2015-10-15 10:25:28 +02:00

340 lines
8.5 KiB
C

/* $NetBSD: mct.c,v 1.5 2014/08/28 20:29:05 snj Exp $ */
/*-
* Copyright (c) 2014 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Reinoud Zandijk.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(1, "$NetBSD: mct.c,v 1.5 2014/08/28 20:29:05 snj Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/timetc.h>
#include <prop/proplib.h>
#include <arm/samsung/exynos_reg.h>
#include <arm/samsung/exynos_var.h>
#include <arm/samsung/mct_reg.h>
#include <arm/samsung/mct_var.h>
static int mct_match(device_t, cfdata_t, void *);
static void mct_attach(device_t, device_t, void *);
static int clockhandler(void *);
static u_int mct_get_timecount(struct timecounter *);
CFATTACH_DECL_NEW(exyo_mct, 0, mct_match, mct_attach, NULL, NULL);
static struct timecounter mct_timecounter = {
.tc_get_timecount = mct_get_timecount,
.tc_poll_pps = 0,
.tc_counter_mask = ~0u,
.tc_frequency = 0, /* set by cpu_initclocks() */
.tc_name = NULL, /* set by cpu_initclocks() */
.tc_quality = 500, /* why 500? */
.tc_priv = &mct_sc,
.tc_next = NULL,
};
static inline uint32_t
mct_read_global(struct mct_softc *sc, bus_size_t o)
{
return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
}
static inline void
mct_write_global(struct mct_softc *sc, bus_size_t o, uint32_t v)
{
bus_size_t wreg;
uint32_t bit;
int i;
/* do the write */
bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v);
// printf("%s: write %#x at %#x\n",
// __func__, ((uint32_t) sc->sc_bsh + (uint32_t) o), v);
/* dependent on the write address, do the ack dance */
if (o == MCT_G_CNT_L || o == MCT_G_CNT_U) {
wreg = MCT_G_CNT_WSTAT;
bit = (o == MCT_G_CNT_L) ? G_CNT_WSTAT_L : G_CNT_WSTAT_U;
} else {
wreg = MCT_G_WSTAT;
switch (o) {
case MCT_G_COMP0_L:
bit = G_WSTAT_COMP0_L;
break;
case MCT_G_COMP0_U:
bit = G_WSTAT_COMP0_U;
break;
case MCT_G_COMP0_ADD_INCR:
bit = G_WSTAT_ADD_INCR;
break;
case MCT_G_TCON:
bit = G_WSTAT_TCON;
break;
default:
/* all other registers */
return;
}
}
/* wait for ack */
for (i = 0; i < 10000000; i++) {
/* value accepted by the hardware/hal ? */
if (mct_read_global(sc, wreg) & bit) {
/* ack */
bus_space_write_4(sc->sc_bst, sc->sc_bsh, wreg, bit);
return;
}
}
panic("MCT hangs after writing %#x at %#x", v, (uint32_t) o);
}
static int
mct_match(device_t parent, cfdata_t cf, void *aux)
{
/* not used if Generic Timer is Available */
if (armreg_pfr1_read() & ARM_PFR1_GTIMER_MASK)
return 0;
/* sanity check, something is mixed up! */
if (!device_is_a(parent, "exyo"))
return 1;
/* there can only be one */
if (mct_sc.sc_dev != NULL)
return 0;
return 1;
}
static void
mct_attach(device_t parent, device_t self, void *aux)
{
struct exyo_attach_args *exyo = (struct exyo_attach_args *) aux;
struct mct_softc * const sc = &mct_sc;
prop_dictionary_t dict = device_properties(self);
char freqbuf[sizeof("XXX SHz")];
const char *pin_name;
self->dv_private = sc;
sc->sc_dev = self;
sc->sc_bst = exyo->exyo_core_bst;
sc->sc_irq = exyo->exyo_loc.loc_intr;
bus_space_subregion(sc->sc_bst, exyo->exyo_core_bsh,
exyo->exyo_loc.loc_offset, exyo->exyo_loc.loc_size, &sc->sc_bsh);
KASSERTMSG(sc->sc_bsh,
"%s: can't map in registers for %#x + %#x for device %s\n",
__func__,
(uint32_t) exyo->exyo_loc.loc_offset,
(uint32_t) exyo->exyo_loc.loc_size,
device_xname(sc->sc_dev));
prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq);
humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000);
aprint_naive("\n");
aprint_normal(": Exynos SoC multi core timer (64 bits) (%s)\n", freqbuf);
evcnt_attach_dynamic(&sc->sc_ev_missing_ticks, EVCNT_TYPE_MISC, NULL,
device_xname(self), "missing interrupts");
sc->sc_global_ih = intr_establish(sc->sc_irq, IPL_CLOCK, IST_EDGE,
clockhandler, NULL);
if (sc->sc_global_ih == NULL)
panic("%s: unable to register timer interrupt", __func__);
aprint_normal_dev(sc->sc_dev, "interrupting on irq %d\n", sc->sc_irq);
/* blink led */
if (prop_dictionary_get_cstring_nocopy(dict, "heartbeat", &pin_name)) {
if (!exynos_gpio_pin_reserve(pin_name, &sc->sc_gpio_led)) {
aprint_error_dev(self,
"failed to reserve GPIO \"%s\" "
"for heartbeat led\n", pin_name);
} else {
sc->sc_has_blink_led = true;
sc->sc_led_state = false;
sc->sc_led_timer = hz;
}
}
}
static inline uint64_t
mct_gettime(struct mct_softc *sc)
{
uint32_t lo, hi;
do {
hi = mct_read_global(sc, MCT_G_CNT_U);
lo = mct_read_global(sc, MCT_G_CNT_L);
} while (hi != mct_read_global(sc, MCT_G_CNT_U));
return ((uint64_t) hi << 32) | lo;
}
static u_int
mct_get_timecount(struct timecounter *tc)
{
struct mct_softc * const sc = tc->tc_priv;
return (u_int) (mct_gettime(sc));
}
/* interrupt handler */
static int
clockhandler(void *arg)
{
struct clockframe * const cf = arg;
struct mct_softc * const sc = &mct_sc;
const uint64_t now = mct_gettime(sc);
int64_t delta = now - sc->sc_lastintr;
int64_t periods = delta / sc->sc_autoinc;
KASSERT(delta >= 0);
KASSERT(periods >= 0);
/* ack the interrupt */
mct_write_global(sc, MCT_G_INT_CSTAT, G_INT_CSTAT_CLEAR);
/* check if we missed clock interrupts */
if (periods > 1)
sc->sc_ev_missing_ticks.ev_count += periods - 1;
sc->sc_lastintr = now;
hardclock(cf);
if (sc->sc_has_blink_led) {
/* we could subtract `periods' here */
sc->sc_led_timer = sc->sc_led_timer - 1;
if (sc->sc_led_timer <= 0) {
sc->sc_led_state = !sc->sc_led_state;
exynos_gpio_pindata_write(&sc->sc_gpio_led,
sc->sc_led_state);
while (sc->sc_led_timer <= 0)
sc->sc_led_timer += hz;
}
}
/* handled */
return 1;
}
void
mct_init_cpu_clock(struct cpu_info *ci)
{
struct mct_softc * const sc = &mct_sc;
uint64_t now = mct_gettime(sc);
uint64_t then;
uint32_t tcon;
KASSERT(ci == curcpu());
sc->sc_lastintr = now;
/* get current config */
tcon = mct_read_global(sc, MCT_G_TCON);
/* setup auto increment */
mct_write_global(sc, MCT_G_COMP0_ADD_INCR, sc->sc_autoinc);
/* (re)setup comparator */
then = now + sc->sc_autoinc;
mct_write_global(sc, MCT_G_COMP0_L, (uint32_t) then);
mct_write_global(sc, MCT_G_COMP0_U, (uint32_t) (then >> 32));
tcon |= G_TCON_COMP0_AUTOINC;
tcon |= G_TCON_COMP0_ENABLE;
/* start timer */
tcon |= G_TCON_START;
/* enable interrupt */
mct_write_global(sc, MCT_G_INT_ENB, G_INT_ENB_ENABLE);
/* update config, starting the thing */
mct_write_global(sc, MCT_G_TCON, tcon);
}
void
cpu_initclocks(void)
{
struct mct_softc * const sc = &mct_sc;
sc->sc_autoinc = sc->sc_freq / hz;
mct_init_cpu_clock(curcpu());
mct_timecounter.tc_name = device_xname(sc->sc_dev);
mct_timecounter.tc_frequency = sc->sc_freq;
tc_init(&mct_timecounter);
#if 0
{
uint64_t then, now;
printf("testing timer\n");
for (int i = 0; i < 200; i++) {
printf("cstat %d\n", mct_read_global(sc, MCT_G_INT_CSTAT));
then = mct_get_timecount(&mct_timecounter);
do {
now = mct_get_timecount(&mct_timecounter);
} while (now == then);
printf("\tgot %"PRIu64"\n", now);
for (int j = 0; j < 90000; j++);
}
printf("passed\n");
}
#endif
}
void
setstatclockrate(int newhz)
{
}