netbsd/sys/arch/emips/ebus/flash_ebus.c
2015-10-15 10:25:28 +02:00

2288 lines
61 KiB
C

/* $NetBSD: flash_ebus.c,v 1.17 2015/04/26 15:15:19 mlelstv Exp $ */
/*-
* Copyright (c) 2010 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code was written by Alessandro Forin and Neil Pittman
* at Microsoft Research and contributed to The NetBSD Foundation
* by Microsoft Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
__KERNEL_RCSID(0, "$NetBSD: flash_ebus.c,v 1.17 2015/04/26 15:15:19 mlelstv Exp $");
/* Driver for the Intel 28F320/640/128 (J3A150) StrataFlash memory device
* Extended to include the Intel JS28F256P30T95.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <uvm/uvm_extern.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/syslog.h>
#include <sys/vnode.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/queue.h>
#include <sys/rndsource.h>
#include "locators.h"
#include <prop/proplib.h>
#include <emips/ebus/ebusvar.h>
#include <emips/emips/machdep.h>
#include <machine/emipsreg.h>
/* Internal config switches
*/
#define USE_BUFFERED_WRITES 0 /* Faster, but might not work in some (older) cases */
#define Verbose 0
/* Debug tools
*/
#define DEBUG_INTR 0x01
#define DEBUG_XFERS 0x02
#define DEBUG_STATUS 0x04
#define DEBUG_FUNCS 0x08
#define DEBUG_PROBE 0x10
#define DEBUG_WRITES 0x20
#define DEBUG_READS 0x40
#define DEBUG_ERRORS 0x80
#ifdef DEBUG
int eflash_debug = DEBUG_ERRORS;
#define EFLASH_DEBUG(x) (eflash_debug & (x))
#define DBGME(_lev_,_x_) if ((_lev_) & eflash_debug) _x_
#else
#define EFLASH_DEBUG(x) (0)
#define DBGME(_lev_,_x_)
#endif
#define DEBUG_PRINT(_args_,_lev_) DBGME(_lev_,printf _args_)
/* Product ID codes
*/
#define MANUF_INTEL 0x89
#define DEVICE_320 0x16
#define DEVICE_640 0x17
#define DEVICE_128 0x18
#define DEVICE_256 0x19
/* Table of chips we understand.
*/
#define nDELTAS 3
struct flash_type {
struct {
uint32_t nSectors;
uint32_t nKB;
} ft_deltas[nDELTAS];
uint8_t ft_manuf_code;
uint8_t ft_device_code;
uint16_t ft_total_sectors;
const char *ft_name;
};
static const struct flash_type sector_maps[] = {
{
{{32,128},{0,0},},
MANUF_INTEL, DEVICE_320, 32, /* a J3 part */
"StrataFlash 28F320"
},
{
{{64,128},{0,0},},
MANUF_INTEL, DEVICE_640, 64, /* a J3 part */
"StrataFlash 28F640"
},
{
{{128,128},{0,0},},
MANUF_INTEL, DEVICE_128, 128, /* a J3 part */
"StrataFlash 28F128"
},
{
{{255,128},{4,32},{0,0}},
MANUF_INTEL, DEVICE_256, 259, /* a P30 part */
"StrataFlash 28F256"
}
};
#define nMAPS ((sizeof sector_maps) / (sizeof sector_maps[0]))
/* Instead of dragging in atavar.h.. */
struct eflash_bio {
volatile int flags;/* cmd flags */
#define ATA_POLL 0x0002 /* poll for completion */
#define ATA_SINGLE 0x0008 /* transfer must be done in singlesector mode */
#define ATA_READ 0x0020 /* transfer is a read (otherwise a write) */
#define ATA_CORR 0x0040 /* transfer had a corrected error */
daddr_t blkno; /* block addr */
daddr_t blkdone;/* number of blks transferred */
size_t nblks; /* number of blocks currently transferring */
size_t nbytes; /* number of bytes currently transferring */
char *databuf;/* data buffer address */
volatile int error;
u_int32_t r_error;/* copy of status register */
#ifdef HAS_BAD144_HANDLING
daddr_t badsect[127];/* 126 plus trailing -1 marker */
#endif
};
/* End of atavar.h*/
/* chip-specific functions
*/
struct flash_ops;
/*
* Device softc
*/
struct eflash_softc {
device_t sc_dev;
/* General disk infos */
struct disk sc_dk;
struct bufq_state *sc_q;
struct callout sc_restart_ch;
/* IDE disk soft states */
struct buf *sc_bp; /* buf being transfered */
struct buf *active_xfer; /* buf handoff to thread */
struct eflash_bio sc_bio; /* current transfer */
struct proc *ch_thread;
int ch_flags;
#define ATACH_SHUTDOWN 0x02 /* thread is shutting down */
#define ATACH_IRQ_WAIT 0x10 /* thread is waiting for irq */
#define ATACH_DISABLED 0x80 /* channel is disabled */
#define ATACH_TH_RUN 0x100 /* the kernel thread is working */
#define ATACH_TH_RESET 0x200 /* someone ask the thread to reset */
int openings;
int sc_flags;
#define EFLASHF_WLABEL 0x004 /* label is writable */
#define EFLASHF_LABELLING 0x008 /* writing label */
#define EFLASHF_LOADED 0x010 /* parameters loaded */
#define EFLASHF_WAIT 0x020 /* waiting for resources */
#define EFLASHF_KLABEL 0x080 /* retain label after 'full' close */
int retries; /* number of xfer retry */
krndsource_t rnd_source;
/* flash-specific state */
struct _Flash *sc_dp;
uint32_t sc_size;
uint32_t sc_capacity;
paddr_t sc_base;
volatile uint8_t *sc_page0;
/* current read-write sector mapping */
/*volatile*/ uint8_t *sc_sector;
uint32_t sc_sector_size;
uint32_t sc_sector_offset;
#define NOSECTOR ((uint32_t)(~0))
int sc_erased;
/* device-specificity */
uint32_t sc_buffersize;
vsize_t sc_max_secsize;
unsigned int sc_chips;
const struct flash_ops *sc_ops;
struct flash_type sc_type;
};
static int eflash_ebus_match (device_t, cfdata_t, void *);
static void eflash_ebus_attach (device_t, device_t, void *);
CFATTACH_DECL_NEW(flash_ebus, sizeof (struct eflash_softc),
eflash_ebus_match, eflash_ebus_attach, NULL, NULL);
/* implementation decls */
static int flash_identify(struct eflash_softc*);
static int KBinSector(struct flash_type * SecMap, unsigned int SecNo);
static uint32_t SectorStart(struct flash_type * SecMap, int SecNo);
static unsigned int SectorNumber(struct flash_type * SecMap, uint32_t Offset);
static void eflash_thread(void *arg);
static int eflash_read_at (struct eflash_softc *sc, daddr_t start_sector, char *buffer,
size_t nblocks, size_t * pSizeRead);
static int eflash_write_at(struct eflash_softc *sc, daddr_t start_sector, char *buffer,
size_t nblocks, size_t * pSizeWritten);
/* Config functions
*/
static int
eflash_ebus_match(device_t parent, cfdata_t match, void *aux)
{
struct ebus_attach_args *ia = aux;
struct _Flash *f = (struct _Flash *)ia->ia_vaddr;
if (strcmp("flash", ia->ia_name) != 0)
return (0);
if ((f == NULL) ||
((f->BaseAddressAndTag & FLASHBT_TAG) != PMTTAG_FLASH))
return (0);
return (1);
}
static void
eflash_ebus_attach(device_t parent, device_t self, void *aux)
{
struct ebus_attach_args *ia =aux;
struct eflash_softc *sc = device_private(self);
uint32_t base, ctrl;
int error;
/* Plan.
* - mips_map_physmem() (with uncached) first page
* - keep it around since we need status ops
* - find what type it is.
* - then mips_map_physmem() each sector as needed.
*/
sc->sc_dev = self;
sc->sc_dp = (struct _Flash*)ia->ia_vaddr;
base = sc->sc_dp->BaseAddressAndTag & FLASHBT_BASE;
ctrl = sc->sc_dp->Control;
sc->sc_size = ctrl & FLASHST_SIZE;
sc->sc_capacity = sc->sc_size / DEV_BSIZE;
sc->sc_base = base;
/* The chip is 16bit, so if we get 32bit there are two */
sc->sc_chips = (ctrl & FLASHST_BUS_32) ? 2 : 1;
/* Map the first page to see what chip we got */
sc->sc_page0 = (volatile uint8_t *) mips_map_physmem(base, PAGE_SIZE);
if (flash_identify(sc)) {
printf(" base %x: %dMB flash memory (%d x %s)\n", base, sc->sc_size >> 20,
sc->sc_chips, sc->sc_type.ft_name);
} else {
/* BUGBUG If we dont identify it stop the driver! */
printf(": unknown manufacturer id %x, device id %x\n",
sc->sc_type.ft_manuf_code, sc->sc_type.ft_device_code);
}
config_pending_incr(self);
error = kthread_create(PRI_NONE, 0, NULL,
eflash_thread, sc, NULL, "%s", device_xname(sc->sc_dev));
if (error)
aprint_error_dev(sc->sc_dev,
"unable to create kernel thread: error %d\n", error);
}
/* Implementation functions
*/
/* Returns the size in KBytes of a given sector,
* or -1 for bad arguments.
*/
static int KBinSector(struct flash_type * SecMap, unsigned int SecNo)
{
int i;
for (i = 0; i < nDELTAS; i++) {
if (SecNo < SecMap->ft_deltas[i].nSectors)
return SecMap->ft_deltas[i].nKB;
SecNo -= SecMap->ft_deltas[i].nSectors;
}
return -1;
}
#define SectorSize(_map_,_sector_) (1024 * KBinSector(_map_,_sector_))
/* Whats the starting offset of sector N
*/
static uint32_t SectorStart(struct flash_type * SecMap, int SecNo)
{
int i;
uint32_t Offset = 0;
for (i = 0; i < nDELTAS; i++) {
if ((unsigned int)SecNo < SecMap->ft_deltas[i].nSectors)
return 1024 * (Offset + (SecMap->ft_deltas[i].nKB * SecNo));
SecNo -= SecMap->ft_deltas[i].nSectors;
Offset += SecMap->ft_deltas[i].nSectors * SecMap->ft_deltas[i].nKB;
}
return ~0;
}
/* What sector number corresponds to a given offset
*/
static unsigned int SectorNumber(struct flash_type * SecMap, uint32_t Offset)
{
unsigned int i;
unsigned int SecNo = 0;
Offset /= 1024;
for (i = 0; i < nDELTAS; i++) {
if (Offset < (unsigned int)
((SecMap->ft_deltas[i].nSectors * SecMap->ft_deltas[i].nKB)))
return SecNo + (Offset / SecMap->ft_deltas[i].nKB);
SecNo += SecMap->ft_deltas[i].nSectors;
Offset -= SecMap->ft_deltas[i].nSectors * SecMap->ft_deltas[i].nKB;
}
return ~0;
}
/*
* Semi-generic operations
*/
struct flash_ops {
void (*write_uint8) (struct eflash_softc *sc, volatile void *Offset, uint8_t Value);
void (*read_uint8) (struct eflash_softc *sc, volatile void *Offset, uint8_t *Value);
void (*write_uint16) (struct eflash_softc *sc, volatile void *Offset, uint16_t Value);
void (*read_uint16) (struct eflash_softc *sc, volatile void *Offset, uint16_t *Value);
void (*write_uint32) (struct eflash_softc *sc, volatile void *Offset, uint32_t Value);
void (*read_uint32) (struct eflash_softc *sc, volatile void *Offset, uint32_t *Value);
int (*program_word) (struct eflash_softc *sc, volatile void *Offset, uint16_t *pValues,
int Verify, int *nWritten);
int (*program_buffer) (struct eflash_softc *sc, volatile void *Offset, uint16_t *pValues,
int Verify, int *nWritten);
};
/*
* Hardware access proper, single-chip
*/
static void single_write_uint8 (struct eflash_softc *sc,volatile void *Offset,uint8_t Value)
{
volatile uint8_t * Where = Offset;
*Where = Value;
}
static void single_read_uint8 (struct eflash_softc *sc,volatile void *Offset,uint8_t *Value)
{
volatile uint8_t * Where = Offset;
*Value = *Where;
}
static void single_write_uint16 (struct eflash_softc *sc,volatile void *Offset,uint16_t Value)
{
volatile uint16_t * Where = Offset;
*Where = Value;
}
static void single_read_uint16 (struct eflash_softc *sc,volatile void *Offset,uint16_t *Value)
{
volatile uint16_t * Where = Offset;
*Value = *Where;
}
/* This one should not be used, probably */
static void single_write_uint32 (struct eflash_softc *sc,volatile void *Offset,uint32_t Value)
{
#if 0
/* The chip cannot take back-to-back writes */
volatile uint32_t * Where = Offset;
*Where = Value;
#else
volatile uint8_t * Where = Offset;
uint16_t v0, v1;
/* Unfortunately, this is bytesex dependent */
#if (BYTE_ORDER == BIG_ENDIAN)
v1 = (uint16_t) Value;
v0 = (uint16_t) (Value >> 16);
#else
v0 = (uint16_t) Value;
v1 = (uint16_t) (Value >> 16);
#endif
single_write_uint16(sc,Where,v0);
single_write_uint16(sc,Where+2,v1);
#endif
}
static void single_read_uint32 (struct eflash_softc *sc,volatile void *Offset,uint32_t *Value)
{
/* back-to-back reads must be ok */
volatile uint32_t * Where = Offset;
*Value = *Where;
}
/*
* Hardware access proper, paired-chips
* NB: This set of ops assumes two chips in parallel on a 32bit bus,
* each operation is repeated in parallel to both chips
*/
static void twin_write_uint8 (struct eflash_softc *sc,volatile void *Offset,uint8_t Value)
{
volatile uint32_t * Where = Offset;
uint32_t v = Value | ((uint32_t)Value << 16);
v = le32toh(v);
*Where = v;
}
static void twin_read_uint8 (struct eflash_softc *sc,volatile void *Offset,uint8_t *Value)
{
volatile uint32_t * Where = Offset;
uint32_t v;
v = *Where;
v = le32toh(v);
*Value = (uint8_t) v;
}
/* This one should *not* be used, error-prone */
static void twin_write_uint16 (struct eflash_softc *sc,volatile void *Offset,uint16_t Value)
{
volatile uint16_t * Where = Offset;
*Where = Value;
}
static void twin_read_uint16 (struct eflash_softc *sc,volatile void *Offset,uint16_t *Value)
{
volatile uint16_t * Where = Offset;
*Value = *Where;
}
static void twin_write_uint32 (struct eflash_softc *sc,volatile void *Offset,uint32_t Value)
{
volatile uint32_t * Where = Offset;
Value = le32toh(Value);
*Where = Value;
}
static void twin_read_uint32 (struct eflash_softc *sc,volatile void *Offset,uint32_t *Value)
{
volatile uint32_t * Where = Offset;
uint32_t v;
v = *Where;
v = le32toh(v);
*Value = v;
}
/*
* Command and status definitions
*/
/* Defines for the STATUS register
*/
#define ST_reserved 0x01
#define ST_BLOCK_LOCKED 0x02
#define ST_PROGRAM_SUSPENDED 0x04
#define ST_LOW_VOLTAGE 0x08
#define ST_LOCK_BIT_ERROR 0x10
#define ST_ERASE_ERROR 0x20
#define ST_ERASE_SUSPENDED 0x40
#define ST_READY 0x80
#define ST_ERASE_MASK 0xee /* bits to check after erase command */
#define ST_MASK 0xfe /* ignore reserved */
/* Command set (what we use of it)
*/
#define CMD_CONFIRM 0xd0
#define CMD_READ_ARRAY 0xff
#define CMD_READ_ID 0x90
#define CMD_READ_STATUS 0x70
#define CMD_CLEAR_STATUS 0x50
#define CMD_WRITE_WORD 0x40
#define CMD_WRITE_BUFFER 0xe8
#define CMD_ERASE_SETUP 0x20
#define CMD_ERASE_CONFIRM CMD_CONFIRM
#define CMD_SET_PREFIX 0x60 /* set read config, lock bits */
#define CMD_LOCK 0x01
#define CMD_UNLOCK CMD_CONFIRM
/* What we dont use of it
*/
#define CMD_READ_QUERY 0x98
# define BUFFER_BYTES 32
#define CMD_ERASE_SUSPEND 0xb0
#define CMD_ERASE_RESUME CMD_CONFIRM
#define CMD_CONFIGURATION 0xb8
#define CMD_PROTECT 0xc0
/* Enter the Product ID mode (Read Identifier Codes)
*/
static void ProductIdEnter(struct eflash_softc *sc)
{
sc->sc_ops->write_uint8(sc,sc->sc_page0,CMD_READ_ID);
}
/* Exit the Product ID mode (enter Read Array mode)
*/
static void ProductIdExit(struct eflash_softc *sc)
{
sc->sc_ops->write_uint8(sc,sc->sc_page0,CMD_READ_ARRAY);
}
/* Read the status register
*/
static uint8_t ReadStatusRegister(struct eflash_softc *sc)
{
uint8_t Status;
sc->sc_ops->write_uint8(sc,sc->sc_page0,CMD_READ_STATUS);
sc->sc_ops->read_uint8(sc,sc->sc_page0,&Status);
sc->sc_ops->write_uint8(sc,sc->sc_page0,CMD_READ_ARRAY);
return Status;
}
/* Clear error bits in status
*/
static void ClearStatusRegister(struct eflash_softc *sc)
{
sc->sc_ops->write_uint8(sc,sc->sc_page0,CMD_CLEAR_STATUS);
}
#if DEBUG
/* Decode status bits
*/
typedef const char *string;
static void PrintStatus(uint8_t Status)
{
/* BUGBUG there's a %b format I think? */
string BitNames[8] = {
"reserved", "BLOCK_LOCKED",
"PROGRAM_SUSPENDED", "LOW_VOLTAGE",
"LOCK_BIT_ERROR", "ERASE_ERROR",
"ERASE_SUSPENDED", "READY"
};
int i;
int OneSet = FALSE;
printf("[status %x =",Status);
for (i = 0; i < 8; i++) {
if (Status & (1<<i)) {
printf("%c%s",
(OneSet) ? '|' : ' ',
BitNames[i]);
OneSet = TRUE;
}
}
printf("]\n");
}
#else
#define PrintStatus(x)
#endif
/*
* The device can lock up under certain conditions.
* There is no software workaround [must toggle RP# to GND]
* Check if it seems that we are in that state.
*/
static int IsIrresponsive(struct eflash_softc *sc)
{
uint8_t Status = ReadStatusRegister(sc);
if (Status & ST_READY)
return FALSE;
if ((Status & ST_ERASE_MASK) ==
(ST_LOCK_BIT_ERROR|ST_ERASE_SUSPENDED|ST_ERASE_ERROR)) {
/* yes, looks that way */
return TRUE;
}
/* Something is indeed amiss, but we dont really know for sure */
PrintStatus(ReadStatusRegister(sc));
ClearStatusRegister(sc);
PrintStatus(ReadStatusRegister(sc));
if ((Status & ST_MASK) ==
(ST_LOCK_BIT_ERROR|ST_ERASE_SUSPENDED|ST_ERASE_ERROR)) {
/* yes, looks that way */
return TRUE;
}
return FALSE;
}
/* Write one 16bit word
*/
static int
single_program_word(struct eflash_softc *sc, volatile void *Offset, uint16_t *Values,
int Verify, int *nWritten)
{
uint8_t Status;
uint16_t i, Data16, Value;
*nWritten = 0;
Value = Values[0];
if (Verify) {
sc->sc_ops->read_uint16(sc,Offset,&Data16);
#ifdef Verbose
if (Verbose) {
printf("Location %p was x%x\n",
Offset, Data16);
}
#endif
if (Data16 != 0xffff)
printf("Offset %p not ERASED, wont take.\n",Offset);
}
sc->sc_ops->write_uint8(sc,sc->sc_page0,CMD_WRITE_WORD);
sc->sc_ops->write_uint16(sc,Offset,Value);
/* Wait until the operation is completed
* Specs say it takes between 210 and 630 us
* Errata says 360 TYP and Max=TBD (sic)
*/
DELAY(800);
for (i = 0; i < 10; i++) {
sc->sc_ops->read_uint8(sc,Offset,&Status);
if ((Status & ST_READY)) break;
DELAY(100);
}
ProductIdExit(sc);
if (Verify) {
sc->sc_ops->read_uint16(sc,Offset,&Data16);
#ifdef Verbose
if (Verbose) {
printf("Location %p is now x%x\n",
Offset, Data16);
}
#endif
if ((Data16 != Value)) {
PrintStatus(Status);
printf(". That didnt work, try again.. [%x != %x]\n",
Data16, Value);
ClearStatusRegister(sc);
return FALSE;
}
}
*nWritten = 2;
return TRUE;
}
/* Write one buffer, 16bit words at a time
*/
static int
single_program_buffer(struct eflash_softc *sc, volatile void *Offset, uint16_t *Values,
int Verify, int *nWritten)
{
uint8_t Status;
uint16_t i, Data16, Value = 0;
volatile uint8_t *Where = Offset;
*nWritten = 0;
if (sc->sc_buffersize == 0)
return FALSE; /* sanity */
if (Verify) {
for (i = 0; i < sc->sc_buffersize; i+= 2) {
sc->sc_ops->read_uint16(sc,Where+i,&Data16);
#ifdef Verbose
if (Verbose) {
printf("Location %p was x%x\n",
Where+i, Data16);
}
#endif
if (Data16 != 0xffff)
printf("Offset %p not ERASED, wont take.\n",Where+i);
}
}
/* Specs say to retry if necessary */
for (i = 0; i < 5; i++) {
sc->sc_ops->write_uint8(sc,Offset,CMD_WRITE_BUFFER);
DELAY(10);
sc->sc_ops->read_uint8(sc,Offset,&Status);
if ((Status & ST_READY)) break;
}
if (0 == (Status & ST_READY)) {
printf("FAILED program_buffer at Location %p, Status= x%x\n",
Offset, Status);
return FALSE;
}
/* Say how many words we'll be sending */
sc->sc_ops->write_uint8(sc,Offset,(uint8_t)(sc->sc_buffersize/2));
/* Send the data */
for (i = 0; i < sc->sc_buffersize; i+= 2) {
Value = Values[i/2];
sc->sc_ops->write_uint16(sc,Where+i,Value);
DELAY(10);/*jic*/
}
/* Write confirmation */
sc->sc_ops->write_uint8(sc,Offset,CMD_CONFIRM);
/* Wait until the operation is completed
* Specs say it takes between 800 and 2400 us
* Errata says 1600 TYP and Max=TBD (sic), but fixed in stepping A3 and above.
*/
DELAY(800);
for (i = 0; i < 20; i++) {
sc->sc_ops->write_uint8(sc,Offset,CMD_READ_STATUS);
sc->sc_ops->read_uint8(sc,Offset,&Status);
if ((Status & ST_READY)) break;
DELAY(200);
}
ProductIdExit(sc);
/* Verify? */
if (Verify) {
for (i = 0; i < sc->sc_buffersize; i+= 2) {
sc->sc_ops->read_uint16(sc,Where+i,&Data16);
#ifdef Verbose
if (Verbose) {
printf("Location %p is now x%x\n",
Where+i, Data16);
}
#endif
Value = Values[i/2];
if ((Data16 != Value)) {
PrintStatus(Status);
printf(". That didnt work, try again.. [%x != %x]\n",
Data16, Value);
ClearStatusRegister(sc);
return FALSE;
}
}
}
*nWritten = sc->sc_buffersize;
return TRUE;
}
/* Write one 32bit word
*/
static int
twin_program_word(struct eflash_softc *sc, volatile void *Offset, uint16_t *Values,
int Verify, int *nWritten)
{
uint8_t Status;
uint32_t i, Data32, Value;
uint16_t v0, v1;
*nWritten = 0;
v0 = Values[0];
v0 = le16toh(v0);
v1 = Values[1];
v1 = le16toh(v1);
Value = v0 | ((uint32_t)v1 << 16);
if (Verify) {
sc->sc_ops->read_uint32(sc,Offset,&Data32);
#ifdef Verbose
if (Verbose) {
printf("Location %p was x%x\n",
Offset, Data32);
}
#endif
if (Data32 != 0xffffffff)
printf("Offset %p not ERASED, wont take.\n",Offset);
}
sc->sc_ops->write_uint8(sc,sc->sc_page0,CMD_WRITE_WORD);
sc->sc_ops->write_uint32(sc,Offset,Value);
/* Wait until the operation is completed
* Specs say it takes between 210 and 630 us
* Errata says 360 TYP and Max=TBD (sic)
*/
DELAY(400);
for (i = 0; i < 10; i++) {
sc->sc_ops->read_uint8(sc,Offset,&Status);
if ((Status & ST_READY)) break;
DELAY(100);
}
ProductIdExit(sc);
if (Verify) {
sc->sc_ops->read_uint32(sc,Offset,&Data32);
#ifdef Verbose
if (Verbose) {
printf("Location %p is now x%x\n",
Offset, Data32);
}
#endif
if ((Data32 != Value)) {
PrintStatus(Status);
printf(". That didnt work, try again.. [%x != %x]\n",
Data32, Value);
ClearStatusRegister(sc);
return FALSE;
}
}
*nWritten = 4;
return TRUE;
}
/* Write one buffer, 32bit words at a time
*/
static int
twin_program_buffer(struct eflash_softc *sc, volatile void *Offset, uint16_t *Values,
int Verify, int *nWritten)
{
uint8_t Status;
uint32_t i, Data32, Value;
uint16_t v0 = 0, v1;
volatile uint8_t *Where = Offset;
*nWritten = 0;
if (sc->sc_buffersize == 0)
return FALSE; /* sanity */
if (Verify) {
for (i = 0; i < sc->sc_buffersize; i+= 4) {
sc->sc_ops->read_uint32(sc,Where+i,&Data32);
#ifdef Verbose
if (Verbose) {
printf("Location %p was x%x\n",
Where+i, Data32);
}
#endif
if (Data32 != 0xffffffff)
printf("Offset %p not ERASED, wont take.\n",Where+i);
}
}
/* Specs say to retry if necessary */
for (i = 0; i < 5; i++) {
sc->sc_ops->write_uint8(sc,Offset,CMD_WRITE_BUFFER);
DELAY(10);
sc->sc_ops->read_uint8(sc,Offset,&Status);
if ((Status & ST_READY)) break;
}
if (0 == (Status & ST_READY)) {
printf("FAILED program_buffer at Location %p, Status= x%x\n",
Offset, Status);
return FALSE;
}
/* Say how many words we'll be sending */
sc->sc_ops->write_uint8(sc,Offset,(uint8_t)(sc->sc_buffersize/4)); /* to each twin! */
/* Send the data */
for (i = 0; i < sc->sc_buffersize; i+= 4) {
v0 = Values[i/2];
v0 = le16toh(v0);
v1 = Values[1+(i/2)];
v1 = le16toh(v1);
Value = v0 | ((uint32_t)v1 << 16);
sc->sc_ops->write_uint32(sc,Where+i,Value);
DELAY(10);/*jic*/
}
/* Write confirmation */
sc->sc_ops->write_uint8(sc,Offset,CMD_CONFIRM);
/* Wait until the operation is completed
* Specs say it takes between 800 and 2400 us
* Errata says 1600 TYP and Max=TBD (sic), but fixed in stepping A3 and above.
*/
DELAY(800);
for (i = 0; i < 20; i++) {
sc->sc_ops->write_uint8(sc,Offset,CMD_READ_STATUS);
sc->sc_ops->read_uint8(sc,Offset,&Status);
if ((Status & ST_READY)) break;
DELAY(200);
}
ProductIdExit(sc);
/* Verify */
if (Verify) {
for (i = 0; i < sc->sc_buffersize; i+= 4) {
sc->sc_ops->read_uint32(sc,Where+i,&Data32);
#ifdef Verbose
if (Verbose) {
printf("Location %p is now x%x\n",
Where+i, Data32);
}
#endif
v0 = Values[i/2];
v0 = le16toh(v0);
v1 = Values[1+(i/2)];
v1 = le16toh(v1);
Value = v0 | ((uint32_t)v1 << 16);
if ((Data32 != Value)) {
PrintStatus(Status);
printf(". That didnt work, try again.. [%x != %x]\n",
Data32, Value);
ClearStatusRegister(sc);
return FALSE;
}
}
}
*nWritten = sc->sc_buffersize;
return TRUE;
}
/* Is there a lock on a given sector
*/
static int IsSectorLocked(struct eflash_softc *sc, uint8_t *secptr)
{
uint8_t Data, Data1;
ProductIdEnter(sc);
/* Lockout info is at address 2 of the given sector, meaning A0=0 A1=1.
*/
sc->sc_ops->read_uint8(sc,secptr+(0x0002*2*sc->sc_chips),&Data);
sc->sc_ops->read_uint8(sc,secptr+(0x0003*2*sc->sc_chips),&Data1);
ProductIdExit(sc);
return (Data & 1);
}
/* Remove the write-lock to a sector
*/
static void SectorUnLock(struct eflash_softc *sc, uint8_t *secptr)
{
uint8_t Status;
int i;
DBGME(DEBUG_FUNCS,printf("%s: Unlocking sector %d [ptr %p] ...\n",
device_xname(sc->sc_dev), sc->sc_sector_offset, secptr));
sc->sc_ops->write_uint8(sc,sc->sc_page0,CMD_SET_PREFIX);
sc->sc_ops->write_uint8(sc,secptr,CMD_UNLOCK);
/* Wait until the unlock is complete.
* Specs say this takes between 64 and 75 usecs.
*/
DELAY(100);
for (i = 0; i < 10; i++) {
sc->sc_ops->read_uint8(sc,secptr,&Status);
if ((Status & ST_READY)) break;
DELAY(100);
}
ProductIdExit(sc);
if ((Status & ST_MASK) == ST_READY) {
DBGME(DEBUG_FUNCS,printf("%s: Unlocked ok.\n",
device_xname(sc->sc_dev)));
return;
}
PrintStatus(Status);
DBGME(DEBUG_ERRORS,printf("%s: Unlock of sector %d NOT completed (status=%x).\n",
device_xname(sc->sc_dev),
sc->sc_sector_offset, Status));
ClearStatusRegister(sc);
}
/* Erase one sector
*/
static int SectorErase(struct eflash_softc *sc, void *secptr)
{
uint8_t Status = 0;
uint16_t i;
DBGME(DEBUG_FUNCS,printf("%s: Erasing sector %d [ptr %p] ...\n",
device_xname(sc->sc_dev), sc->sc_sector_offset, secptr));
/* On some chips we just cannot avoid the locking business.
*/
if ((sc->sc_chips == 1) &&
IsSectorLocked(sc,secptr))
SectorUnLock(sc,secptr);
sc->sc_ops->write_uint8(sc,secptr,CMD_ERASE_SETUP);
sc->sc_ops->write_uint8(sc,secptr,CMD_ERASE_CONFIRM);
/* Wait until the erase is actually completed
* Specs say it will take between 1 and 5 seconds.
* Errata says it takes 2 sec min and 25 sec max.
* Double that before giving up.
*/
for (i = 0; i < 20; i++) {
/* Sleep for at least 2 seconds
*/
tsleep(sc,PWAIT,"erase", hz * 2);
sc->sc_ops->read_uint8(sc,secptr,&Status);
if ((Status & ST_READY)) break;
PrintStatus(Status);
}
ProductIdExit(sc);
if ((Status & ST_ERASE_MASK) == ST_READY) {
DBGME(DEBUG_FUNCS,printf("%s: Erased ok.\n", device_xname(sc->sc_dev)));
return 0;
}
PrintStatus(Status);
DBGME(DEBUG_ERRORS,printf("%s: Erase of sector %d NOT completed (status=%x).\n",
device_xname(sc->sc_dev),
sc->sc_sector_offset, Status));
ClearStatusRegister(sc);
return EIO;
}
/* Write (a portion of) a sector
*/
static size_t eflash_write_sector(struct eflash_softc *sc, char *Buffer, size_t n,
uint8_t *Offset, int Verify)
{
size_t i;
/* Make sure the device is not screwed up
*/
if (IsIrresponsive(sc)) {
printf("FLASH is locked-up (or mapped cacheable?), wont work. ");
}
for (i = 0; i < n;) {
int nTries;
int nWritten = 0;/*we expect 2 or 4 */
if (sc->sc_buffersize && ((n-i) >= sc->sc_buffersize)) {
for (nTries = 0; nTries < 5; nTries++)
if (sc->sc_ops->program_buffer(sc,Offset,(uint16_t*)(Buffer+i),Verify,&nWritten))
break;
} else {
for (nTries = 0; nTries < 5; nTries++)
if (sc->sc_ops->program_word(sc,Offset,(uint16_t*)(Buffer+i),Verify,&nWritten))
break;
}
Offset += nWritten;
i += nWritten;
if (nWritten == 0)
break;
}
return i;
}
/* Identify type and the sector map of the FLASH.
* Argument is the base address of the device and the count of chips on the bus (1/2)
* Returns FALSE if failed
*/
static const struct flash_ops single_ops = {
single_write_uint8,
single_read_uint8,
single_write_uint16,
single_read_uint16,
single_write_uint32,
single_read_uint32,
single_program_word,
single_program_buffer
};
static const struct flash_ops twin_ops = {
twin_write_uint8,
twin_read_uint8,
twin_write_uint16,
twin_read_uint16,
twin_write_uint32,
twin_read_uint32,
twin_program_word,
twin_program_buffer
};
static int flash_identify(struct eflash_softc *sc)
{
uint8_t Mid, Did;
int i;
if (sc->sc_chips > 1)
sc->sc_ops = &twin_ops;
else
sc->sc_ops = &single_ops;
sc->sc_buffersize = 0;
#if USE_BUFFERED_WRITES
sc->sc_buffersize = BUFFER_BYTES * sc->sc_chips;
#endif
sc->sc_sector = NULL;
sc->sc_sector_size = 0;
sc->sc_sector_offset = NOSECTOR;
sc->sc_erased = FALSE;
ProductIdEnter(sc);
sc->sc_ops->read_uint8(sc,sc->sc_page0+(0x0000*2*sc->sc_chips),&Mid);
sc->sc_ops->read_uint8(sc,sc->sc_page0+(0x0001*2*sc->sc_chips),&Did);
ProductIdExit(sc);
sc->sc_type.ft_manuf_code = Mid;
sc->sc_type.ft_device_code = Did;
for (i = 0; i < nMAPS; i++) {
if ((sector_maps[i].ft_manuf_code == Mid) && (sector_maps[i].ft_device_code == Did)) {
int j;
uint32_t ms = 0;
sc->sc_type = sector_maps[i];
/* double the sector sizes if twin-chips */
for (j = 0; j < nDELTAS; j++) {
sc->sc_type.ft_deltas[j].nKB *= sc->sc_chips;
if (ms < sc->sc_type.ft_deltas[j].nKB)
ms = sc->sc_type.ft_deltas[j].nKB;
}
sc->sc_max_secsize = ms * 1024;
return TRUE;
}
}
return FALSE;
}
/* Common code for read&write argument validation
*/
static int eflash_validate(struct eflash_softc *sc, daddr_t start, size_t *pSize, void **pSrc)
{
daddr_t Size;
uint32_t sec;
size_t secsize, secstart;
/* Validate args
*/
if (start >= sc->sc_capacity) {
*pSize = 0;
DBGME(DEBUG_ERRORS,printf("eflash::ValidateArg(%qx) EOF\n", start));
return E2BIG;
}
/* Map sector if not already
*/
sec = SectorNumber(&sc->sc_type, start << DEV_BSHIFT);
secsize = SectorSize( &sc->sc_type, sec);
secstart = SectorStart(&sc->sc_type,sec);
if (sec != sc->sc_sector_offset) {
int error;
/* unmap previous first */
if (sc->sc_sector_offset != NOSECTOR) {
DBGME(DEBUG_FUNCS,printf("%s: unmap %p %zx\n",
device_xname(sc->sc_dev), sc->sc_sector, sc->sc_sector_size));
iounaccess((vaddr_t)sc->sc_sector, sc->sc_sector_size);
sc->sc_sector_offset = NOSECTOR;
}
/* map new */
error = ioaccess((vaddr_t)sc->sc_sector,
secstart + sc->sc_base,
secsize);
DBGME(DEBUG_FUNCS,printf("%s: mapped %p %zx -> %zx %d\n",
device_xname(sc->sc_dev),
sc->sc_sector, secsize, secstart + sc->sc_base,error));
if (error) return error;
/* Update state. We have to assume the sector was not erased. Sigh. */
sc->sc_sector_offset = sec;
sc->sc_sector_size = secsize;
sc->sc_erased = FALSE;
}
/* Adjust size if necessary
*/
Size = start + *pSize; /* last sector */
if (Size > sc->sc_capacity) {
/* At most this many sectors
*/
Size = sc->sc_capacity - start;
*pSize = (size_t)Size;
}
if (*pSize > (secsize >> DEV_BSHIFT)) {
*pSize = secsize >> DEV_BSHIFT;
}
*pSrc = sc->sc_sector + (start << DEV_BSHIFT) - secstart;
DBGME(DEBUG_FUNCS,printf("%s: Validate %qx %zd %p\n",
device_xname(sc->sc_dev), start,*pSize, *pSrc));
return 0;
}
static int eflash_read_at (struct eflash_softc *sc,
daddr_t start_sector, char *buffer, size_t nblocks,
size_t * pSizeRead)
{
int error;
uint32_t SizeRead = 0;
void *src;
DBGME(DEBUG_XFERS|DEBUG_READS,printf("%s: EflashReadAt(%qx %p %zd %p)\n",
device_xname(sc->sc_dev), start_sector, buffer, nblocks, pSizeRead));
/* Validate & trim arguments
*/
error = eflash_validate(sc, start_sector, &nblocks, &src);
/* Copy data if
*/
if (error == 0) {
SizeRead = nblocks;
memcpy(buffer, src, nblocks << DEV_BSHIFT);
}
if (pSizeRead)
*pSizeRead = SizeRead;
return error;
}
/* Write SIZE bytes to device.
*/
static int eflash_write_at (struct eflash_softc *sc,
daddr_t start_sector, char *buffer, size_t nblocks,
size_t * pSizeWritten)
{
int error;
void *src;
size_t SizeWritten = 0;
DBGME(DEBUG_XFERS|DEBUG_WRITES,printf("%s: EflashWriteAt(%qx %p %zd %p)\n",
device_xname(sc->sc_dev), start_sector, buffer, nblocks, pSizeWritten));
/* Validate & trim arguments
*/
error = eflash_validate(sc, start_sector, &nblocks, &src);
if (error == 0) {
/* Do we have to erase it */
if (! sc->sc_erased) {
error = SectorErase(sc,src);
if (error)
goto Out;
sc->sc_erased = TRUE;
}
SizeWritten = eflash_write_sector(sc, buffer, nblocks << DEV_BSHIFT, src, TRUE);
SizeWritten >>= DEV_BSHIFT;
}
Out:
if (pSizeWritten)
*pSizeWritten = SizeWritten;
return error;
}
/* Rest of code lifted with mods from the dev\ata\wd.c driver
*/
/*
* Copyright (c) 1998, 2001 Manuel Bouyer. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Manuel Bouyer.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1998, 2003, 2004 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum and by Onno van der Linden.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
static const char ST506[] = "ST506";
#define EFLASHIORETRIES_SINGLE 4 /* number of retries before single-sector */
#define EFLASHIORETRIES 5 /* number of retries before giving up */
#define RECOVERYTIME hz/2 /* time to wait before retrying a cmd */
#define EFLASHUNIT(dev) DISKUNIT(dev)
#define EFLASHPART(dev) DISKPART(dev)
#define EFLASHMINOR(unit, part) DISKMINOR(unit, part)
#define MAKEEFLASHDEV(maj, unit, part) MAKEDISKDEV(maj, unit, part)
#define EFLASHLABELDEV(dev) (MAKEEFLASHDEV(major(dev), EFLASHUNIT(dev), RAW_PART))
void eflashperror(const struct eflash_softc *);
extern struct cfdriver eflash_cd;
dev_type_open(eflashopen);
dev_type_close(eflashclose);
dev_type_read(eflashread);
dev_type_write(eflashwrite);
dev_type_ioctl(eflashioctl);
dev_type_strategy(eflashstrategy);
dev_type_dump(eflashdump);
dev_type_size(eflashsize);
const struct bdevsw eflash_bdevsw = {
.d_open = eflashopen,
.d_close = eflashclose,
.d_strategy = eflashstrategy,
.d_ioctl = eflashioctl,
.d_dump = eflashdump,
.d_psize = eflashsize,
.d_discard = nodiscard,
.d_flag = D_DISK
};
const struct cdevsw eflash_cdevsw = {
.d_open = eflashopen,
.d_close = eflashclose,
.d_read = eflashread,
.d_write = eflashwrite,
.d_ioctl = eflashioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_DISK
};
void eflashgetdefaultlabel(struct eflash_softc *, struct disklabel *);
void eflashgetdisklabel(struct eflash_softc *);
void eflashstart(void *);
void __eflashstart(struct eflash_softc *, struct buf *);
void eflashrestart(void *);
void eflashattach(struct eflash_softc *);
int eflashdetach(device_t, int);
int eflashactivate(device_t, enum devact);
void eflashdone(struct eflash_softc *);
static void eflash_set_geometry(struct eflash_softc *sc);
struct dkdriver eflashdkdriver = {
.d_strategy = eflashstrategy,
.d_minphys = minphys
};
#ifdef HAS_BAD144_HANDLING
static void bad144intern(struct eflash_softc *);
#endif
static void eflash_wedges(void *arg);
void
eflashattach(struct eflash_softc *sc)
{
device_t self = sc->sc_dev;
char pbuf[9];
DEBUG_PRINT(("%s: eflashattach\n", device_xname(sc->sc_dev)), DEBUG_FUNCS | DEBUG_PROBE);
callout_init(&sc->sc_restart_ch, 0);
bufq_alloc(&sc->sc_q, BUFQ_DISK_DEFAULT_STRAT, BUFQ_SORT_RAWBLOCK);
sc->openings = 1; /* wazziz?*/
aprint_naive("\n");
/* setup all required fields so that if the attach fails we are ok */
sc->sc_dk.dk_driver = &eflashdkdriver;
sc->sc_dk.dk_name = device_xname(sc->sc_dev);
format_bytes(pbuf, sizeof(pbuf), sc->sc_capacity * DEV_BSIZE);
aprint_normal("%s: %s, %d cyl, %d head, %d sec, %d bytes/sect x %llu sectors\n",
device_xname(self), pbuf, 1, 1, sc->sc_capacity,
DEV_BSIZE, (unsigned long long)sc->sc_capacity);
eflash_set_geometry(sc);
/*
* Attach the disk structure. We fill in dk_info later.
*/
disk_attach(&sc->sc_dk);
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
RND_TYPE_DISK, RND_FLAG_DEFAULT);
}
int
eflashactivate(device_t self, enum devact act)
{
int rv = 0;
DEBUG_PRINT(("eflashactivate %x\n", act), DEBUG_FUNCS | DEBUG_PROBE);
switch (act) {
case DVACT_DEACTIVATE:
/*
* Nothing to do; we key off the device's DVF_ACTIVATE.
*/
break;
default:
rv = EOPNOTSUPP;
break;
}
return (rv);
}
int
eflashdetach(device_t self, int flags)
{
struct eflash_softc *sc = device_private(self);
int s, bmaj, cmaj, i, mn;
DEBUG_PRINT(("%s: eflashdetach\n", device_xname(sc->sc_dev)), DEBUG_FUNCS | DEBUG_PROBE);
/* locate the major number */
bmaj = bdevsw_lookup_major(&eflash_bdevsw);
cmaj = cdevsw_lookup_major(&eflash_cdevsw);
/* Nuke the vnodes for any open instances. */
for (i = 0; i < MAXPARTITIONS; i++) {
mn = EFLASHMINOR(device_unit(self), i);
vdevgone(bmaj, mn, mn, VBLK);
vdevgone(cmaj, mn, mn, VCHR);
}
/* Delete all of our wedges. */
dkwedge_delall(&sc->sc_dk);
s = splbio();
/* Kill off any queued buffers. */
bufq_drain(sc->sc_q);
bufq_free(sc->sc_q);
/*sc->atabus->ata_killpending(sc->drvp);*/
splx(s);
/* Detach disk. */
disk_detach(&sc->sc_dk);
/* Unhook the entropy source. */
rnd_detach_source(&sc->rnd_source);
/*sc->drvp->drive_flags = 0; -- no drive any more here */
return (0);
}
extern int dkwedge_autodiscover;
/* Aux temp thread to avoid deadlock when doing the partitio.. ahem wedges thing.
*/
static void
eflash_wedges(void *arg)
{
struct eflash_softc *sc = (struct eflash_softc*)arg;
DBGME(DEBUG_STATUS,printf("%s: wedges started for %p\n", sc->sc_dk.dk_name, sc));
/* Discover wedges on this disk. */
dkwedge_autodiscover = 1;
dkwedge_discover(&sc->sc_dk);
config_pending_decr(sc->sc_dev);
DBGME(DEBUG_STATUS,printf("%s: wedges thread done for %p\n", device_xname(sc->sc_dev), sc));
kthread_exit(0);
}
static void
eflash_thread(void *arg)
{
struct eflash_softc *sc = (struct eflash_softc*)arg;
struct buf *bp;
vaddr_t addr;
int s, error;
DBGME(DEBUG_STATUS,printf("%s: thread started for %p\n", device_xname(sc->sc_dev), sc));
s = splbio();
eflashattach(sc);
splx(s);
/* Allocate a VM window large enough to map the largest sector
* BUGBUG We could risk it and allocate/free on open/close?
*/
addr = uvm_km_alloc(kernel_map, sc->sc_max_secsize, 0, UVM_KMF_VAONLY);
if (addr == 0)
panic("eflash_thread: kernel map full (%lx)", (long unsigned)sc->sc_max_secsize);
sc->sc_sector = (/*volatile*/ uint8_t *) addr;
sc->sc_sector_size = 0;
sc->sc_sector_offset = NOSECTOR;
error = kthread_create(PRI_NONE, 0, NULL,
eflash_wedges, sc, NULL, "%s.wedges", device_xname(sc->sc_dev));
if (error) {
aprint_error_dev(sc->sc_dev, "wedges: unable to create kernel "
"thread: error %d\n", error);
/* XXX: why continue? */
}
DBGME(DEBUG_STATUS,printf("%s: thread service active for %p\n", device_xname(sc->sc_dev), sc));
s = splbio();
for (;;) {
/* Get next I/O request, wait if necessary
*/
if ((sc->ch_flags & (ATACH_TH_RESET | ATACH_SHUTDOWN)) == 0 &&
(sc->active_xfer == NULL)) {
sc->ch_flags &= ~ATACH_TH_RUN;
(void) tsleep(&sc->ch_thread, PRIBIO, "eflashth", 0);
sc->ch_flags |= ATACH_TH_RUN;
}
if (sc->ch_flags & ATACH_SHUTDOWN) {
break;
}
bp = sc->active_xfer;
sc->active_xfer = NULL;
if (bp != NULL) {
size_t sz = DEV_BSIZE, bnow;
DBGME(DEBUG_XFERS,printf("%s: task %p %x %p %qx %d (%zd)\n", device_xname(sc->sc_dev), bp,
sc->sc_bio.flags, sc->sc_bio.databuf, sc->sc_bio.blkno,
sc->sc_bio.nbytes, sc->sc_bio.nblks));
sc->sc_bio.error = 0;
for (; sc->sc_bio.nblks > 0;) {
bnow = sc->sc_bio.nblks;
if (sc->sc_bio.flags & ATA_SINGLE) bnow = 1;
if (sc->sc_bio.flags & ATA_READ) {
sc->sc_bio.error =
eflash_read_at(sc, sc->sc_bio.blkno, sc->sc_bio.databuf, bnow, &sz);
} else {
sc->sc_bio.error =
eflash_write_at(sc, sc->sc_bio.blkno, sc->sc_bio.databuf, bnow, &sz);
}
if (sc->sc_bio.error)
break;
sc->sc_bio.blkno += sz; /* in blocks */
sc->sc_bio.nblks -= sz;
sc->sc_bio.blkdone += sz;
sz = sz << DEV_BSHIFT; /* in bytes */
sc->sc_bio.databuf += sz;
sc->sc_bio.nbytes -= sz;
}
eflashdone(sc);
}
}
splx(s);
sc->ch_thread = NULL;
wakeup(&sc->ch_flags);
DBGME(DEBUG_STATUS,printf("%s: thread service terminated for %p\n", device_xname(sc->sc_dev), sc));
kthread_exit(0);
}
/*
* Read/write routine for a buffer. Validates the arguments and schedules the
* transfer. Does not wait for the transfer to complete.
*/
void
eflashstrategy(struct buf *bp)
{
struct eflash_softc *sc = device_lookup_private(&eflash_cd, EFLASHUNIT(bp->b_dev));
struct disklabel *lp = sc->sc_dk.dk_label;
daddr_t blkno;
int s;
DEBUG_PRINT(("%s: eflashstrategy %lld\n", device_xname(sc->sc_dev), bp->b_blkno),
DEBUG_XFERS);
/* Valid request? */
if (bp->b_blkno < 0 ||
(bp->b_bcount % lp->d_secsize) != 0 ||
(bp->b_bcount / lp->d_secsize) >= (1 << NBBY)) {
bp->b_error = EINVAL;
goto done;
}
/* If device invalidated (e.g. media change, door open), error. */
if ((sc->sc_flags & EFLASHF_LOADED) == 0) {
bp->b_error = EIO;
goto done;
}
/* If it's a null transfer, return immediately. */
if (bp->b_bcount == 0)
goto done;
/*
* Do bounds checking, adjust transfer. if error, process.
* If end of partition, just return.
*/
if (EFLASHPART(bp->b_dev) == RAW_PART) {
if (bounds_check_with_mediasize(bp, DEV_BSIZE,
sc->sc_capacity) <= 0)
goto done;
} else {
if (bounds_check_with_label(&sc->sc_dk, bp,
(sc->sc_flags & (EFLASHF_WLABEL|EFLASHF_LABELLING)) != 0) <= 0)
goto done;
}
/*
* Now convert the block number to absolute and put it in
* terms of the device's logical block size.
*/
if (lp->d_secsize >= DEV_BSIZE)
blkno = bp->b_blkno / (lp->d_secsize / DEV_BSIZE);
else
blkno = bp->b_blkno * (DEV_BSIZE / lp->d_secsize);
if (EFLASHPART(bp->b_dev) != RAW_PART)
blkno += lp->d_partitions[EFLASHPART(bp->b_dev)].p_offset;
bp->b_rawblkno = blkno;
/* Queue transfer on drive, activate drive and controller if idle. */
s = splbio();
bufq_put(sc->sc_q, bp);
eflashstart(sc);
splx(s);
return;
done:
/* Toss transfer; we're done early. */
bp->b_resid = bp->b_bcount;
biodone(bp);
}
/*
* Queue a drive for I/O.
*/
void
eflashstart(void *arg)
{
struct eflash_softc *sc = arg;
struct buf *bp = NULL;
DEBUG_PRINT(("%s: eflashstart\n", device_xname(sc->sc_dev)),
DEBUG_XFERS);
while (sc->openings > 0) {
/* Is there a buf for us ? */
if ((bp = bufq_get(sc->sc_q)) == NULL)
return;
/*
* Make the command. First lock the device
*/
sc->openings--;
sc->retries = 0;
__eflashstart(sc, bp);
}
}
void
__eflashstart(struct eflash_softc *sc, struct buf *bp)
{
DEBUG_PRINT(("%s: __eflashstart %p\n", device_xname(sc->sc_dev), bp),
DEBUG_XFERS);
sc->sc_bp = bp;
/*
* If we're retrying, retry in single-sector mode. This will give us
* the sector number of the problem, and will eventually allow the
* transfer to succeed.
*/
if (sc->retries >= EFLASHIORETRIES_SINGLE)
sc->sc_bio.flags = ATA_SINGLE;
else
sc->sc_bio.flags = 0;
if (bp->b_flags & B_READ)
sc->sc_bio.flags |= ATA_READ;
sc->sc_bio.blkno = bp->b_rawblkno;
sc->sc_bio.blkdone = 0;
sc->sc_bio.nbytes = bp->b_bcount;
sc->sc_bio.nblks = bp->b_bcount >> DEV_BSHIFT;
sc->sc_bio.databuf = bp->b_data;
/* Instrumentation. */
disk_busy(&sc->sc_dk);
sc->active_xfer = bp;
wakeup(&sc->ch_thread);
}
void
eflashdone(struct eflash_softc *sc)
{
struct buf *bp = sc->sc_bp;
const char *errmsg;
int do_perror = 0;
DEBUG_PRINT(("%s: eflashdone %p\n", device_xname(sc->sc_dev), bp),
DEBUG_XFERS);
if (bp == NULL)
return;
bp->b_resid = sc->sc_bio.nbytes;
switch (sc->sc_bio.error) {
case ETIMEDOUT:
errmsg = "device timeout";
do_perror = 1;
goto retry;
case EBUSY:
errmsg = "device stuck";
retry: /* Just reset and retry. Can we do more ? */
/*eflash_reset(sc);*/
diskerr(bp, "flash", errmsg, LOG_PRINTF,
sc->sc_bio.blkdone, sc->sc_dk.dk_label);
if (sc->retries < EFLASHIORETRIES)
printf(", retrying");
printf("\n");
if (do_perror)
eflashperror(sc);
if (sc->retries < EFLASHIORETRIES) {
sc->retries++;
callout_reset(&sc->sc_restart_ch, RECOVERYTIME,
eflashrestart, sc);
return;
}
bp->b_error = EIO;
break;
case 0:
if ((sc->sc_bio.flags & ATA_CORR) || sc->retries > 0)
printf("%s: soft error (corrected)\n",
device_xname(sc->sc_dev));
break;
case ENODEV:
case E2BIG:
bp->b_error = EIO;
break;
}
disk_unbusy(&sc->sc_dk, (bp->b_bcount - bp->b_resid),
(bp->b_flags & B_READ));
rnd_add_uint32(&sc->rnd_source, bp->b_blkno);
biodone(bp);
sc->openings++;
eflashstart(sc);
}
void
eflashrestart(void *v)
{
struct eflash_softc *sc = v;
struct buf *bp = sc->sc_bp;
int s;
DEBUG_PRINT(("%s: eflashrestart\n", device_xname(sc->sc_dev)),
DEBUG_XFERS);
s = splbio();
__eflashstart(v, bp);
splx(s);
}
int
eflashread(dev_t dev, struct uio *uio, int flags)
{
DEBUG_PRINT(("eflashread\n"), DEBUG_XFERS);
return (physio(eflashstrategy, NULL, dev, B_READ, minphys, uio));
}
int
eflashwrite(dev_t dev, struct uio *uio, int flags)
{
DEBUG_PRINT(("eflashwrite\n"), DEBUG_XFERS);
return (physio(eflashstrategy, NULL, dev, B_WRITE, minphys, uio));
}
int
eflashopen(dev_t dev, int flag, int fmt, struct lwp *l)
{
struct eflash_softc *sc;
int part, error;
DEBUG_PRINT(("eflashopen %" PRIx64 "\n", dev), DEBUG_FUNCS);
sc = device_lookup_private(&eflash_cd, EFLASHUNIT(dev));
if (sc == NULL)
return (ENXIO);
if (! device_is_active(sc->sc_dev))
return (ENODEV);
part = EFLASHPART(dev);
mutex_enter(&sc->sc_dk.dk_openlock);
/*
* If there are wedges, and this is not RAW_PART, then we
* need to fail.
*/
if (sc->sc_dk.dk_nwedges != 0 && part != RAW_PART) {
error = EBUSY;
goto bad;
}
if (sc->sc_dk.dk_openmask != 0) {
/*
* If any partition is open, but the disk has been invalidated,
* disallow further opens.
*/
if ((sc->sc_flags & EFLASHF_LOADED) == 0) {
error = EIO;
goto bad;
}
} else {
if ((sc->sc_flags & EFLASHF_LOADED) == 0) {
sc->sc_flags |= EFLASHF_LOADED;
/* Load the partition info if not already loaded. */
eflashgetdisklabel(sc);
}
}
/* Check that the partition exists. */
if (part != RAW_PART &&
(part >= sc->sc_dk.dk_label->d_npartitions ||
sc->sc_dk.dk_label->d_partitions[part].p_fstype == FS_UNUSED)) {
error = ENXIO;
goto bad;
}
/* Insure only one open at a time. */
switch (fmt) {
case S_IFCHR:
sc->sc_dk.dk_copenmask |= (1 << part);
break;
case S_IFBLK:
sc->sc_dk.dk_bopenmask |= (1 << part);
break;
}
sc->sc_dk.dk_openmask =
sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
mutex_exit(&sc->sc_dk.dk_openlock);
return 0;
bad:
mutex_exit(&sc->sc_dk.dk_openlock);
DEBUG_PRINT(("%s: eflashopen -> %d\n", device_xname(sc->sc_dev), error),
DEBUG_XFERS);
return error;
}
int
eflashclose(dev_t dev, int flag, int fmt, struct lwp *l)
{
struct eflash_softc *sc = device_lookup_private(&eflash_cd, EFLASHUNIT(dev));
int part = EFLASHPART(dev);
DEBUG_PRINT(("eflashclose %" PRIx64 "\n", dev), DEBUG_FUNCS);
mutex_enter(&sc->sc_dk.dk_openlock);
switch (fmt) {
case S_IFCHR:
sc->sc_dk.dk_copenmask &= ~(1 << part);
break;
case S_IFBLK:
sc->sc_dk.dk_bopenmask &= ~(1 << part);
break;
}
sc->sc_dk.dk_openmask =
sc->sc_dk.dk_copenmask | sc->sc_dk.dk_bopenmask;
if (sc->sc_dk.dk_openmask == 0) {
if (! (sc->sc_flags & EFLASHF_KLABEL))
sc->sc_flags &= ~EFLASHF_LOADED;
DEBUG_PRINT(("%s: eflashclose flg %x\n", device_xname(sc->sc_dev), sc->sc_flags),
DEBUG_XFERS);
}
mutex_exit(&sc->sc_dk.dk_openlock);
return 0;
}
void
eflashgetdefaultlabel(struct eflash_softc *sc, struct disklabel *lp)
{
DEBUG_PRINT(("%s: eflashgetdefaultlabel\n", device_xname(sc->sc_dev)), DEBUG_FUNCS);
memset(lp, 0, sizeof(struct disklabel));
lp->d_secsize = DEV_BSIZE;
lp->d_ntracks = 1;
lp->d_nsectors = sc->sc_capacity;
lp->d_ncylinders = 1;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
lp->d_type = DKTYPE_ST506; /* ?!? */
strncpy(lp->d_typename, ST506, 16);
strncpy(lp->d_packname, "fictitious", 16);
if (sc->sc_capacity > UINT32_MAX)
lp->d_secperunit = UINT32_MAX;
else
lp->d_secperunit = sc->sc_capacity;
lp->d_rpm = 3600;
lp->d_interleave = 1;
lp->d_flags = 0;
lp->d_partitions[RAW_PART].p_offset = 0;
lp->d_partitions[RAW_PART].p_size =
lp->d_secperunit * (lp->d_secsize / DEV_BSIZE);
lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
lp->d_npartitions = RAW_PART + 1;
lp->d_magic = DISKMAGIC;
lp->d_magic2 = DISKMAGIC;
lp->d_checksum = dkcksum(lp);
}
/*
* Fabricate a default disk label, and try to read the correct one.
*/
void
eflashgetdisklabel(struct eflash_softc *sc)
{
struct disklabel *lp = sc->sc_dk.dk_label;
const char *errstring;
DEBUG_PRINT(("%s: eflashgetdisklabel\n", device_xname(sc->sc_dev)), DEBUG_FUNCS);
memset(sc->sc_dk.dk_cpulabel, 0, sizeof(struct cpu_disklabel));
eflashgetdefaultlabel(sc, lp);
#ifdef HAS_BAD144_HANDLING
sc->sc_bio.badsect[0] = -1;
#endif
/* BUGBUG: maj==0?? why is this not EFLASHLABELDEV(??sc->sc_dev) */
errstring = readdisklabel(MAKEEFLASHDEV(0, device_unit(sc->sc_dev),
RAW_PART), eflashstrategy, lp,
sc->sc_dk.dk_cpulabel);
if (errstring) {
printf("%s: %s\n", device_xname(sc->sc_dev), errstring);
return;
}
#if DEBUG
if (EFLASH_DEBUG(DEBUG_WRITES)) {
int i, n = sc->sc_dk.dk_label->d_npartitions;
printf("%s: %d parts\n", device_xname(sc->sc_dev), n);
for (i = 0; i < n; i++) {
printf("\t[%d]: t=%x s=%d o=%d\n", i,
sc->sc_dk.dk_label->d_partitions[i].p_fstype,
sc->sc_dk.dk_label->d_partitions[i].p_size,
sc->sc_dk.dk_label->d_partitions[i].p_offset);
}
}
#endif
#ifdef HAS_BAD144_HANDLING
if ((lp->d_flags & D_BADSECT) != 0)
bad144intern(sc);
#endif
}
void
eflashperror(const struct eflash_softc *sc)
{
const char *devname = device_xname(sc->sc_dev);
u_int32_t Status = sc->sc_bio.r_error;
printf("%s: (", devname);
if (Status == 0)
printf("error not notified");
else
printf("status=x%x", Status);
printf(")\n");
}
int
eflashioctl(dev_t dev, u_long xfer, void *addr, int flag, struct lwp *l)
{
struct eflash_softc *sc = device_lookup_private(&eflash_cd, EFLASHUNIT(dev));
int error = 0, s;
DEBUG_PRINT(("eflashioctl(%lx)\n",xfer), DEBUG_FUNCS);
if ((sc->sc_flags & EFLASHF_LOADED) == 0)
return EIO;
error = disk_ioctl(&sc->sc_dk, dev, xfer, addr, flag, l);
if (error != EPASSTHROUGH)
return (error);
switch (xfer) {
#ifdef HAS_BAD144_HANDLING
case DIOCSBAD:
if ((flag & FWRITE) == 0)
return EBADF;
sc->sc_dk.dk_cpulabel->bad = *(struct dkbad *)addr;
sc->sc_dk.dk_label->d_flags |= D_BADSECT;
bad144intern(sc);
return 0;
#endif
case DIOCWDINFO:
case DIOCSDINFO:
{
struct disklabel *lp;
if ((flag & FWRITE) == 0)
return EBADF;
lp = (struct disklabel *)addr;
mutex_enter(&sc->sc_dk.dk_openlock);
sc->sc_flags |= EFLASHF_LABELLING;
error = setdisklabel(sc->sc_dk.dk_label,
lp, /*sc->sc_dk.dk_openmask : */0,
sc->sc_dk.dk_cpulabel);
if (error == 0) {
if (xfer == DIOCWDINFO)
error = writedisklabel(EFLASHLABELDEV(dev),
eflashstrategy, sc->sc_dk.dk_label,
sc->sc_dk.dk_cpulabel);
}
sc->sc_flags &= ~EFLASHF_LABELLING;
mutex_exit(&sc->sc_dk.dk_openlock);
return error;
}
case DIOCKLABEL:
if (*(int *)addr)
sc->sc_flags |= EFLASHF_KLABEL;
else
sc->sc_flags &= ~EFLASHF_KLABEL;
return 0;
case DIOCWLABEL:
if ((flag & FWRITE) == 0)
return EBADF;
if (*(int *)addr)
sc->sc_flags |= EFLASHF_WLABEL;
else
sc->sc_flags &= ~EFLASHF_WLABEL;
return 0;
case DIOCGDEFLABEL:
eflashgetdefaultlabel(sc, (struct disklabel *)addr);
return 0;
case DIOCCACHESYNC:
return 0;
case DIOCGSTRATEGY:
{
struct disk_strategy *dks = (void *)addr;
s = splbio();
strlcpy(dks->dks_name, bufq_getstrategyname(sc->sc_q),
sizeof(dks->dks_name));
splx(s);
dks->dks_paramlen = 0;
return 0;
}
case DIOCSSTRATEGY:
{
struct disk_strategy *dks = (void *)addr;
struct bufq_state *new;
struct bufq_state *old;
if ((flag & FWRITE) == 0) {
return EBADF;
}
if (dks->dks_param != NULL) {
return EINVAL;
}
dks->dks_name[sizeof(dks->dks_name) - 1] = 0; /* ensure term */
error = bufq_alloc(&new, dks->dks_name,
BUFQ_EXACT|BUFQ_SORT_RAWBLOCK);
if (error) {
return error;
}
s = splbio();
old = sc->sc_q;
bufq_move(new, old);
sc->sc_q = new;
splx(s);
bufq_free(old);
return 0;
}
default:
/* NB: we get a DIOCGWEDGEINFO, but nobody else handles it either */
DEBUG_PRINT(("eflashioctl: unsup x%lx\n", xfer), DEBUG_FUNCS);
return ENOTTY;
}
}
int
eflashsize(dev_t dev)
{
struct eflash_softc *sc;
int part, omask;
int size;
DEBUG_PRINT(("eflashsize\n"), DEBUG_FUNCS);
sc = device_lookup_private(&eflash_cd, EFLASHUNIT(dev));
if (sc == NULL)
return (-1);
part = EFLASHPART(dev);
omask = sc->sc_dk.dk_openmask & (1 << part);
if (omask == 0 && eflashopen(dev, 0, S_IFBLK, NULL) != 0)
return (-1);
if (sc->sc_dk.dk_label->d_partitions[part].p_fstype != FS_SWAP)
size = -1;
else
size = sc->sc_dk.dk_label->d_partitions[part].p_size *
(sc->sc_dk.dk_label->d_secsize / DEV_BSIZE);
if (omask == 0 && eflashclose(dev, 0, S_IFBLK, NULL) != 0)
return (-1);
return (size);
}
/*
* Dump core after a system crash.
*/
int
eflashdump(dev_t dev, daddr_t blkno, void *va, size_t size)
{
/* no we dont */
return (ENXIO);
}
#ifdef HAS_BAD144_HANDLING
/*
* Internalize the bad sector table.
*/
void
bad144intern(struct eflash_softc *sc)
{
struct dkbad *bt = &sc->sc_dk.dk_cpulabel->bad;
struct disklabel *lp = sc->sc_dk.dk_label;
int i = 0;
DEBUG_PRINT(("bad144intern\n"), DEBUG_XFERS);
for (; i < NBT_BAD; i++) {
if (bt->bt_bad[i].bt_cyl == 0xffff)
break;
sc->sc_bio.badsect[i] =
bt->bt_bad[i].bt_cyl * lp->d_secpercyl +
(bt->bt_bad[i].bt_trksec >> 8) * lp->d_nsectors +
(bt->bt_bad[i].bt_trksec & 0xff);
}
for (; i < NBT_BAD+1; i++)
sc->sc_bio.badsect[i] = -1;
}
#endif
static void
eflash_set_geometry(struct eflash_softc *sc)
{
struct disk_geom *dg = &sc->sc_dk.dk_geom;
memset(dg, 0, sizeof(*dg));
dg->dg_secperunit = sc->sc_capacity;
dg->dg_secsize = DEV_BSIZE /* XXX 512? */;
dg->dg_nsectors = sc->sc_capacity;
dg->dg_ntracks = 1;
dg->dg_ncylinders = sc->sc_capacity;
disk_set_info(sc->sc_dev, &sc->sc_dk, ST506);
}