM_APP_OFF " #NO_APP\n"
|
||
#endif
|
||
|
||
#define REGISTER_NAMES \
|
||
{ "zero","ra", "sp", "gp", "tp", "t0", "t1", "t2", \
|
||
"s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", \
|
||
"a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", \
|
||
"s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", \
|
||
"ft0", "ft1", "ft2", "ft3", "ft4", "ft5", "ft6", "ft7", \
|
||
"fs0", "fs1", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", \
|
||
"fa6", "fa7", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", \
|
||
"fs8", "fs9", "fs10","fs11","ft8", "ft9", "ft10","ft11", \
|
||
"arg", "frame", }
|
||
|
||
#define ADDITIONAL_REGISTER_NAMES \
|
||
{ \
|
||
{ "x0", 0 + GP_REG_FIRST }, \
|
||
{ "x1", 1 + GP_REG_FIRST }, \
|
||
{ "x2", 2 + GP_REG_FIRST }, \
|
||
{ "x3", 3 + GP_REG_FIRST }, \
|
||
{ "x4", 4 + GP_REG_FIRST }, \
|
||
{ "x5", 5 + GP_REG_FIRST }, \
|
||
{ "x6", 6 + GP_REG_FIRST }, \
|
||
{ "x7", 7 + GP_REG_FIRST }, \
|
||
{ "x8", 8 + GP_REG_FIRST }, \
|
||
{ "x9", 9 + GP_REG_FIRST }, \
|
||
{ "x10", 10 + GP_REG_FIRST }, \
|
||
{ "x11", 11 + GP_REG_FIRST }, \
|
||
{ "x12", 12 + GP_REG_FIRST }, \
|
||
{ "x13", 13 + GP_REG_FIRST }, \
|
||
{ "x14", 14 + GP_REG_FIRST }, \
|
||
{ "x15", 15 + GP_REG_FIRST }, \
|
||
{ "x16", 16 + GP_REG_FIRST }, \
|
||
{ "x17", 17 + GP_REG_FIRST }, \
|
||
{ "x18", 18 + GP_REG_FIRST }, \
|
||
{ "x19", 19 + GP_REG_FIRST }, \
|
||
{ "x20", 20 + GP_REG_FIRST }, \
|
||
{ "x21", 21 + GP_REG_FIRST }, \
|
||
{ "x22", 22 + GP_REG_FIRST }, \
|
||
{ "x23", 23 + GP_REG_FIRST }, \
|
||
{ "x24", 24 + GP_REG_FIRST }, \
|
||
{ "x25", 25 + GP_REG_FIRST }, \
|
||
{ "x26", 26 + GP_REG_FIRST }, \
|
||
{ "x27", 27 + GP_REG_FIRST }, \
|
||
{ "x28", 28 + GP_REG_FIRST }, \
|
||
{ "x29", 29 + GP_REG_FIRST }, \
|
||
{ "x30", 30 + GP_REG_FIRST }, \
|
||
{ "x31", 31 + GP_REG_FIRST }, \
|
||
{ "f0", 0 + FP_REG_FIRST }, \
|
||
{ "f1", 1 + FP_REG_FIRST }, \
|
||
{ "f2", 2 + FP_REG_FIRST }, \
|
||
{ "f3", 3 + FP_REG_FIRST }, \
|
||
{ "f4", 4 + FP_REG_FIRST }, \
|
||
{ "f5", 5 + FP_REG_FIRST }, \
|
||
{ "f6", 6 + FP_REG_FIRST }, \
|
||
{ "f7", 7 + FP_REG_FIRST }, \
|
||
{ "f8", 8 + FP_REG_FIRST }, \
|
||
{ "f9", 9 + FP_REG_FIRST }, \
|
||
{ "f10", 10 + FP_REG_FIRST }, \
|
||
{ "f11", 11 + FP_REG_FIRST }, \
|
||
{ "f12", 12 + FP_REG_FIRST }, \
|
||
{ "f13", 13 + FP_REG_FIRST }, \
|
||
{ "f14", 14 + FP_REG_FIRST }, \
|
||
{ "f15", 15 + FP_REG_FIRST }, \
|
||
{ "f16", 16 + FP_REG_FIRST }, \
|
||
{ "f17", 17 + FP_REG_FIRST }, \
|
||
{ "f18", 18 + FP_REG_FIRST }, \
|
||
{ "f19", 19 + FP_REG_FIRST }, \
|
||
{ "f20", 20 + FP_REG_FIRST }, \
|
||
{ "f21", 21 + FP_REG_FIRST }, \
|
||
{ "f22", 22 + FP_REG_FIRST }, \
|
||
{ "f23", 23 + FP_REG_FIRST }, \
|
||
{ "f24", 24 + FP_REG_FIRST }, \
|
||
{ "f25", 25 + FP_REG_FIRST }, \
|
||
{ "f26", 26 + FP_REG_FIRST }, \
|
||
{ "f27", 27 + FP_REG_FIRST }, \
|
||
{ "f28", 28 + FP_REG_FIRST }, \
|
||
{ "f29", 29 + FP_REG_FIRST }, \
|
||
{ "f30", 30 + FP_REG_FIRST }, \
|
||
{ "f31", 31 + FP_REG_FIRST }, \
|
||
}
|
||
|
||
/* Globalizing directive for a label. */
|
||
#define GLOBAL_ASM_OP "\t.globl\t"
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#undef ASM_GENERATE_INTERNAL_LABEL
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
|
||
|
||
/* This is how to output an element of a case-vector that is absolute. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
|
||
fprintf (STREAM, "\t.word\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE)
|
||
|
||
/* This is how to output an element of a PIC case-vector. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
|
||
fprintf (STREAM, "\t.word\t%sL%d-%sL%d\n", \
|
||
LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL)
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(STREAM,LOG) \
|
||
fprintf (STREAM, "\t.align\t%d\n", (LOG))
|
||
|
||
/* Define the strings to put out for each section in the object file. */
|
||
#define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
|
||
#define DATA_SECTION_ASM_OP "\t.data" /* large data */
|
||
#define READONLY_DATA_SECTION_ASM_OP "\t.section\t.rodata"
|
||
#define BSS_SECTION_ASM_OP "\t.bss"
|
||
#define SBSS_SECTION_ASM_OP "\t.section\t.sbss,\"aw\",@nobits"
|
||
#define SDATA_SECTION_ASM_OP "\t.section\t.sdata,\"aw\",@progbits"
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO) \
|
||
do \
|
||
{ \
|
||
fprintf (STREAM, "\taddi\t%s,%s,-8\n\t%s\t%s,0(%s)\n", \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
TARGET_64BIT ? "sd" : "sw", \
|
||
reg_names[REGNO], \
|
||
reg_names[STACK_POINTER_REGNUM]); \
|
||
} \
|
||
while (0)
|
||
|
||
#define ASM_OUTPUT_REG_POP(STREAM,REGNO) \
|
||
do \
|
||
{ \
|
||
fprintf (STREAM, "\t%s\t%s,0(%s)\n\taddi\t%s,%s,8\n", \
|
||
TARGET_64BIT ? "ld" : "lw", \
|
||
reg_names[REGNO], \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
reg_names[STACK_POINTER_REGNUM], \
|
||
reg_names[STACK_POINTER_REGNUM]); \
|
||
} \
|
||
while (0)
|
||
|
||
#define ASM_COMMENT_START "#"
|
||
|
||
#undef SIZE_TYPE
|
||
#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
|
||
|
||
#undef PTRDIFF_TYPE
|
||
#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
|
||
|
||
/* The maximum number of bytes that can be copied by one iteration of
|
||
a movmemsi loop; see riscv_block_move_loop. */
|
||
#define RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER (UNITS_PER_WORD * 4)
|
||
|
||
/* The maximum number of bytes that can be copied by a straight-line
|
||
implementation of movmemsi; see riscv_block_move_straight. We want
|
||
to make sure that any loop-based implementation will iterate at
|
||
least twice. */
|
||
#define RISCV_MAX_MOVE_BYTES_STRAIGHT (RISCV_MAX_MOVE_BYTES_PER_LOOP_ITER * 2)
|
||
|
||
/* The base cost of a memcpy call, for MOVE_RATIO and friends. */
|
||
|
||
#define RISCV_CALL_RATIO 6
|
||
|
||
/* Any loop-based implementation of movmemsi will have at least
|
||
RISCV_MAX_MOVE_BYTES_STRAIGHT / UNITS_PER_WORD memory-to-memory
|
||
moves, so allow individual copies of fewer elements.
|
||
|
||
When movmemsi is not available, use a value approximating
|
||
the length of a memcpy call sequence, so that move_by_pieces
|
||
will generate inline code if it is shorter than a function call.
|
||
Since move_by_pieces_ninsns counts memory-to-memory moves, but
|
||
we'll have to generate a load/store pair for each, halve the
|
||
value of RISCV_CALL_RATIO to take that into account. */
|
||
|
||
#define MOVE_RATIO(speed) \
|
||
(HAVE_movmemsi \
|
||
? RISCV_MAX_MOVE_BYTES_STRAIGHT / MOVE_MAX \
|
||
: RISCV_CALL_RATIO / 2)
|
||
|
||
/* movmemsi is meant to generate code that is at least as good as
|
||
move_by_pieces. However, movmemsi effectively uses a by-pieces
|
||
implementation both for moves smaller than a word and for word-aligned
|
||
moves of no more than RISCV_MAX_MOVE_BYTES_STRAIGHT bytes. We should
|
||
allow the tree-level optimisers to do such moves by pieces, as it
|
||
often exposes other optimization opportunities. We might as well
|
||
continue to use movmemsi at the rtl level though, as it produces
|
||
better code when scheduling is disabled (such as at -O). */
|
||
|
||
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
|
||
(HAVE_movmemsi \
|
||
? (!currently_expanding_to_rtl \
|
||
&& ((ALIGN) < BITS_PER_WORD \
|
||
? (SIZE) < UNITS_PER_WORD \
|
||
: (SIZE) <= RISCV_MAX_MOVE_BYTES_STRAIGHT)) \
|
||
: (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
|
||
< (unsigned int) MOVE_RATIO (false)))
|
||
|
||
/* For CLEAR_RATIO, when optimizing for size, give a better estimate
|
||
of the length of a memset call, but use the default otherwise. */
|
||
|
||
#define CLEAR_RATIO(speed)\
|
||
((speed) ? 15 : RISCV_CALL_RATIO)
|
||
|
||
/* This is similar to CLEAR_RATIO, but for a non-zero constant, so when
|
||
optimizing for size adjust the ratio to account for the overhead of
|
||
loading the constant and replicating it across the word. */
|
||
|
||
#define SET_RATIO(speed) \
|
||
((speed) ? 15 : RISCV_CALL_RATIO - 2)
|
||
|
||
/* STORE_BY_PIECES_P can be used when copying a constant string, but
|
||
in that case each word takes 3 insns (lui, ori, sw), or more in
|
||
64-bit mode, instead of 2 (lw, sw). For now we always fail this
|
||
and let the move_by_pieces code copy the string from read-only
|
||
memory. In the future, this could be tuned further for multi-issue
|
||
CPUs that can issue stores down one pipe and arithmetic instructions
|
||
down another; in that case, the lui/ori/sw combination would be a
|
||
win for long enough strings. */
|
||
|
||
#define STORE_BY_PIECES_P(SIZE, ALIGN) 0
|
||
|
||
#ifndef HAVE_AS_TLS
|
||
#define HAVE_AS_TLS 0
|
||
#endif
|
||
|
||
#ifndef USED_FOR_TARGET
|
||
|
||
extern const enum reg_class riscv_regno_to_class[];
|
||
extern bool riscv_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
|
||
extern const char* riscv_hi_relocs[];
|
||
#endif
|
||
|
||
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
|
||
(((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4)
|