netbsd/sys/arch/arm/arm32/arm32_machdep.c
2015-10-15 10:25:28 +02:00

746 lines
21 KiB
C

/* $NetBSD: arm32_machdep.c,v 1.109 2015/04/11 13:37:59 bouyer Exp $ */
/*
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependent functions for kernel setup
*
* Created : 17/09/94
* Updated : 18/04/01 updated for new wscons
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: arm32_machdep.c,v 1.109 2015/04/11 13:37:59 bouyer Exp $");
#include "opt_modular.h"
#include "opt_md.h"
#include "opt_pmap_debug.h"
#include "opt_multiprocessor.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/reboot.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/mount.h>
#include <sys/buf.h>
#include <sys/msgbuf.h>
#include <sys/device.h>
#include <sys/sysctl.h>
#include <sys/cpu.h>
#include <sys/intr.h>
#include <sys/module.h>
#include <sys/atomic.h>
#include <sys/xcall.h>
#include <sys/ipi.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <dev/mm.h>
#include <arm/locore.h>
#include <arm/arm32/machdep.h>
#include <machine/bootconfig.h>
#include <machine/pcb.h>
void (*cpu_reset_address)(void); /* Used by locore */
paddr_t cpu_reset_address_paddr; /* Used by locore */
struct vm_map *phys_map = NULL;
#if defined(MEMORY_DISK_HOOKS) && !defined(MEMORY_DISK_ROOT_SIZE)
extern size_t md_root_size; /* Memory disc size */
#endif /* MEMORY_DISK_HOOKS && !MEMORY_DISK_ROOT_SIZE */
pv_addr_t kernelstack;
pv_addr_t abtstack;
pv_addr_t fiqstack;
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t idlestack;
void * msgbufaddr;
extern paddr_t msgbufphys;
int kernel_debug = 0;
int cpu_printfataltraps = 0;
int cpu_fpu_present;
int cpu_hwdiv_present;
int cpu_neon_present;
int cpu_simd_present;
int cpu_simdex_present;
int cpu_umull_present;
int cpu_synchprim_present;
int cpu_unaligned_sigbus;
const char *cpu_arch = "";
int cpu_instruction_set_attributes[6];
int cpu_memory_model_features[4];
int cpu_processor_features[2];
int cpu_media_and_vfp_features[2];
/* exported variable to be filled in by the bootloaders */
char *booted_kernel;
/* Prototypes */
void data_abort_handler(trapframe_t *frame);
void prefetch_abort_handler(trapframe_t *frame);
extern void configure(void);
/*
* arm32_vector_init:
*
* Initialize the vector page, and select whether or not to
* relocate the vectors.
*
* NOTE: We expect the vector page to be mapped at its expected
* destination.
*/
void
arm32_vector_init(vaddr_t va, int which)
{
#if defined(CPU_ARMV7) || defined(CPU_ARM11) || defined(ARM_HAS_VBAR)
/*
* If this processor has the security extension, don't bother
* to move/map the vector page. Simply point VBAR to the copy
* that exists in the .text segment.
*/
#ifndef ARM_HAS_VBAR
if (va == ARM_VECTORS_LOW
&& (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0) {
#endif
extern const uint32_t page0rel[];
vector_page = (vaddr_t)page0rel;
KASSERT((vector_page & 0x1f) == 0);
armreg_vbar_write(vector_page);
#ifdef VERBOSE_INIT_ARM
printf(" vbar=%p", page0rel);
#endif
cpu_control(CPU_CONTROL_VECRELOC, 0);
return;
#ifndef ARM_HAS_VBAR
}
#endif
#endif
#ifndef ARM_HAS_VBAR
if (CPU_IS_PRIMARY(curcpu())) {
extern unsigned int page0[], page0_data[];
unsigned int *vectors = (int *) va;
unsigned int *vectors_data = vectors + (page0_data - page0);
int vec;
/*
* Loop through the vectors we're taking over, and copy the
* vector's insn and data word.
*/
for (vec = 0; vec < ARM_NVEC; vec++) {
if ((which & (1 << vec)) == 0) {
/* Don't want to take over this vector. */
continue;
}
vectors[vec] = page0[vec];
vectors_data[vec] = page0_data[vec];
}
/* Now sync the vectors. */
cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));
vector_page = va;
}
if (va == ARM_VECTORS_HIGH) {
/*
* Assume the MD caller knows what it's doing here, and
* really does want the vector page relocated.
*
* Note: This has to be done here (and not just in
* cpu_setup()) because the vector page needs to be
* accessible *before* cpu_startup() is called.
* Think ddb(9) ...
*
* NOTE: If the CPU control register is not readable,
* this will totally fail! We'll just assume that
* any system that has high vector support has a
* readable CPU control register, for now. If we
* ever encounter one that does not, we'll have to
* rethink this.
*/
cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
}
#endif
}
/*
* Debug function just to park the CPU
*/
void
halt(void)
{
while (1)
cpu_sleep(0);
}
/* Sync the discs, unmount the filesystems, and adjust the todr */
void
bootsync(void)
{
static bool bootsyncdone = false;
if (bootsyncdone) return;
bootsyncdone = true;
/* Make sure we can still manage to do things */
if (GetCPSR() & I32_bit) {
/*
* If we get here then boot has been called without RB_NOSYNC
* and interrupts were disabled. This means the boot() call
* did not come from a user process e.g. shutdown, but must
* have come from somewhere in the kernel.
*/
IRQenable;
printf("Warning IRQ's disabled during boot()\n");
}
vfs_shutdown();
resettodr();
}
/*
* void cpu_startup(void)
*
* Machine dependent startup code.
*
*/
void
cpu_startup(void)
{
vaddr_t minaddr;
vaddr_t maxaddr;
char pbuf[9];
/*
* Until we better locking, we have to live under the kernel lock.
*/
//KERNEL_LOCK(1, NULL);
/* Set the CPU control register */
cpu_setup(boot_args);
#ifndef ARM_HAS_VBAR
/* Lock down zero page */
vector_page_setprot(VM_PROT_READ);
#endif
/*
* Give pmap a chance to set up a few more things now the vm
* is initialised
*/
pmap_postinit();
/*
* Initialize error message buffer (at end of core).
*/
/* msgbufphys was setup during the secondary boot strap */
if (!pmap_extract(pmap_kernel(), (vaddr_t)msgbufaddr, NULL)) {
for (u_int loop = 0; loop < btoc(MSGBUFSIZE); ++loop) {
pmap_kenter_pa((vaddr_t)msgbufaddr + loop * PAGE_SIZE,
msgbufphys + loop * PAGE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, 0);
}
}
pmap_update(pmap_kernel());
initmsgbuf(msgbufaddr, round_page(MSGBUFSIZE));
/*
* Identify ourselves for the msgbuf (everything printed earlier will
* not be buffered).
*/
printf("%s%s", copyright, version);
format_bytes(pbuf, sizeof(pbuf), arm_ptob(physmem));
printf("total memory = %s\n", pbuf);
minaddr = 0;
/*
* Allocate a submap for physio
*/
phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
VM_PHYS_SIZE, 0, false, NULL);
format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
printf("avail memory = %s\n", pbuf);
struct lwp * const l = &lwp0;
struct pcb * const pcb = lwp_getpcb(l);
pcb->pcb_ksp = uvm_lwp_getuarea(l) + USPACE_SVC_STACK_TOP;
lwp_settrapframe(l, (struct trapframe *)pcb->pcb_ksp - 1);
}
/*
* machine dependent system variables.
*/
static int
sysctl_machdep_booted_device(SYSCTLFN_ARGS)
{
struct sysctlnode node;
if (booted_device == NULL)
return (EOPNOTSUPP);
node = *rnode;
node.sysctl_data = __UNCONST(device_xname(booted_device));
node.sysctl_size = strlen(device_xname(booted_device)) + 1;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
static int
sysctl_machdep_booted_kernel(SYSCTLFN_ARGS)
{
struct sysctlnode node;
if (booted_kernel == NULL || booted_kernel[0] == '\0')
return (EOPNOTSUPP);
node = *rnode;
node.sysctl_data = booted_kernel;
node.sysctl_size = strlen(booted_kernel) + 1;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
static int
sysctl_machdep_cpu_arch(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
node.sysctl_data = __UNCONST(cpu_arch);
node.sysctl_size = strlen(cpu_arch) + 1;
return sysctl_lookup(SYSCTLFN_CALL(&node));
}
static int
sysctl_machdep_powersave(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
int error, newval;
newval = cpu_do_powersave;
node.sysctl_data = &newval;
if (cpufuncs.cf_sleep == (void *) cpufunc_nullop)
node.sysctl_flags &= ~CTLFLAG_READWRITE;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL || newval == cpu_do_powersave)
return (error);
if (newval < 0 || newval > 1)
return (EINVAL);
cpu_do_powersave = newval;
return (0);
}
static int
sysctl_hw_machine_arch(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
node.sysctl_data = l->l_proc->p_md.md_march;
node.sysctl_size = strlen(l->l_proc->p_md.md_march) + 1;
return sysctl_lookup(SYSCTLFN_CALL(&node));
}
SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "machdep", NULL,
NULL, 0, NULL, 0,
CTL_MACHDEP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "debug", NULL,
NULL, 0, &kernel_debug, 0,
CTL_MACHDEP, CPU_DEBUG, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "booted_device", NULL,
sysctl_machdep_booted_device, 0, NULL, 0,
CTL_MACHDEP, CPU_BOOTED_DEVICE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "booted_kernel", NULL,
sysctl_machdep_booted_kernel, 0, NULL, 0,
CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "console_device", NULL,
sysctl_consdev, 0, NULL, sizeof(dev_t),
CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "cpu_arch", NULL,
sysctl_machdep_cpu_arch, 0, NULL, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "powersave", NULL,
sysctl_machdep_powersave, 0, &cpu_do_powersave, 0,
CTL_MACHDEP, CPU_POWERSAVE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "cpu_id", NULL,
NULL, curcpu()->ci_arm_cpuid, NULL, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
#ifdef FPU_VFP
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "fpu_id", NULL,
NULL, 0, &cpu_info_store.ci_vfp_id, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "fpu_present", NULL,
NULL, 0, &cpu_fpu_present, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "hwdiv_present", NULL,
NULL, 0, &cpu_hwdiv_present, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "neon_present", NULL,
NULL, 0, &cpu_neon_present, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_STRUCT, "id_isar", NULL,
NULL, 0,
cpu_instruction_set_attributes,
sizeof(cpu_instruction_set_attributes),
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_STRUCT, "id_mmfr", NULL,
NULL, 0,
cpu_memory_model_features,
sizeof(cpu_memory_model_features),
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_STRUCT, "id_pfr", NULL,
NULL, 0,
cpu_processor_features,
sizeof(cpu_processor_features),
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_STRUCT, "id_mvfr", NULL,
NULL, 0,
cpu_media_and_vfp_features,
sizeof(cpu_media_and_vfp_features),
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "simd_present", NULL,
NULL, 0, &cpu_simd_present, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "simdex_present", NULL,
NULL, 0, &cpu_simdex_present, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "synchprim_present", NULL,
NULL, 0, &cpu_synchprim_present, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "printfataltraps", NULL,
NULL, 0, &cpu_printfataltraps, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
cpu_unaligned_sigbus = !CPU_IS_ARMV6_P() && !CPU_IS_ARMV7_P();
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, "unaligned_sigbus",
SYSCTL_DESCR("Do SIGBUS for fixed unaligned accesses"),
NULL, 0, &cpu_unaligned_sigbus, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
/*
* We need override the usual CTL_HW HW_MACHINE_ARCH so we
* return the right machine_arch based on the running executable.
*/
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_STRING, "machine_arch",
SYSCTL_DESCR("Machine CPU class"),
sysctl_hw_machine_arch, 0, NULL, 0,
CTL_HW, HW_MACHINE_ARCH, CTL_EOL);
}
void
parse_mi_bootargs(char *args)
{
int integer;
if (get_bootconf_option(args, "single", BOOTOPT_TYPE_BOOLEAN, &integer)
|| get_bootconf_option(args, "-s", BOOTOPT_TYPE_BOOLEAN, &integer))
if (integer)
boothowto |= RB_SINGLE;
if (get_bootconf_option(args, "kdb", BOOTOPT_TYPE_BOOLEAN, &integer)
|| get_bootconf_option(args, "-k", BOOTOPT_TYPE_BOOLEAN, &integer)
|| get_bootconf_option(args, "-d", BOOTOPT_TYPE_BOOLEAN, &integer))
if (integer)
boothowto |= RB_KDB;
if (get_bootconf_option(args, "ask", BOOTOPT_TYPE_BOOLEAN, &integer)
|| get_bootconf_option(args, "-a", BOOTOPT_TYPE_BOOLEAN, &integer))
if (integer)
boothowto |= RB_ASKNAME;
#ifdef PMAP_DEBUG
if (get_bootconf_option(args, "pmapdebug", BOOTOPT_TYPE_INT, &integer)) {
pmap_debug_level = integer;
pmap_debug(pmap_debug_level);
}
#endif /* PMAP_DEBUG */
/* if (get_bootconf_option(args, "nbuf", BOOTOPT_TYPE_INT, &integer))
bufpages = integer;*/
#if defined(MEMORY_DISK_HOOKS) && !defined(MEMORY_DISK_ROOT_SIZE)
if (get_bootconf_option(args, "memorydisc", BOOTOPT_TYPE_INT, &integer)
|| get_bootconf_option(args, "memorydisk", BOOTOPT_TYPE_INT, &integer)) {
md_root_size = integer;
md_root_size *= 1024;
if (md_root_size < 32*1024)
md_root_size = 32*1024;
if (md_root_size > 2048*1024)
md_root_size = 2048*1024;
}
#endif /* MEMORY_DISK_HOOKS && !MEMORY_DISK_ROOT_SIZE */
if (get_bootconf_option(args, "quiet", BOOTOPT_TYPE_BOOLEAN, &integer)
|| get_bootconf_option(args, "-q", BOOTOPT_TYPE_BOOLEAN, &integer))
if (integer)
boothowto |= AB_QUIET;
if (get_bootconf_option(args, "verbose", BOOTOPT_TYPE_BOOLEAN, &integer)
|| get_bootconf_option(args, "-v", BOOTOPT_TYPE_BOOLEAN, &integer))
if (integer)
boothowto |= AB_VERBOSE;
if (get_bootconf_option(args, "debug", BOOTOPT_TYPE_BOOLEAN, &integer)
|| get_bootconf_option(args, "-x", BOOTOPT_TYPE_BOOLEAN, &integer))
if (integer)
boothowto |= AB_DEBUG;
}
#ifdef __HAVE_FAST_SOFTINTS
#if IPL_SOFTSERIAL != IPL_SOFTNET + 1
#error IPLs are screwed up
#elif IPL_SOFTNET != IPL_SOFTBIO + 1
#error IPLs are screwed up
#elif IPL_SOFTBIO != IPL_SOFTCLOCK + 1
#error IPLs are screwed up
#elif !(IPL_SOFTCLOCK > IPL_NONE)
#error IPLs are screwed up
#elif (IPL_NONE != 0)
#error IPLs are screwed up
#endif
#ifndef __HAVE_PIC_FAST_SOFTINTS
#define SOFTINT2IPLMAP \
(((IPL_SOFTSERIAL - IPL_SOFTCLOCK) << (SOFTINT_SERIAL * 4)) | \
((IPL_SOFTNET - IPL_SOFTCLOCK) << (SOFTINT_NET * 4)) | \
((IPL_SOFTBIO - IPL_SOFTCLOCK) << (SOFTINT_BIO * 4)) | \
((IPL_SOFTCLOCK - IPL_SOFTCLOCK) << (SOFTINT_CLOCK * 4)))
#define SOFTINT2IPL(l) ((SOFTINT2IPLMAP >> ((l) * 4)) & 0x0f)
/*
* This returns a mask of softint IPLs that be dispatch at <ipl>
* SOFTIPLMASK(IPL_NONE) = 0x0000000f
* SOFTIPLMASK(IPL_SOFTCLOCK) = 0x0000000e
* SOFTIPLMASK(IPL_SOFTBIO) = 0x0000000c
* SOFTIPLMASK(IPL_SOFTNET) = 0x00000008
* SOFTIPLMASK(IPL_SOFTSERIAL) = 0x00000000
*/
#define SOFTIPLMASK(ipl) ((0x0f << (ipl)) & 0x0f)
void softint_switch(lwp_t *, int);
void
softint_trigger(uintptr_t mask)
{
curcpu()->ci_softints |= mask;
}
void
softint_init_md(lwp_t *l, u_int level, uintptr_t *machdep)
{
lwp_t ** lp = &l->l_cpu->ci_softlwps[level];
KASSERT(*lp == NULL || *lp == l);
*lp = l;
*machdep = 1 << SOFTINT2IPL(level);
KASSERT(level != SOFTINT_CLOCK || *machdep == (1 << (IPL_SOFTCLOCK - IPL_SOFTCLOCK)));
KASSERT(level != SOFTINT_BIO || *machdep == (1 << (IPL_SOFTBIO - IPL_SOFTCLOCK)));
KASSERT(level != SOFTINT_NET || *machdep == (1 << (IPL_SOFTNET - IPL_SOFTCLOCK)));
KASSERT(level != SOFTINT_SERIAL || *machdep == (1 << (IPL_SOFTSERIAL - IPL_SOFTCLOCK)));
}
void
dosoftints(void)
{
struct cpu_info * const ci = curcpu();
const int opl = ci->ci_cpl;
const uint32_t softiplmask = SOFTIPLMASK(opl);
splhigh();
for (;;) {
u_int softints = ci->ci_softints & softiplmask;
KASSERT((softints != 0) == ((ci->ci_softints >> opl) != 0));
KASSERT(opl == IPL_NONE || (softints & (1 << (opl - IPL_SOFTCLOCK))) == 0);
if (softints == 0) {
splx(opl);
return;
}
#define DOSOFTINT(n) \
if (ci->ci_softints & (1 << (IPL_SOFT ## n - IPL_SOFTCLOCK))) { \
ci->ci_softints &= \
~(1 << (IPL_SOFT ## n - IPL_SOFTCLOCK)); \
softint_switch(ci->ci_softlwps[SOFTINT_ ## n], \
IPL_SOFT ## n); \
continue; \
}
DOSOFTINT(SERIAL);
DOSOFTINT(NET);
DOSOFTINT(BIO);
DOSOFTINT(CLOCK);
panic("dosoftints wtf (softints=%u?, ipl=%d)", softints, opl);
}
}
#endif /* !__HAVE_PIC_FAST_SOFTINTS */
#endif /* __HAVE_FAST_SOFTINTS */
#ifdef MODULAR
/*
* Push any modules loaded by the boot loader.
*/
void
module_init_md(void)
{
}
#endif /* MODULAR */
int
mm_md_physacc(paddr_t pa, vm_prot_t prot)
{
return (pa < ctob(physmem)) ? 0 : EFAULT;
}
#ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP
vaddr_t
cpu_uarea_alloc_idlelwp(struct cpu_info *ci)
{
const vaddr_t va = idlestack.pv_va + ci->ci_cpuid * USPACE;
// printf("%s: %s: va=%lx\n", __func__, ci->ci_data.cpu_name, va);
return va;
}
#endif
#ifdef MULTIPROCESSOR
void
cpu_boot_secondary_processors(void)
{
#ifdef VERBOSE_INIT_ARM
printf("%s: writing mbox with %#x\n", __func__, arm_cpu_hatched);
#endif
arm_cpu_mbox = arm_cpu_hatched;
membar_producer();
#ifdef _ARM_ARCH_7
__asm __volatile("sev; sev; sev");
#endif
while (arm_cpu_mbox) {
__asm("wfe");
}
}
void
xc_send_ipi(struct cpu_info *ci)
{
KASSERT(kpreempt_disabled());
KASSERT(curcpu() != ci);
intr_ipi_send(ci != NULL ? ci->ci_kcpuset : NULL, IPI_XCALL);
}
void
cpu_ipi(struct cpu_info *ci)
{
KASSERT(kpreempt_disabled());
KASSERT(curcpu() != ci);
intr_ipi_send(ci != NULL ? ci->ci_kcpuset : NULL, IPI_GENERIC);
}
#endif /* MULTIPROCESSOR */
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
bool
mm_md_direct_mapped_phys(paddr_t pa, vaddr_t *vap)
{
bool rv;
vaddr_t va = pmap_direct_mapped_phys(pa, &rv, 0);
if (rv) {
*vap = va;
}
return rv;
}
#endif