mirror of
https://github.com/Stichting-MINIX-Research-Foundation/netbsd.git
synced 2025-08-16 17:41:31 -04:00
1875 lines
50 KiB
C
1875 lines
50 KiB
C
/* $NetBSD: bus_dma.c,v 1.93 2015/08/24 04:51:18 matt Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#define _ARM32_BUS_DMA_PRIVATE
|
|
|
|
#include "opt_arm_bus_space.h"
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.93 2015/08/24 04:51:18 matt Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
#include <arm/cpufunc.h>
|
|
|
|
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
|
|
#include <dev/mm.h>
|
|
#endif
|
|
|
|
#ifdef BUSDMA_COUNTERS
|
|
static struct evcnt bus_dma_creates =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "creates");
|
|
static struct evcnt bus_dma_bounced_creates =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced creates");
|
|
static struct evcnt bus_dma_loads =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "loads");
|
|
static struct evcnt bus_dma_bounced_loads =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced loads");
|
|
static struct evcnt bus_dma_coherent_loads =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "coherent loads");
|
|
static struct evcnt bus_dma_read_bounces =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "read bounces");
|
|
static struct evcnt bus_dma_write_bounces =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "write bounces");
|
|
static struct evcnt bus_dma_bounced_unloads =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced unloads");
|
|
static struct evcnt bus_dma_unloads =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "unloads");
|
|
static struct evcnt bus_dma_bounced_destroys =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "bounced destroys");
|
|
static struct evcnt bus_dma_destroys =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "destroys");
|
|
static struct evcnt bus_dma_sync_prereadwrite =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prereadwrite");
|
|
static struct evcnt bus_dma_sync_preread_begin =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread begin");
|
|
static struct evcnt bus_dma_sync_preread =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread");
|
|
static struct evcnt bus_dma_sync_preread_tail =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync preread tail");
|
|
static struct evcnt bus_dma_sync_prewrite =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync prewrite");
|
|
static struct evcnt bus_dma_sync_postread =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postread");
|
|
static struct evcnt bus_dma_sync_postreadwrite =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postreadwrite");
|
|
static struct evcnt bus_dma_sync_postwrite =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "busdma", "sync postwrite");
|
|
|
|
EVCNT_ATTACH_STATIC(bus_dma_creates);
|
|
EVCNT_ATTACH_STATIC(bus_dma_bounced_creates);
|
|
EVCNT_ATTACH_STATIC(bus_dma_loads);
|
|
EVCNT_ATTACH_STATIC(bus_dma_bounced_loads);
|
|
EVCNT_ATTACH_STATIC(bus_dma_coherent_loads);
|
|
EVCNT_ATTACH_STATIC(bus_dma_read_bounces);
|
|
EVCNT_ATTACH_STATIC(bus_dma_write_bounces);
|
|
EVCNT_ATTACH_STATIC(bus_dma_unloads);
|
|
EVCNT_ATTACH_STATIC(bus_dma_bounced_unloads);
|
|
EVCNT_ATTACH_STATIC(bus_dma_destroys);
|
|
EVCNT_ATTACH_STATIC(bus_dma_bounced_destroys);
|
|
EVCNT_ATTACH_STATIC(bus_dma_sync_prereadwrite);
|
|
EVCNT_ATTACH_STATIC(bus_dma_sync_preread_begin);
|
|
EVCNT_ATTACH_STATIC(bus_dma_sync_preread);
|
|
EVCNT_ATTACH_STATIC(bus_dma_sync_preread_tail);
|
|
EVCNT_ATTACH_STATIC(bus_dma_sync_prewrite);
|
|
EVCNT_ATTACH_STATIC(bus_dma_sync_postread);
|
|
EVCNT_ATTACH_STATIC(bus_dma_sync_postreadwrite);
|
|
EVCNT_ATTACH_STATIC(bus_dma_sync_postwrite);
|
|
|
|
#define STAT_INCR(x) (bus_dma_ ## x.ev_count++)
|
|
#else
|
|
#define STAT_INCR(x) /*(bus_dma_ ## x.ev_count++)*/
|
|
#endif
|
|
|
|
int _bus_dmamap_load_buffer(bus_dma_tag_t, bus_dmamap_t, void *,
|
|
bus_size_t, struct vmspace *, int);
|
|
static struct arm32_dma_range *
|
|
_bus_dma_paddr_inrange(struct arm32_dma_range *, int, paddr_t);
|
|
|
|
/*
|
|
* Check to see if the specified page is in an allowed DMA range.
|
|
*/
|
|
inline struct arm32_dma_range *
|
|
_bus_dma_paddr_inrange(struct arm32_dma_range *ranges, int nranges,
|
|
bus_addr_t curaddr)
|
|
{
|
|
struct arm32_dma_range *dr;
|
|
int i;
|
|
|
|
for (i = 0, dr = ranges; i < nranges; i++, dr++) {
|
|
if (curaddr >= dr->dr_sysbase &&
|
|
curaddr < (dr->dr_sysbase + dr->dr_len))
|
|
return (dr);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Check to see if the specified busaddr is in an allowed DMA range.
|
|
*/
|
|
static inline paddr_t
|
|
_bus_dma_busaddr_to_paddr(bus_dma_tag_t t, bus_addr_t curaddr)
|
|
{
|
|
struct arm32_dma_range *dr;
|
|
u_int i;
|
|
|
|
if (t->_nranges == 0)
|
|
return curaddr;
|
|
|
|
for (i = 0, dr = t->_ranges; i < t->_nranges; i++, dr++) {
|
|
if (dr->dr_busbase <= curaddr
|
|
&& curaddr < dr->dr_busbase + dr->dr_len)
|
|
return curaddr - dr->dr_busbase + dr->dr_sysbase;
|
|
}
|
|
panic("%s: curaddr %#lx not in range", __func__, curaddr);
|
|
}
|
|
|
|
/*
|
|
* Common function to load the specified physical address into the
|
|
* DMA map, coalescing segments and boundary checking as necessary.
|
|
*/
|
|
static int
|
|
_bus_dmamap_load_paddr(bus_dma_tag_t t, bus_dmamap_t map,
|
|
bus_addr_t paddr, bus_size_t size, bool coherent)
|
|
{
|
|
bus_dma_segment_t * const segs = map->dm_segs;
|
|
int nseg = map->dm_nsegs;
|
|
bus_addr_t lastaddr;
|
|
bus_addr_t bmask = ~(map->_dm_boundary - 1);
|
|
bus_addr_t curaddr;
|
|
bus_size_t sgsize;
|
|
uint32_t _ds_flags = coherent ? _BUS_DMAMAP_COHERENT : 0;
|
|
|
|
if (nseg > 0)
|
|
lastaddr = segs[nseg-1].ds_addr + segs[nseg-1].ds_len;
|
|
else
|
|
lastaddr = 0xdead;
|
|
|
|
again:
|
|
sgsize = size;
|
|
|
|
/* Make sure we're in an allowed DMA range. */
|
|
if (t->_ranges != NULL) {
|
|
/* XXX cache last result? */
|
|
const struct arm32_dma_range * const dr =
|
|
_bus_dma_paddr_inrange(t->_ranges, t->_nranges, paddr);
|
|
if (dr == NULL)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* If this region is coherent, mark the segment as coherent.
|
|
*/
|
|
_ds_flags |= dr->dr_flags & _BUS_DMAMAP_COHERENT;
|
|
|
|
/*
|
|
* In a valid DMA range. Translate the physical
|
|
* memory address to an address in the DMA window.
|
|
*/
|
|
curaddr = (paddr - dr->dr_sysbase) + dr->dr_busbase;
|
|
#if 0
|
|
printf("%p: %#lx: range %#lx/%#lx/%#lx/%#x: %#x <-- %#lx\n",
|
|
t, paddr, dr->dr_sysbase, dr->dr_busbase,
|
|
dr->dr_len, dr->dr_flags, _ds_flags, curaddr);
|
|
#endif
|
|
} else
|
|
curaddr = paddr;
|
|
|
|
/*
|
|
* Make sure we don't cross any boundaries.
|
|
*/
|
|
if (map->_dm_boundary > 0) {
|
|
bus_addr_t baddr; /* next boundary address */
|
|
|
|
baddr = (curaddr + map->_dm_boundary) & bmask;
|
|
if (sgsize > (baddr - curaddr))
|
|
sgsize = (baddr - curaddr);
|
|
}
|
|
|
|
/*
|
|
* Insert chunk into a segment, coalescing with the
|
|
* previous segment if possible.
|
|
*/
|
|
if (nseg > 0 && curaddr == lastaddr &&
|
|
segs[nseg-1].ds_len + sgsize <= map->dm_maxsegsz &&
|
|
((segs[nseg-1]._ds_flags ^ _ds_flags) & _BUS_DMAMAP_COHERENT) == 0 &&
|
|
(map->_dm_boundary == 0 ||
|
|
(segs[nseg-1].ds_addr & bmask) == (curaddr & bmask))) {
|
|
/* coalesce */
|
|
segs[nseg-1].ds_len += sgsize;
|
|
} else if (nseg >= map->_dm_segcnt) {
|
|
return (EFBIG);
|
|
} else {
|
|
/* new segment */
|
|
segs[nseg].ds_addr = curaddr;
|
|
segs[nseg].ds_len = sgsize;
|
|
segs[nseg]._ds_flags = _ds_flags;
|
|
nseg++;
|
|
}
|
|
|
|
lastaddr = curaddr + sgsize;
|
|
|
|
paddr += sgsize;
|
|
size -= sgsize;
|
|
if (size > 0)
|
|
goto again;
|
|
|
|
map->_dm_flags &= (_ds_flags & _BUS_DMAMAP_COHERENT);
|
|
map->dm_nsegs = nseg;
|
|
return (0);
|
|
}
|
|
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
static int _bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
|
|
bus_size_t size, int flags);
|
|
static void _bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map);
|
|
static int _bus_dma_uiomove(void *buf, struct uio *uio, size_t n,
|
|
int direction);
|
|
|
|
static int
|
|
_bus_dma_load_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
|
|
size_t buflen, int buftype, int flags)
|
|
{
|
|
struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
|
|
struct vmspace * const vm = vmspace_kernel();
|
|
int error;
|
|
|
|
KASSERT(cookie != NULL);
|
|
KASSERT(cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE);
|
|
|
|
/*
|
|
* Allocate bounce pages, if necessary.
|
|
*/
|
|
if ((cookie->id_flags & _BUS_DMA_HAS_BOUNCE) == 0) {
|
|
error = _bus_dma_alloc_bouncebuf(t, map, buflen, flags);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Cache a pointer to the caller's buffer and load the DMA map
|
|
* with the bounce buffer.
|
|
*/
|
|
cookie->id_origbuf = buf;
|
|
cookie->id_origbuflen = buflen;
|
|
error = _bus_dmamap_load_buffer(t, map, cookie->id_bouncebuf,
|
|
buflen, vm, flags);
|
|
if (error)
|
|
return (error);
|
|
|
|
STAT_INCR(bounced_loads);
|
|
map->dm_mapsize = buflen;
|
|
map->_dm_vmspace = vm;
|
|
map->_dm_buftype = buftype;
|
|
|
|
/* ...so _bus_dmamap_sync() knows we're bouncing */
|
|
map->_dm_flags |= _BUS_DMAMAP_IS_BOUNCING;
|
|
cookie->id_flags |= _BUS_DMA_IS_BOUNCING;
|
|
return 0;
|
|
}
|
|
#endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
|
|
|
|
/*
|
|
* Common function for DMA map creation. May be called by bus-specific
|
|
* DMA map creation functions.
|
|
*/
|
|
int
|
|
_bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
|
|
bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
|
|
{
|
|
struct arm32_bus_dmamap *map;
|
|
void *mapstore;
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamap_create: t=%p size=%lx nseg=%x msegsz=%lx boundary=%lx flags=%x\n",
|
|
t, size, nsegments, maxsegsz, boundary, flags);
|
|
#endif /* DEBUG_DMA */
|
|
|
|
/*
|
|
* Allocate and initialize the DMA map. The end of the map
|
|
* is a variable-sized array of segments, so we allocate enough
|
|
* room for them in one shot.
|
|
*
|
|
* Note we don't preserve the WAITOK or NOWAIT flags. Preservation
|
|
* of ALLOCNOW notifies others that we've reserved these resources,
|
|
* and they are not to be freed.
|
|
*
|
|
* The bus_dmamap_t includes one bus_dma_segment_t, hence
|
|
* the (nsegments - 1).
|
|
*/
|
|
const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
|
|
(sizeof(bus_dma_segment_t) * (nsegments - 1));
|
|
const int zallocflags = (flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP;
|
|
if ((mapstore = kmem_intr_zalloc(mapsize, zallocflags)) == NULL)
|
|
return (ENOMEM);
|
|
|
|
map = (struct arm32_bus_dmamap *)mapstore;
|
|
map->_dm_size = size;
|
|
map->_dm_segcnt = nsegments;
|
|
map->_dm_maxmaxsegsz = maxsegsz;
|
|
map->_dm_boundary = boundary;
|
|
map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
|
|
map->_dm_origbuf = NULL;
|
|
map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
|
|
map->_dm_vmspace = vmspace_kernel();
|
|
map->_dm_cookie = NULL;
|
|
map->dm_maxsegsz = maxsegsz;
|
|
map->dm_mapsize = 0; /* no valid mappings */
|
|
map->dm_nsegs = 0;
|
|
|
|
*dmamp = map;
|
|
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
struct arm32_bus_dma_cookie *cookie;
|
|
int cookieflags;
|
|
void *cookiestore;
|
|
int error;
|
|
|
|
cookieflags = 0;
|
|
|
|
if (t->_may_bounce != NULL) {
|
|
error = (*t->_may_bounce)(t, map, flags, &cookieflags);
|
|
if (error != 0)
|
|
goto out;
|
|
}
|
|
|
|
if (t->_ranges != NULL)
|
|
cookieflags |= _BUS_DMA_MIGHT_NEED_BOUNCE;
|
|
|
|
if ((cookieflags & _BUS_DMA_MIGHT_NEED_BOUNCE) == 0) {
|
|
STAT_INCR(creates);
|
|
return 0;
|
|
}
|
|
|
|
const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
|
|
(sizeof(bus_dma_segment_t) * map->_dm_segcnt);
|
|
|
|
/*
|
|
* Allocate our cookie.
|
|
*/
|
|
if ((cookiestore = kmem_intr_zalloc(cookiesize, zallocflags)) == NULL) {
|
|
error = ENOMEM;
|
|
goto out;
|
|
}
|
|
cookie = (struct arm32_bus_dma_cookie *)cookiestore;
|
|
cookie->id_flags = cookieflags;
|
|
map->_dm_cookie = cookie;
|
|
STAT_INCR(bounced_creates);
|
|
|
|
error = _bus_dma_alloc_bouncebuf(t, map, size, flags);
|
|
out:
|
|
if (error)
|
|
_bus_dmamap_destroy(t, map);
|
|
#else
|
|
STAT_INCR(creates);
|
|
#endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamap_create:map=%p\n", map);
|
|
#endif /* DEBUG_DMA */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Common function for DMA map destruction. May be called by bus-specific
|
|
* DMA map destruction functions.
|
|
*/
|
|
void
|
|
_bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
|
|
{
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamap_destroy: t=%p map=%p\n", t, map);
|
|
#endif /* DEBUG_DMA */
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
|
|
|
|
/*
|
|
* Free any bounce pages this map might hold.
|
|
*/
|
|
if (cookie != NULL) {
|
|
const size_t cookiesize = sizeof(struct arm32_bus_dma_cookie) +
|
|
(sizeof(bus_dma_segment_t) * map->_dm_segcnt);
|
|
|
|
if (cookie->id_flags & _BUS_DMA_IS_BOUNCING)
|
|
STAT_INCR(bounced_unloads);
|
|
map->dm_nsegs = 0;
|
|
if (cookie->id_flags & _BUS_DMA_HAS_BOUNCE)
|
|
_bus_dma_free_bouncebuf(t, map);
|
|
STAT_INCR(bounced_destroys);
|
|
kmem_intr_free(cookie, cookiesize);
|
|
} else
|
|
#endif
|
|
STAT_INCR(destroys);
|
|
|
|
if (map->dm_nsegs > 0)
|
|
STAT_INCR(unloads);
|
|
|
|
const size_t mapsize = sizeof(struct arm32_bus_dmamap) +
|
|
(sizeof(bus_dma_segment_t) * (map->_dm_segcnt - 1));
|
|
kmem_intr_free(map, mapsize);
|
|
}
|
|
|
|
/*
|
|
* Common function for loading a DMA map with a linear buffer. May
|
|
* be called by bus-specific DMA map load functions.
|
|
*/
|
|
int
|
|
_bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
|
|
bus_size_t buflen, struct proc *p, int flags)
|
|
{
|
|
struct vmspace *vm;
|
|
int error;
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamap_load: t=%p map=%p buf=%p len=%lx p=%p f=%d\n",
|
|
t, map, buf, buflen, p, flags);
|
|
#endif /* DEBUG_DMA */
|
|
|
|
if (map->dm_nsegs > 0) {
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
|
|
if (cookie != NULL) {
|
|
if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
|
|
STAT_INCR(bounced_unloads);
|
|
cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
|
|
map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
|
|
}
|
|
} else
|
|
#endif
|
|
STAT_INCR(unloads);
|
|
}
|
|
|
|
/*
|
|
* Make sure that on error condition we return "no valid mappings".
|
|
*/
|
|
map->dm_mapsize = 0;
|
|
map->dm_nsegs = 0;
|
|
map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
|
|
KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
|
|
"dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
|
|
map->dm_maxsegsz, map->_dm_maxmaxsegsz);
|
|
|
|
if (buflen > map->_dm_size)
|
|
return (EINVAL);
|
|
|
|
if (p != NULL) {
|
|
vm = p->p_vmspace;
|
|
} else {
|
|
vm = vmspace_kernel();
|
|
}
|
|
|
|
/* _bus_dmamap_load_buffer() clears this if we're not... */
|
|
map->_dm_flags |= _BUS_DMAMAP_COHERENT;
|
|
|
|
error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags);
|
|
if (error == 0) {
|
|
map->dm_mapsize = buflen;
|
|
map->_dm_vmspace = vm;
|
|
map->_dm_origbuf = buf;
|
|
map->_dm_buftype = _BUS_DMA_BUFTYPE_LINEAR;
|
|
if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
|
|
STAT_INCR(coherent_loads);
|
|
} else {
|
|
STAT_INCR(loads);
|
|
}
|
|
return 0;
|
|
}
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
|
|
if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
|
|
error = _bus_dma_load_bouncebuf(t, map, buf, buflen,
|
|
_BUS_DMA_BUFTYPE_LINEAR, flags);
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Like _bus_dmamap_load(), but for mbufs.
|
|
*/
|
|
int
|
|
_bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
|
|
int flags)
|
|
{
|
|
int error;
|
|
struct mbuf *m;
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamap_load_mbuf: t=%p map=%p m0=%p f=%d\n",
|
|
t, map, m0, flags);
|
|
#endif /* DEBUG_DMA */
|
|
|
|
if (map->dm_nsegs > 0) {
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
|
|
if (cookie != NULL) {
|
|
if (cookie->id_flags & _BUS_DMA_IS_BOUNCING) {
|
|
STAT_INCR(bounced_unloads);
|
|
cookie->id_flags &= ~_BUS_DMA_IS_BOUNCING;
|
|
map->_dm_flags &= ~_BUS_DMAMAP_IS_BOUNCING;
|
|
}
|
|
} else
|
|
#endif
|
|
STAT_INCR(unloads);
|
|
}
|
|
|
|
/*
|
|
* Make sure that on error condition we return "no valid mappings."
|
|
*/
|
|
map->dm_mapsize = 0;
|
|
map->dm_nsegs = 0;
|
|
map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
|
|
KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
|
|
"dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
|
|
map->dm_maxsegsz, map->_dm_maxmaxsegsz);
|
|
|
|
KASSERT(m0->m_flags & M_PKTHDR);
|
|
|
|
if (m0->m_pkthdr.len > map->_dm_size)
|
|
return (EINVAL);
|
|
|
|
/* _bus_dmamap_load_paddr() clears this if we're not... */
|
|
map->_dm_flags |= _BUS_DMAMAP_COHERENT;
|
|
|
|
error = 0;
|
|
for (m = m0; m != NULL && error == 0; m = m->m_next) {
|
|
int offset;
|
|
int remainbytes;
|
|
const struct vm_page * const *pgs;
|
|
paddr_t paddr;
|
|
int size;
|
|
|
|
if (m->m_len == 0)
|
|
continue;
|
|
/*
|
|
* Don't allow reads in read-only mbufs.
|
|
*/
|
|
if (M_ROMAP(m) && (flags & BUS_DMA_READ)) {
|
|
error = EFAULT;
|
|
break;
|
|
}
|
|
switch (m->m_flags & (M_EXT|M_CLUSTER|M_EXT_PAGES)) {
|
|
case M_EXT|M_CLUSTER:
|
|
/* XXX KDASSERT */
|
|
KASSERT(m->m_ext.ext_paddr != M_PADDR_INVALID);
|
|
paddr = m->m_ext.ext_paddr +
|
|
(m->m_data - m->m_ext.ext_buf);
|
|
size = m->m_len;
|
|
error = _bus_dmamap_load_paddr(t, map, paddr, size,
|
|
false);
|
|
break;
|
|
|
|
case M_EXT|M_EXT_PAGES:
|
|
KASSERT(m->m_ext.ext_buf <= m->m_data);
|
|
KASSERT(m->m_data <=
|
|
m->m_ext.ext_buf + m->m_ext.ext_size);
|
|
|
|
offset = (vaddr_t)m->m_data -
|
|
trunc_page((vaddr_t)m->m_ext.ext_buf);
|
|
remainbytes = m->m_len;
|
|
|
|
/* skip uninteresting pages */
|
|
pgs = (const struct vm_page * const *)
|
|
m->m_ext.ext_pgs + (offset >> PAGE_SHIFT);
|
|
|
|
offset &= PAGE_MASK; /* offset in the first page */
|
|
|
|
/* load each page */
|
|
while (remainbytes > 0) {
|
|
const struct vm_page *pg;
|
|
|
|
size = MIN(remainbytes, PAGE_SIZE - offset);
|
|
|
|
pg = *pgs++;
|
|
KASSERT(pg);
|
|
paddr = VM_PAGE_TO_PHYS(pg) + offset;
|
|
|
|
error = _bus_dmamap_load_paddr(t, map,
|
|
paddr, size, false);
|
|
if (error)
|
|
break;
|
|
offset = 0;
|
|
remainbytes -= size;
|
|
}
|
|
break;
|
|
|
|
case 0:
|
|
paddr = m->m_paddr + M_BUFOFFSET(m) +
|
|
(m->m_data - M_BUFADDR(m));
|
|
size = m->m_len;
|
|
error = _bus_dmamap_load_paddr(t, map, paddr, size,
|
|
false);
|
|
break;
|
|
|
|
default:
|
|
error = _bus_dmamap_load_buffer(t, map, m->m_data,
|
|
m->m_len, vmspace_kernel(), flags);
|
|
}
|
|
}
|
|
if (error == 0) {
|
|
map->dm_mapsize = m0->m_pkthdr.len;
|
|
map->_dm_origbuf = m0;
|
|
map->_dm_buftype = _BUS_DMA_BUFTYPE_MBUF;
|
|
map->_dm_vmspace = vmspace_kernel(); /* always kernel */
|
|
if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
|
|
STAT_INCR(coherent_loads);
|
|
} else {
|
|
STAT_INCR(loads);
|
|
}
|
|
return 0;
|
|
}
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
|
|
if (cookie != NULL && (cookie->id_flags & _BUS_DMA_MIGHT_NEED_BOUNCE)) {
|
|
error = _bus_dma_load_bouncebuf(t, map, m0, m0->m_pkthdr.len,
|
|
_BUS_DMA_BUFTYPE_MBUF, flags);
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Like _bus_dmamap_load(), but for uios.
|
|
*/
|
|
int
|
|
_bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
|
|
int flags)
|
|
{
|
|
int i, error;
|
|
bus_size_t minlen, resid;
|
|
struct iovec *iov;
|
|
void *addr;
|
|
|
|
/*
|
|
* Make sure that on error condition we return "no valid mappings."
|
|
*/
|
|
map->dm_mapsize = 0;
|
|
map->dm_nsegs = 0;
|
|
KASSERTMSG(map->dm_maxsegsz <= map->_dm_maxmaxsegsz,
|
|
"dm_maxsegsz %lu _dm_maxmaxsegsz %lu",
|
|
map->dm_maxsegsz, map->_dm_maxmaxsegsz);
|
|
|
|
resid = uio->uio_resid;
|
|
iov = uio->uio_iov;
|
|
|
|
/* _bus_dmamap_load_buffer() clears this if we're not... */
|
|
map->_dm_flags |= _BUS_DMAMAP_COHERENT;
|
|
|
|
error = 0;
|
|
for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
|
|
/*
|
|
* Now at the first iovec to load. Load each iovec
|
|
* until we have exhausted the residual count.
|
|
*/
|
|
minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
|
|
addr = (void *)iov[i].iov_base;
|
|
|
|
error = _bus_dmamap_load_buffer(t, map, addr, minlen,
|
|
uio->uio_vmspace, flags);
|
|
|
|
resid -= minlen;
|
|
}
|
|
if (error == 0) {
|
|
map->dm_mapsize = uio->uio_resid;
|
|
map->_dm_origbuf = uio;
|
|
map->_dm_buftype = _BUS_DMA_BUFTYPE_UIO;
|
|
map->_dm_vmspace = uio->uio_vmspace;
|
|
if (map->_dm_flags & _BUS_DMAMAP_COHERENT) {
|
|
STAT_INCR(coherent_loads);
|
|
} else {
|
|
STAT_INCR(loads);
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Like _bus_dmamap_load(), but for raw memory allocated with
|
|
* bus_dmamem_alloc().
|
|
*/
|
|
int
|
|
_bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
|
|
bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
|
|
{
|
|
|
|
panic("_bus_dmamap_load_raw: not implemented");
|
|
}
|
|
|
|
/*
|
|
* Common function for unloading a DMA map. May be called by
|
|
* bus-specific DMA map unload functions.
|
|
*/
|
|
void
|
|
_bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
|
|
{
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamap_unload: t=%p map=%p\n", t, map);
|
|
#endif /* DEBUG_DMA */
|
|
|
|
/*
|
|
* No resources to free; just mark the mappings as
|
|
* invalid.
|
|
*/
|
|
map->dm_mapsize = 0;
|
|
map->dm_nsegs = 0;
|
|
map->_dm_origbuf = NULL;
|
|
map->_dm_buftype = _BUS_DMA_BUFTYPE_INVALID;
|
|
map->_dm_vmspace = NULL;
|
|
}
|
|
|
|
static void
|
|
_bus_dmamap_sync_segment(vaddr_t va, paddr_t pa, vsize_t len, int ops, bool readonly_p)
|
|
{
|
|
KASSERTMSG((va & PAGE_MASK) == (pa & PAGE_MASK),
|
|
"va %#lx pa %#lx", va, pa);
|
|
#if 0
|
|
printf("sync_segment: va=%#lx pa=%#lx len=%#lx ops=%#x ro=%d\n",
|
|
va, pa, len, ops, readonly_p);
|
|
#endif
|
|
|
|
switch (ops) {
|
|
case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
|
|
#ifdef ARM_MMU_EXTENDED
|
|
(void)readonly_p;
|
|
#else
|
|
if (!readonly_p) {
|
|
#endif
|
|
STAT_INCR(sync_prereadwrite);
|
|
cpu_dcache_wbinv_range(va, len);
|
|
cpu_sdcache_wbinv_range(va, pa, len);
|
|
break;
|
|
#ifndef ARM_MMU_EXTENDED
|
|
}
|
|
/* FALLTHROUGH */
|
|
#endif
|
|
|
|
case BUS_DMASYNC_PREREAD: {
|
|
const size_t line_size = arm_dcache_align;
|
|
const size_t line_mask = arm_dcache_align_mask;
|
|
vsize_t misalignment = va & line_mask;
|
|
if (misalignment) {
|
|
va -= misalignment;
|
|
pa -= misalignment;
|
|
len += misalignment;
|
|
STAT_INCR(sync_preread_begin);
|
|
cpu_dcache_wbinv_range(va, line_size);
|
|
cpu_sdcache_wbinv_range(va, pa, line_size);
|
|
if (len <= line_size)
|
|
break;
|
|
va += line_size;
|
|
pa += line_size;
|
|
len -= line_size;
|
|
}
|
|
misalignment = len & line_mask;
|
|
len -= misalignment;
|
|
if (len > 0) {
|
|
STAT_INCR(sync_preread);
|
|
cpu_dcache_inv_range(va, len);
|
|
cpu_sdcache_inv_range(va, pa, len);
|
|
}
|
|
if (misalignment) {
|
|
va += len;
|
|
pa += len;
|
|
STAT_INCR(sync_preread_tail);
|
|
cpu_dcache_wbinv_range(va, line_size);
|
|
cpu_sdcache_wbinv_range(va, pa, line_size);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case BUS_DMASYNC_PREWRITE:
|
|
STAT_INCR(sync_prewrite);
|
|
cpu_dcache_wb_range(va, len);
|
|
cpu_sdcache_wb_range(va, pa, len);
|
|
break;
|
|
|
|
#ifdef CPU_CORTEX
|
|
/*
|
|
* Cortex CPUs can do speculative loads so we need to clean the cache
|
|
* after a DMA read to deal with any speculatively loaded cache lines.
|
|
* Since these can't be dirty, we can just invalidate them and don't
|
|
* have to worry about having to write back their contents.
|
|
*/
|
|
case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
|
|
STAT_INCR(sync_postreadwrite);
|
|
arm_dmb();
|
|
cpu_dcache_inv_range(va, len);
|
|
cpu_sdcache_inv_range(va, pa, len);
|
|
break;
|
|
case BUS_DMASYNC_POSTREAD:
|
|
STAT_INCR(sync_postread);
|
|
arm_dmb();
|
|
cpu_dcache_inv_range(va, len);
|
|
cpu_sdcache_inv_range(va, pa, len);
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
_bus_dmamap_sync_linear(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
|
|
bus_size_t len, int ops)
|
|
{
|
|
bus_dma_segment_t *ds = map->dm_segs;
|
|
vaddr_t va = (vaddr_t) map->_dm_origbuf;
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
if (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING) {
|
|
struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
|
|
va = (vaddr_t) cookie->id_bouncebuf;
|
|
}
|
|
#endif
|
|
|
|
while (len > 0) {
|
|
while (offset >= ds->ds_len) {
|
|
offset -= ds->ds_len;
|
|
va += ds->ds_len;
|
|
ds++;
|
|
}
|
|
|
|
paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + offset);
|
|
size_t seglen = min(len, ds->ds_len - offset);
|
|
|
|
if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
|
|
_bus_dmamap_sync_segment(va + offset, pa, seglen, ops,
|
|
false);
|
|
|
|
offset += seglen;
|
|
len -= seglen;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
_bus_dmamap_sync_mbuf(bus_dma_tag_t t, bus_dmamap_t map, bus_size_t offset,
|
|
bus_size_t len, int ops)
|
|
{
|
|
bus_dma_segment_t *ds = map->dm_segs;
|
|
struct mbuf *m = map->_dm_origbuf;
|
|
bus_size_t voff = offset;
|
|
bus_size_t ds_off = offset;
|
|
|
|
while (len > 0) {
|
|
/* Find the current dma segment */
|
|
while (ds_off >= ds->ds_len) {
|
|
ds_off -= ds->ds_len;
|
|
ds++;
|
|
}
|
|
/* Find the current mbuf. */
|
|
while (voff >= m->m_len) {
|
|
voff -= m->m_len;
|
|
m = m->m_next;
|
|
}
|
|
|
|
/*
|
|
* Now at the first mbuf to sync; nail each one until
|
|
* we have exhausted the length.
|
|
*/
|
|
vsize_t seglen = min(len, min(m->m_len - voff, ds->ds_len - ds_off));
|
|
vaddr_t va = mtod(m, vaddr_t) + voff;
|
|
paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
|
|
|
|
/*
|
|
* We can save a lot of work here if we know the mapping
|
|
* is read-only at the MMU and we aren't using the armv6+
|
|
* MMU:
|
|
*
|
|
* If a mapping is read-only, no dirty cache blocks will
|
|
* exist for it. If a writable mapping was made read-only,
|
|
* we know any dirty cache lines for the range will have
|
|
* been cleaned for us already. Therefore, if the upper
|
|
* layer can tell us we have a read-only mapping, we can
|
|
* skip all cache cleaning.
|
|
*
|
|
* NOTE: This only works if we know the pmap cleans pages
|
|
* before making a read-write -> read-only transition. If
|
|
* this ever becomes non-true (e.g. Physically Indexed
|
|
* cache), this will have to be revisited.
|
|
*/
|
|
|
|
if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0) {
|
|
/*
|
|
* If we are doing preread (DMAing into the mbuf),
|
|
* this mbuf better not be readonly,
|
|
*/
|
|
KASSERT(!(ops & BUS_DMASYNC_PREREAD) || !M_ROMAP(m));
|
|
_bus_dmamap_sync_segment(va, pa, seglen, ops,
|
|
M_ROMAP(m));
|
|
}
|
|
voff += seglen;
|
|
ds_off += seglen;
|
|
len -= seglen;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
_bus_dmamap_sync_uio(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
|
|
bus_size_t len, int ops)
|
|
{
|
|
bus_dma_segment_t *ds = map->dm_segs;
|
|
struct uio *uio = map->_dm_origbuf;
|
|
struct iovec *iov = uio->uio_iov;
|
|
bus_size_t voff = offset;
|
|
bus_size_t ds_off = offset;
|
|
|
|
while (len > 0) {
|
|
/* Find the current dma segment */
|
|
while (ds_off >= ds->ds_len) {
|
|
ds_off -= ds->ds_len;
|
|
ds++;
|
|
}
|
|
|
|
/* Find the current iovec. */
|
|
while (voff >= iov->iov_len) {
|
|
voff -= iov->iov_len;
|
|
iov++;
|
|
}
|
|
|
|
/*
|
|
* Now at the first iovec to sync; nail each one until
|
|
* we have exhausted the length.
|
|
*/
|
|
vsize_t seglen = min(len, min(iov->iov_len - voff, ds->ds_len - ds_off));
|
|
vaddr_t va = (vaddr_t) iov->iov_base + voff;
|
|
paddr_t pa = _bus_dma_busaddr_to_paddr(t, ds->ds_addr + ds_off);
|
|
|
|
if ((ds->_ds_flags & _BUS_DMAMAP_COHERENT) == 0)
|
|
_bus_dmamap_sync_segment(va, pa, seglen, ops, false);
|
|
|
|
voff += seglen;
|
|
ds_off += seglen;
|
|
len -= seglen;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Common function for DMA map synchronization. May be called
|
|
* by bus-specific DMA map synchronization functions.
|
|
*
|
|
* This version works for the Virtually Indexed Virtually Tagged
|
|
* cache found on 32-bit ARM processors.
|
|
*
|
|
* XXX Should have separate versions for write-through vs.
|
|
* XXX write-back caches. We currently assume write-back
|
|
* XXX here, which is not as efficient as it could be for
|
|
* XXX the write-through case.
|
|
*/
|
|
void
|
|
_bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
|
|
bus_size_t len, int ops)
|
|
{
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamap_sync: t=%p map=%p offset=%lx len=%lx ops=%x\n",
|
|
t, map, offset, len, ops);
|
|
#endif /* DEBUG_DMA */
|
|
|
|
/*
|
|
* Mixing of PRE and POST operations is not allowed.
|
|
*/
|
|
if ((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0 &&
|
|
(ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0)
|
|
panic("_bus_dmamap_sync: mix PRE and POST");
|
|
|
|
KASSERTMSG(offset < map->dm_mapsize,
|
|
"offset %lu mapsize %lu",
|
|
offset, map->dm_mapsize);
|
|
KASSERTMSG(len > 0 && offset + len <= map->dm_mapsize,
|
|
"len %lu offset %lu mapsize %lu",
|
|
len, offset, map->dm_mapsize);
|
|
|
|
/*
|
|
* For a virtually-indexed write-back cache, we need
|
|
* to do the following things:
|
|
*
|
|
* PREREAD -- Invalidate the D-cache. We do this
|
|
* here in case a write-back is required by the back-end.
|
|
*
|
|
* PREWRITE -- Write-back the D-cache. Note that if
|
|
* we are doing a PREREAD|PREWRITE, we can collapse
|
|
* the whole thing into a single Wb-Inv.
|
|
*
|
|
* POSTREAD -- Re-invalidate the D-cache in case speculative
|
|
* memory accesses caused cachelines to become valid with now
|
|
* invalid data.
|
|
*
|
|
* POSTWRITE -- Nothing.
|
|
*/
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
const bool bouncing = (map->_dm_flags & _BUS_DMAMAP_IS_BOUNCING);
|
|
#else
|
|
const bool bouncing = false;
|
|
#endif
|
|
|
|
const int pre_ops = ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
#ifdef CPU_CORTEX
|
|
const int post_ops = ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
#else
|
|
const int post_ops = 0;
|
|
#endif
|
|
if (!bouncing && pre_ops == 0 && post_ops == BUS_DMASYNC_POSTWRITE) {
|
|
STAT_INCR(sync_postwrite);
|
|
return;
|
|
}
|
|
KASSERTMSG(bouncing || pre_ops != 0 || (post_ops & BUS_DMASYNC_POSTREAD),
|
|
"pre_ops %#x post_ops %#x", pre_ops, post_ops);
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
if (bouncing && (ops & BUS_DMASYNC_PREWRITE)) {
|
|
struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
|
|
STAT_INCR(write_bounces);
|
|
char * const dataptr = (char *)cookie->id_bouncebuf + offset;
|
|
/*
|
|
* Copy the caller's buffer to the bounce buffer.
|
|
*/
|
|
switch (map->_dm_buftype) {
|
|
case _BUS_DMA_BUFTYPE_LINEAR:
|
|
memcpy(dataptr, cookie->id_origlinearbuf + offset, len);
|
|
break;
|
|
case _BUS_DMA_BUFTYPE_MBUF:
|
|
m_copydata(cookie->id_origmbuf, offset, len, dataptr);
|
|
break;
|
|
case _BUS_DMA_BUFTYPE_UIO:
|
|
_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_WRITE);
|
|
break;
|
|
#ifdef DIAGNOSTIC
|
|
case _BUS_DMA_BUFTYPE_RAW:
|
|
panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_RAW");
|
|
break;
|
|
|
|
case _BUS_DMA_BUFTYPE_INVALID:
|
|
panic("_bus_dmamap_sync(pre): _BUS_DMA_BUFTYPE_INVALID");
|
|
break;
|
|
|
|
default:
|
|
panic("_bus_dmamap_sync(pre): map %p: unknown buffer type %d\n",
|
|
map, map->_dm_buftype);
|
|
break;
|
|
#endif /* DIAGNOSTIC */
|
|
}
|
|
}
|
|
#endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
|
|
|
|
/* Skip cache frobbing if mapping was COHERENT. */
|
|
if (!bouncing && (map->_dm_flags & _BUS_DMAMAP_COHERENT)) {
|
|
/* Drain the write buffer. */
|
|
if (pre_ops & BUS_DMASYNC_PREWRITE)
|
|
cpu_drain_writebuf();
|
|
return;
|
|
}
|
|
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
if (bouncing && ((map->_dm_flags & _BUS_DMAMAP_COHERENT) || pre_ops == 0)) {
|
|
goto bounce_it;
|
|
}
|
|
#endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
|
|
|
|
#ifndef ARM_MMU_EXTENDED
|
|
/*
|
|
* If the mapping belongs to a non-kernel vmspace, and the
|
|
* vmspace has not been active since the last time a full
|
|
* cache flush was performed, we don't need to do anything.
|
|
*/
|
|
if (__predict_false(!VMSPACE_IS_KERNEL_P(map->_dm_vmspace) &&
|
|
vm_map_pmap(&map->_dm_vmspace->vm_map)->pm_cstate.cs_cache_d == 0))
|
|
return;
|
|
#endif
|
|
|
|
int buftype = map->_dm_buftype;
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
if (bouncing) {
|
|
buftype = _BUS_DMA_BUFTYPE_LINEAR;
|
|
}
|
|
#endif
|
|
|
|
switch (buftype) {
|
|
case _BUS_DMA_BUFTYPE_LINEAR:
|
|
_bus_dmamap_sync_linear(t, map, offset, len, ops);
|
|
break;
|
|
|
|
case _BUS_DMA_BUFTYPE_MBUF:
|
|
_bus_dmamap_sync_mbuf(t, map, offset, len, ops);
|
|
break;
|
|
|
|
case _BUS_DMA_BUFTYPE_UIO:
|
|
_bus_dmamap_sync_uio(t, map, offset, len, ops);
|
|
break;
|
|
|
|
case _BUS_DMA_BUFTYPE_RAW:
|
|
panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_RAW");
|
|
break;
|
|
|
|
case _BUS_DMA_BUFTYPE_INVALID:
|
|
panic("_bus_dmamap_sync: _BUS_DMA_BUFTYPE_INVALID");
|
|
break;
|
|
|
|
default:
|
|
panic("_bus_dmamap_sync: map %p: unknown buffer type %d\n",
|
|
map, map->_dm_buftype);
|
|
}
|
|
|
|
/* Drain the write buffer. */
|
|
cpu_drain_writebuf();
|
|
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
bounce_it:
|
|
if (!bouncing || (ops & BUS_DMASYNC_POSTREAD) == 0)
|
|
return;
|
|
|
|
struct arm32_bus_dma_cookie * const cookie = map->_dm_cookie;
|
|
char * const dataptr = (char *)cookie->id_bouncebuf + offset;
|
|
STAT_INCR(read_bounces);
|
|
/*
|
|
* Copy the bounce buffer to the caller's buffer.
|
|
*/
|
|
switch (map->_dm_buftype) {
|
|
case _BUS_DMA_BUFTYPE_LINEAR:
|
|
memcpy(cookie->id_origlinearbuf + offset, dataptr, len);
|
|
break;
|
|
|
|
case _BUS_DMA_BUFTYPE_MBUF:
|
|
m_copyback(cookie->id_origmbuf, offset, len, dataptr);
|
|
break;
|
|
|
|
case _BUS_DMA_BUFTYPE_UIO:
|
|
_bus_dma_uiomove(dataptr, cookie->id_origuio, len, UIO_READ);
|
|
break;
|
|
#ifdef DIAGNOSTIC
|
|
case _BUS_DMA_BUFTYPE_RAW:
|
|
panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_RAW");
|
|
break;
|
|
|
|
case _BUS_DMA_BUFTYPE_INVALID:
|
|
panic("_bus_dmamap_sync(post): _BUS_DMA_BUFTYPE_INVALID");
|
|
break;
|
|
|
|
default:
|
|
panic("_bus_dmamap_sync(post): map %p: unknown buffer type %d\n",
|
|
map, map->_dm_buftype);
|
|
break;
|
|
#endif
|
|
}
|
|
#endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
|
|
}
|
|
|
|
/*
|
|
* Common function for DMA-safe memory allocation. May be called
|
|
* by bus-specific DMA memory allocation functions.
|
|
*/
|
|
|
|
extern paddr_t physical_start;
|
|
extern paddr_t physical_end;
|
|
|
|
int
|
|
_bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
|
|
bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
|
|
int flags)
|
|
{
|
|
struct arm32_dma_range *dr;
|
|
int error, i;
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamem_alloc t=%p size=%lx align=%lx boundary=%lx "
|
|
"segs=%p nsegs=%x rsegs=%p flags=%x\n", t, size, alignment,
|
|
boundary, segs, nsegs, rsegs, flags);
|
|
#endif
|
|
|
|
if ((dr = t->_ranges) != NULL) {
|
|
error = ENOMEM;
|
|
for (i = 0; i < t->_nranges; i++, dr++) {
|
|
if (dr->dr_len == 0
|
|
|| (dr->dr_flags & _BUS_DMAMAP_NOALLOC))
|
|
continue;
|
|
error = _bus_dmamem_alloc_range(t, size, alignment,
|
|
boundary, segs, nsegs, rsegs, flags,
|
|
trunc_page(dr->dr_sysbase),
|
|
trunc_page(dr->dr_sysbase + dr->dr_len));
|
|
if (error == 0)
|
|
break;
|
|
}
|
|
} else {
|
|
error = _bus_dmamem_alloc_range(t, size, alignment, boundary,
|
|
segs, nsegs, rsegs, flags, trunc_page(physical_start),
|
|
trunc_page(physical_end));
|
|
}
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamem_alloc: =%d\n", error);
|
|
#endif
|
|
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Common function for freeing DMA-safe memory. May be called by
|
|
* bus-specific DMA memory free functions.
|
|
*/
|
|
void
|
|
_bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
|
|
{
|
|
struct vm_page *m;
|
|
bus_addr_t addr;
|
|
struct pglist mlist;
|
|
int curseg;
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamem_free: t=%p segs=%p nsegs=%x\n", t, segs, nsegs);
|
|
#endif /* DEBUG_DMA */
|
|
|
|
/*
|
|
* Build a list of pages to free back to the VM system.
|
|
*/
|
|
TAILQ_INIT(&mlist);
|
|
for (curseg = 0; curseg < nsegs; curseg++) {
|
|
for (addr = segs[curseg].ds_addr;
|
|
addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
|
|
addr += PAGE_SIZE) {
|
|
m = PHYS_TO_VM_PAGE(addr);
|
|
TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
|
|
}
|
|
}
|
|
uvm_pglistfree(&mlist);
|
|
}
|
|
|
|
/*
|
|
* Common function for mapping DMA-safe memory. May be called by
|
|
* bus-specific DMA memory map functions.
|
|
*/
|
|
int
|
|
_bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
|
|
size_t size, void **kvap, int flags)
|
|
{
|
|
vaddr_t va;
|
|
paddr_t pa;
|
|
int curseg;
|
|
const uvm_flag_t kmflags = UVM_KMF_VAONLY
|
|
| ((flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0);
|
|
vsize_t align = 0;
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamem_map: t=%p segs=%p nsegs=%x size=%lx flags=%x\n", t,
|
|
segs, nsegs, (unsigned long)size, flags);
|
|
#endif /* DEBUG_DMA */
|
|
|
|
#ifdef PMAP_MAP_POOLPAGE
|
|
/*
|
|
* If all of memory is mapped, and we are mapping a single physically
|
|
* contiguous area then this area is already mapped. Let's see if we
|
|
* avoid having a separate mapping for it.
|
|
*/
|
|
if (nsegs == 1) {
|
|
/*
|
|
* If this is a non-COHERENT mapping, then the existing kernel
|
|
* mapping is already compatible with it.
|
|
*/
|
|
bool direct_mapable = (flags & BUS_DMA_COHERENT) == 0;
|
|
pa = segs[0].ds_addr;
|
|
|
|
/*
|
|
* This is a COHERENT mapping which, unless this address is in
|
|
* a COHERENT dma range, will not be compatible.
|
|
*/
|
|
if (t->_ranges != NULL) {
|
|
const struct arm32_dma_range * const dr =
|
|
_bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
|
|
if (dr != NULL
|
|
&& (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
|
|
direct_mapable = true;
|
|
}
|
|
}
|
|
|
|
#ifdef PMAP_NEED_ALLOC_POOLPAGE
|
|
/*
|
|
* The page can only be direct mapped if was allocated out
|
|
* of the arm poolpage vm freelist.
|
|
*/
|
|
int lcv = vm_physseg_find(atop(pa), NULL);
|
|
KASSERT(lcv != -1);
|
|
if (direct_mapable) {
|
|
direct_mapable =
|
|
(arm_poolpage_vmfreelist == VM_PHYSMEM_PTR(lcv)->free_list);
|
|
}
|
|
#endif
|
|
|
|
if (direct_mapable) {
|
|
*kvap = (void *)PMAP_MAP_POOLPAGE(pa);
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamem_map: =%p\n", *kvap);
|
|
#endif /* DEBUG_DMA */
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
size = round_page(size);
|
|
if (__predict_true(size > L2_L_SIZE)) {
|
|
#if (ARM_MMU_V6 + ARM_MMU_V7) > 0
|
|
if (size >= L1_SS_SIZE)
|
|
align = L1_SS_SIZE;
|
|
else
|
|
#endif
|
|
if (size >= L1_S_SIZE)
|
|
align = L1_S_SIZE;
|
|
else
|
|
align = L2_L_SIZE;
|
|
}
|
|
|
|
va = uvm_km_alloc(kernel_map, size, align, kmflags);
|
|
if (__predict_false(va == 0 && align > 0)) {
|
|
align = 0;
|
|
va = uvm_km_alloc(kernel_map, size, 0, kmflags);
|
|
}
|
|
|
|
if (va == 0)
|
|
return (ENOMEM);
|
|
|
|
*kvap = (void *)va;
|
|
|
|
for (curseg = 0; curseg < nsegs; curseg++) {
|
|
for (pa = segs[curseg].ds_addr;
|
|
pa < (segs[curseg].ds_addr + segs[curseg].ds_len);
|
|
pa += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
|
|
bool uncached = (flags & BUS_DMA_COHERENT);
|
|
#ifdef DEBUG_DMA
|
|
printf("wiring p%lx to v%lx", pa, va);
|
|
#endif /* DEBUG_DMA */
|
|
if (size == 0)
|
|
panic("_bus_dmamem_map: size botch");
|
|
|
|
const struct arm32_dma_range * const dr =
|
|
_bus_dma_paddr_inrange(t->_ranges, t->_nranges, pa);
|
|
/*
|
|
* If this dma region is coherent then there is
|
|
* no need for an uncached mapping.
|
|
*/
|
|
if (dr != NULL
|
|
&& (dr->dr_flags & _BUS_DMAMAP_COHERENT)) {
|
|
uncached = false;
|
|
}
|
|
|
|
pmap_kenter_pa(va, pa, VM_PROT_READ | VM_PROT_WRITE,
|
|
PMAP_WIRED | (uncached ? PMAP_NOCACHE : 0));
|
|
}
|
|
}
|
|
pmap_update(pmap_kernel());
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamem_map: =%p\n", *kvap);
|
|
#endif /* DEBUG_DMA */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Common function for unmapping DMA-safe memory. May be called by
|
|
* bus-specific DMA memory unmapping functions.
|
|
*/
|
|
void
|
|
_bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
|
|
{
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("dmamem_unmap: t=%p kva=%p size=%zx\n", t, kva, size);
|
|
#endif /* DEBUG_DMA */
|
|
KASSERTMSG(((uintptr_t)kva & PAGE_MASK) == 0,
|
|
"kva %p (%#"PRIxPTR")", kva, ((uintptr_t)kva & PAGE_MASK));
|
|
|
|
#ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
|
|
/*
|
|
* Check to see if this used direct mapped memory. Get its physical
|
|
* address and try to map it. If the resultant matches the kva, then
|
|
* it was and so we can just return since we have notice to free up.
|
|
*/
|
|
paddr_t pa;
|
|
vaddr_t va;
|
|
(void)pmap_extract(pmap_kernel(), (vaddr_t)kva, &pa);
|
|
if (mm_md_direct_mapped_phys(pa, &va) && va == (vaddr_t)kva)
|
|
return;
|
|
#endif
|
|
|
|
size = round_page(size);
|
|
pmap_kremove((vaddr_t)kva, size);
|
|
pmap_update(pmap_kernel());
|
|
uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
|
|
}
|
|
|
|
/*
|
|
* Common functin for mmap(2)'ing DMA-safe memory. May be called by
|
|
* bus-specific DMA mmap(2)'ing functions.
|
|
*/
|
|
paddr_t
|
|
_bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
|
|
off_t off, int prot, int flags)
|
|
{
|
|
paddr_t map_flags;
|
|
int i;
|
|
|
|
for (i = 0; i < nsegs; i++) {
|
|
KASSERTMSG((off & PAGE_MASK) == 0,
|
|
"off %#qx (%#x)", off, (int)off & PAGE_MASK);
|
|
KASSERTMSG((segs[i].ds_addr & PAGE_MASK) == 0,
|
|
"ds_addr %#lx (%#x)", segs[i].ds_addr,
|
|
(int)segs[i].ds_addr & PAGE_MASK);
|
|
KASSERTMSG((segs[i].ds_len & PAGE_MASK) == 0,
|
|
"ds_len %#lx (%#x)", segs[i].ds_addr,
|
|
(int)segs[i].ds_addr & PAGE_MASK);
|
|
if (off >= segs[i].ds_len) {
|
|
off -= segs[i].ds_len;
|
|
continue;
|
|
}
|
|
|
|
map_flags = 0;
|
|
if (flags & BUS_DMA_PREFETCHABLE)
|
|
map_flags |= ARM32_MMAP_WRITECOMBINE;
|
|
|
|
return (arm_btop((u_long)segs[i].ds_addr + off) | map_flags);
|
|
|
|
}
|
|
|
|
/* Page not found. */
|
|
return (-1);
|
|
}
|
|
|
|
/**********************************************************************
|
|
* DMA utility functions
|
|
**********************************************************************/
|
|
|
|
/*
|
|
* Utility function to load a linear buffer. lastaddrp holds state
|
|
* between invocations (for multiple-buffer loads). segp contains
|
|
* the starting segment on entrace, and the ending segment on exit.
|
|
* first indicates if this is the first invocation of this function.
|
|
*/
|
|
int
|
|
_bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
|
|
bus_size_t buflen, struct vmspace *vm, int flags)
|
|
{
|
|
bus_size_t sgsize;
|
|
bus_addr_t curaddr;
|
|
vaddr_t vaddr = (vaddr_t)buf;
|
|
int error;
|
|
pmap_t pmap;
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("_bus_dmamem_load_buffer(buf=%p, len=%lx, flags=%d)\n",
|
|
buf, buflen, flags);
|
|
#endif /* DEBUG_DMA */
|
|
|
|
pmap = vm_map_pmap(&vm->vm_map);
|
|
|
|
while (buflen > 0) {
|
|
/*
|
|
* Get the physical address for this segment.
|
|
*
|
|
* XXX Doesn't support checking for coherent mappings
|
|
* XXX in user address space.
|
|
*/
|
|
bool coherent;
|
|
if (__predict_true(pmap == pmap_kernel())) {
|
|
pd_entry_t *pde;
|
|
pt_entry_t *ptep;
|
|
(void) pmap_get_pde_pte(pmap, vaddr, &pde, &ptep);
|
|
if (__predict_false(pmap_pde_section(pde))) {
|
|
paddr_t s_frame = L1_S_FRAME;
|
|
paddr_t s_offset = L1_S_OFFSET;
|
|
#if (ARM_MMU_V6 + ARM_MMU_V7) > 0
|
|
if (__predict_false(pmap_pde_supersection(pde))) {
|
|
s_frame = L1_SS_FRAME;
|
|
s_offset = L1_SS_OFFSET;
|
|
}
|
|
#endif
|
|
curaddr = (*pde & s_frame) | (vaddr & s_offset);
|
|
coherent = (*pde & L1_S_CACHE_MASK) == 0;
|
|
} else {
|
|
pt_entry_t pte = *ptep;
|
|
KDASSERTMSG((pte & L2_TYPE_MASK) != L2_TYPE_INV,
|
|
"va=%#"PRIxVADDR" pde=%#x ptep=%p pte=%#x",
|
|
vaddr, *pde, ptep, pte);
|
|
if (__predict_false((pte & L2_TYPE_MASK)
|
|
== L2_TYPE_L)) {
|
|
curaddr = (pte & L2_L_FRAME) |
|
|
(vaddr & L2_L_OFFSET);
|
|
coherent = (pte & L2_L_CACHE_MASK) == 0;
|
|
} else {
|
|
curaddr = (pte & ~PAGE_MASK) |
|
|
(vaddr & PAGE_MASK);
|
|
coherent = (pte & L2_S_CACHE_MASK) == 0;
|
|
}
|
|
}
|
|
} else {
|
|
(void) pmap_extract(pmap, vaddr, &curaddr);
|
|
coherent = false;
|
|
}
|
|
KASSERTMSG((vaddr & PAGE_MASK) == (curaddr & PAGE_MASK),
|
|
"va %#lx curaddr %#lx", vaddr, curaddr);
|
|
|
|
/*
|
|
* Compute the segment size, and adjust counts.
|
|
*/
|
|
sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
|
|
if (buflen < sgsize)
|
|
sgsize = buflen;
|
|
|
|
error = _bus_dmamap_load_paddr(t, map, curaddr, sgsize,
|
|
coherent);
|
|
if (error)
|
|
return (error);
|
|
|
|
vaddr += sgsize;
|
|
buflen -= sgsize;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate physical memory from the given physical address range.
|
|
* Called by DMA-safe memory allocation methods.
|
|
*/
|
|
int
|
|
_bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
|
|
bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
|
|
int flags, paddr_t low, paddr_t high)
|
|
{
|
|
paddr_t curaddr, lastaddr;
|
|
struct vm_page *m;
|
|
struct pglist mlist;
|
|
int curseg, error;
|
|
|
|
KASSERTMSG(boundary == 0 || (boundary & (boundary-1)) == 0,
|
|
"invalid boundary %#lx", boundary);
|
|
|
|
#ifdef DEBUG_DMA
|
|
printf("alloc_range: t=%p size=%lx align=%lx boundary=%lx segs=%p nsegs=%x rsegs=%p flags=%x lo=%lx hi=%lx\n",
|
|
t, size, alignment, boundary, segs, nsegs, rsegs, flags, low, high);
|
|
#endif /* DEBUG_DMA */
|
|
|
|
/* Always round the size. */
|
|
size = round_page(size);
|
|
|
|
/*
|
|
* We accept boundaries < size, splitting in multiple segments
|
|
* if needed. uvm_pglistalloc does not, so compute an appropriate
|
|
* boundary: next power of 2 >= size
|
|
*/
|
|
bus_size_t uboundary = boundary;
|
|
if (uboundary <= PAGE_SIZE) {
|
|
uboundary = 0;
|
|
} else {
|
|
while (uboundary < size) {
|
|
uboundary <<= 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate pages from the VM system.
|
|
*/
|
|
error = uvm_pglistalloc(size, low, high, alignment, uboundary,
|
|
&mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Compute the location, size, and number of segments actually
|
|
* returned by the VM code.
|
|
*/
|
|
m = TAILQ_FIRST(&mlist);
|
|
curseg = 0;
|
|
lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
|
|
segs[curseg].ds_len = PAGE_SIZE;
|
|
#ifdef DEBUG_DMA
|
|
printf("alloc: page %lx\n", lastaddr);
|
|
#endif /* DEBUG_DMA */
|
|
m = TAILQ_NEXT(m, pageq.queue);
|
|
|
|
for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
|
|
curaddr = VM_PAGE_TO_PHYS(m);
|
|
KASSERTMSG(low <= curaddr && curaddr < high,
|
|
"uvm_pglistalloc returned non-sensicaladdress %#lx "
|
|
"(low=%#lx, high=%#lx\n", curaddr, low, high);
|
|
#ifdef DEBUG_DMA
|
|
printf("alloc: page %lx\n", curaddr);
|
|
#endif /* DEBUG_DMA */
|
|
if (curaddr == lastaddr + PAGE_SIZE
|
|
&& (lastaddr & boundary) == (curaddr & boundary))
|
|
segs[curseg].ds_len += PAGE_SIZE;
|
|
else {
|
|
curseg++;
|
|
if (curseg >= nsegs) {
|
|
uvm_pglistfree(&mlist);
|
|
return EFBIG;
|
|
}
|
|
segs[curseg].ds_addr = curaddr;
|
|
segs[curseg].ds_len = PAGE_SIZE;
|
|
}
|
|
lastaddr = curaddr;
|
|
}
|
|
|
|
*rsegs = curseg + 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check if a memory region intersects with a DMA range, and return the
|
|
* page-rounded intersection if it does.
|
|
*/
|
|
int
|
|
arm32_dma_range_intersect(struct arm32_dma_range *ranges, int nranges,
|
|
paddr_t pa, psize_t size, paddr_t *pap, psize_t *sizep)
|
|
{
|
|
struct arm32_dma_range *dr;
|
|
int i;
|
|
|
|
if (ranges == NULL)
|
|
return (0);
|
|
|
|
for (i = 0, dr = ranges; i < nranges; i++, dr++) {
|
|
if (dr->dr_sysbase <= pa &&
|
|
pa < (dr->dr_sysbase + dr->dr_len)) {
|
|
/*
|
|
* Beginning of region intersects with this range.
|
|
*/
|
|
*pap = trunc_page(pa);
|
|
*sizep = round_page(min(pa + size,
|
|
dr->dr_sysbase + dr->dr_len) - pa);
|
|
return (1);
|
|
}
|
|
if (pa < dr->dr_sysbase && dr->dr_sysbase < (pa + size)) {
|
|
/*
|
|
* End of region intersects with this range.
|
|
*/
|
|
*pap = trunc_page(dr->dr_sysbase);
|
|
*sizep = round_page(min((pa + size) - dr->dr_sysbase,
|
|
dr->dr_len));
|
|
return (1);
|
|
}
|
|
}
|
|
|
|
/* No intersection found. */
|
|
return (0);
|
|
}
|
|
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
static int
|
|
_bus_dma_alloc_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map,
|
|
bus_size_t size, int flags)
|
|
{
|
|
struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
|
|
int error = 0;
|
|
|
|
KASSERT(cookie != NULL);
|
|
|
|
cookie->id_bouncebuflen = round_page(size);
|
|
error = _bus_dmamem_alloc(t, cookie->id_bouncebuflen,
|
|
PAGE_SIZE, map->_dm_boundary, cookie->id_bouncesegs,
|
|
map->_dm_segcnt, &cookie->id_nbouncesegs, flags);
|
|
if (error == 0) {
|
|
error = _bus_dmamem_map(t, cookie->id_bouncesegs,
|
|
cookie->id_nbouncesegs, cookie->id_bouncebuflen,
|
|
(void **)&cookie->id_bouncebuf, flags);
|
|
if (error) {
|
|
_bus_dmamem_free(t, cookie->id_bouncesegs,
|
|
cookie->id_nbouncesegs);
|
|
cookie->id_bouncebuflen = 0;
|
|
cookie->id_nbouncesegs = 0;
|
|
} else {
|
|
cookie->id_flags |= _BUS_DMA_HAS_BOUNCE;
|
|
}
|
|
} else {
|
|
cookie->id_bouncebuflen = 0;
|
|
cookie->id_nbouncesegs = 0;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
_bus_dma_free_bouncebuf(bus_dma_tag_t t, bus_dmamap_t map)
|
|
{
|
|
struct arm32_bus_dma_cookie *cookie = map->_dm_cookie;
|
|
|
|
KASSERT(cookie != NULL);
|
|
|
|
_bus_dmamem_unmap(t, cookie->id_bouncebuf, cookie->id_bouncebuflen);
|
|
_bus_dmamem_free(t, cookie->id_bouncesegs, cookie->id_nbouncesegs);
|
|
cookie->id_bouncebuflen = 0;
|
|
cookie->id_nbouncesegs = 0;
|
|
cookie->id_flags &= ~_BUS_DMA_HAS_BOUNCE;
|
|
}
|
|
|
|
/*
|
|
* This function does the same as uiomove, but takes an explicit
|
|
* direction, and does not update the uio structure.
|
|
*/
|
|
static int
|
|
_bus_dma_uiomove(void *buf, struct uio *uio, size_t n, int direction)
|
|
{
|
|
struct iovec *iov;
|
|
int error;
|
|
struct vmspace *vm;
|
|
char *cp;
|
|
size_t resid, cnt;
|
|
int i;
|
|
|
|
iov = uio->uio_iov;
|
|
vm = uio->uio_vmspace;
|
|
cp = buf;
|
|
resid = n;
|
|
|
|
for (i = 0; i < uio->uio_iovcnt && resid > 0; i++) {
|
|
iov = &uio->uio_iov[i];
|
|
if (iov->iov_len == 0)
|
|
continue;
|
|
cnt = MIN(resid, iov->iov_len);
|
|
|
|
if (!VMSPACE_IS_KERNEL_P(vm) &&
|
|
(curlwp->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD)
|
|
!= 0) {
|
|
preempt();
|
|
}
|
|
if (direction == UIO_READ) {
|
|
error = copyout_vmspace(vm, cp, iov->iov_base, cnt);
|
|
} else {
|
|
error = copyin_vmspace(vm, iov->iov_base, cp, cnt);
|
|
}
|
|
if (error)
|
|
return (error);
|
|
cp += cnt;
|
|
resid -= cnt;
|
|
}
|
|
return (0);
|
|
}
|
|
#endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
|
|
|
|
int
|
|
_bus_dmatag_subregion(bus_dma_tag_t tag, bus_addr_t min_addr,
|
|
bus_addr_t max_addr, bus_dma_tag_t *newtag, int flags)
|
|
{
|
|
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
struct arm32_dma_range *dr;
|
|
bool subset = false;
|
|
size_t nranges = 0;
|
|
size_t i;
|
|
for (i = 0, dr = tag->_ranges; i < tag->_nranges; i++, dr++) {
|
|
if (dr->dr_sysbase <= min_addr
|
|
&& max_addr <= dr->dr_sysbase + dr->dr_len - 1) {
|
|
subset = true;
|
|
}
|
|
if (min_addr <= dr->dr_sysbase + dr->dr_len
|
|
&& max_addr >= dr->dr_sysbase) {
|
|
nranges++;
|
|
}
|
|
}
|
|
if (subset) {
|
|
*newtag = tag;
|
|
/* if the tag must be freed, add a reference */
|
|
if (tag->_tag_needs_free)
|
|
(tag->_tag_needs_free)++;
|
|
return 0;
|
|
}
|
|
if (nranges == 0) {
|
|
nranges = 1;
|
|
}
|
|
|
|
const size_t tagsize = sizeof(*tag) + nranges * sizeof(*dr);
|
|
if ((*newtag = kmem_intr_zalloc(tagsize,
|
|
(flags & BUS_DMA_NOWAIT) ? KM_NOSLEEP : KM_SLEEP)) == NULL)
|
|
return ENOMEM;
|
|
|
|
dr = (void *)(*newtag + 1);
|
|
**newtag = *tag;
|
|
(*newtag)->_tag_needs_free = 1;
|
|
(*newtag)->_ranges = dr;
|
|
(*newtag)->_nranges = nranges;
|
|
|
|
if (tag->_ranges == NULL) {
|
|
dr->dr_sysbase = min_addr;
|
|
dr->dr_busbase = min_addr;
|
|
dr->dr_len = max_addr + 1 - min_addr;
|
|
} else {
|
|
for (i = 0; i < nranges; i++) {
|
|
if (min_addr > dr->dr_sysbase + dr->dr_len
|
|
|| max_addr < dr->dr_sysbase)
|
|
continue;
|
|
dr[0] = tag->_ranges[i];
|
|
if (dr->dr_sysbase < min_addr) {
|
|
psize_t diff = min_addr - dr->dr_sysbase;
|
|
dr->dr_busbase += diff;
|
|
dr->dr_len -= diff;
|
|
dr->dr_sysbase += diff;
|
|
}
|
|
if (max_addr != 0xffffffff
|
|
&& max_addr + 1 < dr->dr_sysbase + dr->dr_len) {
|
|
dr->dr_len = max_addr + 1 - dr->dr_sysbase;
|
|
}
|
|
dr++;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
#else
|
|
return EOPNOTSUPP;
|
|
#endif /* _ARM32_NEED_BUS_DMA_BOUNCE */
|
|
}
|
|
|
|
void
|
|
_bus_dmatag_destroy(bus_dma_tag_t tag)
|
|
{
|
|
#ifdef _ARM32_NEED_BUS_DMA_BOUNCE
|
|
switch (tag->_tag_needs_free) {
|
|
case 0:
|
|
break; /* not allocated with kmem */
|
|
case 1: {
|
|
const size_t tagsize = sizeof(*tag)
|
|
+ tag->_nranges * sizeof(*tag->_ranges);
|
|
kmem_intr_free(tag, tagsize); /* last reference to tag */
|
|
break;
|
|
}
|
|
default:
|
|
(tag->_tag_needs_free)--; /* one less reference */
|
|
}
|
|
#endif
|
|
}
|