mirror of
https://github.com/Stichting-MINIX-Research-Foundation/netbsd.git
synced 2025-09-17 03:08:12 -04:00
202 lines
5.4 KiB
C
202 lines
5.4 KiB
C
/* tmul -- test file for mpc_mul.
|
|
|
|
Copyright (C) 2002, 2005, 2008, 2009, 2010, 2011, 2012 INRIA
|
|
|
|
This file is part of GNU MPC.
|
|
|
|
GNU MPC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License as published by the
|
|
Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
|
|
more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see http://www.gnu.org/licenses/ .
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#ifdef TIMING
|
|
#include <sys/times.h>
|
|
#endif
|
|
#include "mpc-tests.h"
|
|
|
|
static void
|
|
cmpmul (mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd)
|
|
/* computes the product of x and y with the naive and Karatsuba methods */
|
|
/* using the rounding mode rnd and compares the results and return */
|
|
/* values. */
|
|
/* In our current test suite, the real and imaginary parts of x and y */
|
|
/* all have the same precision, and we use this precision also for the */
|
|
/* result. */
|
|
{
|
|
mpc_t z, t;
|
|
int inex_z, inex_t;
|
|
|
|
mpc_init2 (z, MPC_MAX_PREC (x));
|
|
mpc_init2 (t, MPC_MAX_PREC (x));
|
|
|
|
inex_z = mpc_mul_naive (z, x, y, rnd);
|
|
inex_t = mpc_mul_karatsuba (t, x, y, rnd);
|
|
|
|
if (mpc_cmp (z, t) != 0 || inex_z != inex_t) {
|
|
fprintf (stderr, "mul_naive and mul_karatsuba differ for rnd=(%s,%s)\n",
|
|
mpfr_print_rnd_mode(MPC_RND_RE(rnd)),
|
|
mpfr_print_rnd_mode(MPC_RND_IM(rnd)));
|
|
MPC_OUT (x);
|
|
MPC_OUT (y);
|
|
MPC_OUT (z);
|
|
MPC_OUT (t);
|
|
if (inex_z != inex_t) {
|
|
fprintf (stderr, "inex_re (z): %s\n", MPC_INEX_STR (inex_z));
|
|
fprintf (stderr, "inex_re (t): %s\n", MPC_INEX_STR (inex_t));
|
|
}
|
|
exit (1);
|
|
}
|
|
|
|
mpc_clear (z);
|
|
mpc_clear (t);
|
|
}
|
|
|
|
|
|
static void
|
|
testmul (long a, long b, long c, long d, mpfr_prec_t prec, mpc_rnd_t rnd)
|
|
{
|
|
mpc_t x, y;
|
|
|
|
mpc_init2 (x, prec);
|
|
mpc_init2 (y, prec);
|
|
|
|
mpc_set_si_si (x, a, b, rnd);
|
|
mpc_set_si_si (y, c, d, rnd);
|
|
|
|
cmpmul (x, y, rnd);
|
|
|
|
mpc_clear (x);
|
|
mpc_clear (y);
|
|
}
|
|
|
|
|
|
static void
|
|
check_regular (void)
|
|
{
|
|
mpc_t x, y;
|
|
int rnd_re, rnd_im;
|
|
mpfr_prec_t prec;
|
|
|
|
testmul (247, -65, -223, 416, 8, 24);
|
|
testmul (5, -896, 5, -32, 3, 2);
|
|
testmul (-3, -512, -1, -1, 2, 16);
|
|
testmul (266013312, 121990769, 110585572, 116491059, 27, 0);
|
|
testmul (170, 9, 450, 251, 8, 0);
|
|
testmul (768, 85, 169, 440, 8, 16);
|
|
testmul (145, 1816, 848, 169, 8, 24);
|
|
|
|
mpc_init2 (x, 1000);
|
|
mpc_init2 (y, 1000);
|
|
|
|
/* Bug 20081114: mpc_mul_karatsuba returned wrong inexact value for
|
|
imaginary part */
|
|
mpc_set_prec (x, 7);
|
|
mpc_set_prec (y, 7);
|
|
mpfr_set_str (mpc_realref (x), "0xB4p+733", 16, GMP_RNDN);
|
|
mpfr_set_str (mpc_imagref (x), "0x90p+244", 16, GMP_RNDN);
|
|
mpfr_set_str (mpc_realref (y), "0xECp-146", 16, GMP_RNDN);
|
|
mpfr_set_str (mpc_imagref (y), "0xACp-471", 16, GMP_RNDN);
|
|
cmpmul (x, y, MPC_RNDNN);
|
|
mpfr_set_str (mpc_realref (x), "0xB4p+733", 16, GMP_RNDN);
|
|
mpfr_set_str (mpc_imagref (x), "0x90p+244", 16, GMP_RNDN);
|
|
mpfr_set_str (mpc_realref (y), "0xACp-471", 16, GMP_RNDN);
|
|
mpfr_set_str (mpc_imagref (y), "-0xECp-146", 16, GMP_RNDN);
|
|
cmpmul (x, y, MPC_RNDNN);
|
|
|
|
for (prec = 2; prec < 1000; prec = (mpfr_prec_t) (prec * 1.1 + 1))
|
|
{
|
|
mpc_set_prec (x, prec);
|
|
mpc_set_prec (y, prec);
|
|
|
|
test_default_random (x, -1024, 1024, 128, 0);
|
|
test_default_random (y, -1024, 1024, 128, 0);
|
|
|
|
for (rnd_re = 0; rnd_re < 4; rnd_re ++)
|
|
for (rnd_im = 0; rnd_im < 4; rnd_im ++)
|
|
cmpmul (x, y, MPC_RND (rnd_re, rnd_im));
|
|
}
|
|
|
|
mpc_clear (x);
|
|
mpc_clear (y);
|
|
}
|
|
|
|
|
|
#ifdef TIMING
|
|
static void
|
|
timemul (void)
|
|
{
|
|
/* measures the time needed with different precisions for naive and */
|
|
/* Karatsuba multiplication */
|
|
|
|
mpc_t x, y, z;
|
|
unsigned long int i, j;
|
|
const unsigned long int tests = 10000;
|
|
struct tms time_old, time_new;
|
|
double passed1, passed2;
|
|
|
|
mpc_init (x);
|
|
mpc_init (y);
|
|
mpc_init_set_ui_ui (z, 1, 0, MPC_RNDNN);
|
|
|
|
for (i = 1; i < 50; i++)
|
|
{
|
|
mpc_set_prec (x, i * BITS_PER_MP_LIMB);
|
|
mpc_set_prec (y, i * BITS_PER_MP_LIMB);
|
|
mpc_set_prec (z, i * BITS_PER_MP_LIMB);
|
|
test_default_random (x, -1, 1, 128, 25);
|
|
test_default_random (y, -1, 1, 128, 25);
|
|
|
|
times (&time_old);
|
|
for (j = 0; j < tests; j++)
|
|
mpc_mul_naive (z, x, y, MPC_RNDNN);
|
|
times (&time_new);
|
|
passed1 = ((double) (time_new.tms_utime - time_old.tms_utime)) / 100;
|
|
|
|
times (&time_old);
|
|
for (j = 0; j < tests; j++)
|
|
mpc_mul_karatsuba (z, x, y, MPC_RNDNN);
|
|
times (&time_new);
|
|
passed2 = ((double) (time_new.tms_utime - time_old.tms_utime)) / 100;
|
|
|
|
printf ("Time for %3li limbs naive/Karatsuba: %5.2f %5.2f\n", i,
|
|
passed1, passed2);
|
|
}
|
|
|
|
mpc_clear (x);
|
|
mpc_clear (y);
|
|
mpc_clear (z);
|
|
}
|
|
#endif
|
|
|
|
|
|
int
|
|
main (void)
|
|
{
|
|
DECL_FUNC (C_CC, f, mpc_mul);
|
|
f.properties = FUNC_PROP_SYMETRIC;
|
|
|
|
test_start ();
|
|
|
|
#ifdef TIMING
|
|
timemul ();
|
|
#endif
|
|
|
|
check_regular ();
|
|
|
|
data_check (f, "mul.dat");
|
|
tgeneric (f, 2, 4096, 41, 100);
|
|
|
|
test_end ();
|
|
return 0;
|
|
}
|