netbsd/sys/arch/arm/amlogic/amlogic_cpufreq.c
2015-10-15 10:25:28 +02:00

280 lines
7.5 KiB
C

/* $NetBSD: amlogic_cpufreq.c,v 1.3 2015/03/29 22:49:44 jmcneill Exp $ */
/*-
* Copyright (c) 2015 Jared D. McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "locators.h"
#include "opt_amlogic.h"
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: amlogic_cpufreq.c,v 1.3 2015/03/29 22:49:44 jmcneill Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/atomic.h>
#include <sys/kmem.h>
#include <sys/xcall.h>
#include <sys/sysctl.h>
#include <arm/amlogic/amlogic_reg.h>
#include <arm/amlogic/amlogic_crureg.h>
#include <arm/amlogic/amlogic_var.h>
#include <arm/cortex/a9tmr_var.h>
static u_int cpufreq_busy;
static struct sysctllog *cpufreq_log;
static int cpufreq_node_target, cpufreq_node_current, cpufreq_node_available;
static u_int (*cpufreq_set_rate)(u_int);
static u_int (*cpufreq_get_rate)(void);
static size_t (*cpufreq_get_available)(u_int *, size_t);
#define AMLOGIC_CPUFREQ_MAX 8
static void amlogic_cpufreq_cb(void *, void *);
static int amlogic_cpufreq_freq_helper(SYSCTLFN_PROTO);
static char amlogic_cpufreq_available[AMLOGIC_CPUFREQ_MAX * 5];
static u_int meson8b_cpu_set_rate(u_int);
static u_int meson8b_cpu_get_rate(void);
static size_t meson8b_cpu_get_available(u_int *, size_t);
#define CBUS_READ(x) \
bus_space_read_4(&armv7_generic_bs_tag, amlogic_core_bsh, \
AMLOGIC_CBUS_OFFSET + (x))
#define CBUS_WRITE(x, v) \
bus_space_write_4(&armv7_generic_bs_tag, amlogic_core_bsh, \
AMLOGIC_CBUS_OFFSET + (x), (v))
void
amlogic_cpufreq_bootstrap(void)
{
cpufreq_set_rate = &meson8b_cpu_set_rate;
cpufreq_get_rate = &meson8b_cpu_get_rate;
cpufreq_get_available = &meson8b_cpu_get_available;
#ifdef CPUFREQ
if (cpufreq_set_rate(CPUFREQ) == 0) {
amlogic_cpufreq_cb(NULL, NULL);
}
#endif
}
void
amlogic_cpufreq_init(void)
{
const struct sysctlnode *node, *cpunode, *freqnode;
u_int availfreq[AMLOGIC_CPUFREQ_MAX];
size_t nfreq;
int error;
nfreq = cpufreq_get_available(availfreq, AMLOGIC_CPUFREQ_MAX);
if (nfreq == 0)
return;
KASSERT(nfreq <= AMLOGIC_CPUFREQ_MAX);
for (int i = 0; i < nfreq; i++) {
char buf[6];
snprintf(buf, sizeof(buf), i ? " %u" : "%u", availfreq[i]);
strcat(amlogic_cpufreq_available, buf);
}
error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
if (error)
goto sysctl_failed;
error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
0, CTLTYPE_NODE, "cpu", NULL,
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (error)
goto sysctl_failed;
error = sysctl_createv(&cpufreq_log, 0, &cpunode, &freqnode,
0, CTLTYPE_NODE, "frequency", NULL,
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
if (error)
goto sysctl_failed;
error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
amlogic_cpufreq_freq_helper, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
if (error)
goto sysctl_failed;
cpufreq_node_target = node->sysctl_num;
error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
amlogic_cpufreq_freq_helper, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
if (error)
goto sysctl_failed;
cpufreq_node_current = node->sysctl_num;
error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
0, CTLTYPE_STRING, "available", NULL,
NULL, 0, amlogic_cpufreq_available, 0,
CTL_CREATE, CTL_EOL);
if (error)
goto sysctl_failed;
cpufreq_node_available = node->sysctl_num;
return;
sysctl_failed:
aprint_error("cpufreq: couldn't create sysctl nodes (%d)\n", error);
sysctl_teardown(&cpufreq_log);
}
static void
amlogic_cpufreq_cb(void *arg1, void *arg2)
{
struct cpu_info *ci = curcpu();
ci->ci_data.cpu_cc_freq = cpufreq_get_rate() * 1000000;
}
static int
amlogic_cpufreq_freq_helper(SYSCTLFN_ARGS)
{
struct sysctlnode node;
int fq, oldfq = 0, error;
uint64_t xc;
node = *rnode;
node.sysctl_data = &fq;
fq = cpufreq_get_rate();
if (rnode->sysctl_num == cpufreq_node_target)
oldfq = fq;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (fq == oldfq || rnode->sysctl_num != cpufreq_node_target)
return 0;
if (atomic_cas_uint(&cpufreq_busy, 0, 1) != 0)
return EBUSY;
error = cpufreq_set_rate(fq);
if (error == 0) {
xc = xc_broadcast(0, amlogic_cpufreq_cb, NULL, NULL);
xc_wait(xc);
pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
}
atomic_dec_uint(&cpufreq_busy);
return error;
}
/*
* meson8b
*/
static const u_int meson8b_rates[] = {
1512, 1416, 1320, 1200
};
static size_t
meson8b_cpu_get_available(u_int *pavail, size_t maxavail)
{
KASSERT(__arraycount(meson8b_rates) <= maxavail);
memcpy(pavail, meson8b_rates, sizeof(meson8b_rates));
return __arraycount(meson8b_rates);
}
static u_int
meson8b_cpu_get_rate(void)
{
return amlogic_get_rate_a9() / 1000000;
}
static u_int
meson8b_cpu_set_rate(u_int rate)
{
const uint32_t xtal_rate = amlogic_get_rate_xtal();
const u_int old_rate = meson8b_cpu_get_rate();
u_int new_rate = 0;
/* Pick the closest rate (nearest 100MHz increment) */
for (int i = 0; i < __arraycount(meson8b_rates); i++) {
u_int arate = (meson8b_rates[i] + 50) / 100 * 100;
if (arate <= rate) {
new_rate = meson8b_rates[i] * 1000000;
break;
}
}
if (new_rate == 0) {
return EINVAL;
}
if (old_rate == new_rate) {
return 0;
}
uint32_t cntl0 = CBUS_READ(HHI_SYS_CPU_CLK_CNTL0_REG);
uint32_t cntl = CBUS_READ(HHI_SYS_PLL_CNTL_REG);
const u_int new_mul = new_rate / xtal_rate;
const u_int new_div = 1;
const u_int new_od = 0;
/*
* XXX make some assumptions about the state of cpu clk cntl regs
*/
if ((cntl0 & HHI_SYS_CPU_CLK_CNTL0_CLKSEL) == 0)
return EIO;
if (__SHIFTOUT(cntl0, HHI_SYS_CPU_CLK_CNTL0_PLLSEL) != 1)
return EIO;
if (__SHIFTOUT(cntl0, HHI_SYS_CPU_CLK_CNTL0_SOUTSEL) != 0)
return EIO;
cntl &= ~HHI_SYS_PLL_CNTL_MUL;
cntl |= __SHIFTIN(new_mul, HHI_SYS_PLL_CNTL_MUL);
cntl &= ~HHI_SYS_PLL_CNTL_DIV;
cntl |= __SHIFTIN(new_div, HHI_SYS_PLL_CNTL_DIV);
cntl &= ~HHI_SYS_PLL_CNTL_OD;
cntl |= __SHIFTIN(new_od, HHI_SYS_PLL_CNTL_OD);
CBUS_WRITE(HHI_SYS_PLL_CNTL_REG, cntl);
if (!cold) {
a9tmr_update_freq(amlogic_get_rate_a9periph());
}
return 0;
}