netbsd/sys/arch/mips/mips/vm_machdep.c
2015-10-15 10:25:28 +02:00

408 lines
11 KiB
C

/* $NetBSD: vm_machdep.c,v 1.145 2015/06/11 08:22:09 matt Exp $ */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and Ralph Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah Hdr: vm_machdep.c 1.21 91/04/06
*
* @(#)vm_machdep.c 8.3 (Berkeley) 1/4/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vm_machdep.c,v 1.145 2015/06/11 08:22:09 matt Exp $");
#include "opt_ddb.h"
#include "opt_coredump.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/cpu.h>
#include <sys/vnode.h>
#include <sys/core.h>
#include <sys/exec.h>
#include <uvm/uvm.h>
#include <mips/cache.h>
#include <mips/pcb.h>
#include <mips/regnum.h>
#include <mips/locore.h>
#include <mips/pte.h>
#include <mips/psl.h>
paddr_t kvtophys(vaddr_t); /* XXX */
/*
* cpu_lwp_fork: Finish a fork operation, with lwp l2 nearly set up.
* Copy and update the pcb and trapframe, making the child ready to run.
*
* First LWP (l1) is the lwp being forked. If it is &lwp0, then we are
* creating a kthread, where return path and argument are specified
* with `func' and `arg'.
*
* Rig the child's kernel stack so that it will start out in lwp_trampoline()
* and call child_return() with l2 as an argument. This causes the
* newly-created child process to go directly to user level with an apparent
* return value of 0 from fork(), while the parent process returns normally.
*
* If an alternate user-level stack is requested (with non-zero values
* in both the stack and stacksize arguments), then set up the user stack
* pointer accordingly.
*/
void
cpu_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
void (*func)(void *), void *arg)
{
struct pcb * const pcb1 = lwp_getpcb(l1);
struct pcb * const pcb2 = lwp_getpcb(l2);
struct trapframe *tf;
KASSERT(l1 == curlwp || l1 == &lwp0);
l2->l_md.md_ss_addr = 0;
l2->l_md.md_ss_instr = 0;
l2->l_md.md_astpending = 0;
/* Copy the PCB from parent. */
*pcb2 = *pcb1;
/*
* Copy the trapframe from parent, so that return to userspace
* will be to right address, with correct registers.
*/
vaddr_t ua2 = uvm_lwp_getuarea(l2);
tf = (struct trapframe *)(ua2 + USPACE) - 1;
*tf = *l1->l_md.md_utf;
/* If specified, set a different user stack for a child. */
if (stack != NULL)
tf->tf_regs[_R_SP] = (intptr_t)stack + stacksize;
l2->l_md.md_utf = tf;
#if USPACE > PAGE_SIZE
bool direct_mapped_p = MIPS_KSEG0_P(ua2);
#ifdef _LP64
direct_mapped_p = direct_mapped_p || MIPS_XKPHYS_P(ua2);
#endif
if (!direct_mapped_p) {
pt_entry_t * const pte = kvtopte(ua2);
const uint32_t x = (MIPS_HAS_R4K_MMU) ?
(MIPS3_PG_G | MIPS3_PG_RO | MIPS3_PG_WIRED) : MIPS1_PG_G;
for (u_int i = 0; i < UPAGES; i++) {
l2->l_md.md_upte[i] = pte[i].pt_entry &~ x;
}
}
#endif
/*
* Rig kernel stack so that it would start out in lwp_trampoline()
* and call child_return() with l as an argument. This causes the
* newly-created child process to go directly to user level with a
* parent return value of 0 from fork(), while the parent process
* returns normally.
*/
pcb2->pcb_context.val[_L_S0] = (intptr_t)func; /* S0 */
pcb2->pcb_context.val[_L_S1] = (intptr_t)arg; /* S1 */
pcb2->pcb_context.val[MIPS_CURLWP_LABEL] = (intptr_t)l2; /* T8 */
pcb2->pcb_context.val[_L_SP] = (intptr_t)tf; /* SP */
pcb2->pcb_context.val[_L_RA] =
mips_locore_jumpvec.ljv_lwp_trampoline; /* RA */
#ifdef _LP64
KASSERT(pcb2->pcb_context.val[_L_SR] & MIPS_SR_KX);
#endif
KASSERTMSG(pcb2->pcb_context.val[_L_SR] & MIPS_SR_INT_IE,
"%d.%d %#"PRIxREGISTER,
l1->l_proc->p_pid, l1->l_lid,
pcb2->pcb_context.val[_L_SR]);
}
/*
* Routine to copy MD stuff from proc to proc on a fork.
* For mips, this is the ABI and "32 bit process on a 64 bit kernel" flag.
*/
void
cpu_proc_fork(struct proc *p1, struct proc *p2)
{
p2->p_md.md_abi = p1->p_md.md_abi;
}
void *
cpu_uarea_alloc(bool system)
{
struct pglist pglist;
#ifdef _LP64
const paddr_t high = pmap_limits.avail_end;
#else
const paddr_t high = MIPS_KSEG1_START - MIPS_KSEG0_START;
/*
* Don't allocate a direct mapped uarea if aren't allocating for a
* system lwp and we have memory that can't be mapped via KSEG0.
* If
*/
if (!system && high > pmap_limits.avail_end)
return NULL;
#endif
int error;
/*
* Allocate a new physically contiguous uarea which can be
* direct-mapped.
*/
error = uvm_pglistalloc(USPACE, pmap_limits.avail_start, high,
USPACE_ALIGN, 0, &pglist, 1, 1);
if (error) {
#ifdef _LP64
if (!system)
return NULL;
#endif
panic("%s: uvm_pglistalloc failed: %d", __func__, error);
}
/*
* Get the physical address from the first page.
*/
const struct vm_page * const pg = TAILQ_FIRST(&pglist);
KASSERT(pg != NULL);
const paddr_t pa = VM_PAGE_TO_PHYS(pg);
KASSERTMSG(pa >= pmap_limits.avail_start,
"pa (%#"PRIxPADDR") < pmap_limits.avail_start (%#"PRIxPADDR")",
pa, pmap_limits.avail_start);
KASSERTMSG(pa < pmap_limits.avail_end,
"pa (%#"PRIxPADDR") >= pmap_limits.avail_end (%#"PRIxPADDR")",
pa, pmap_limits.avail_end);
/*
* we need to return a direct-mapped VA for the pa.
*/
#ifdef _LP64
const vaddr_t va = MIPS_PHYS_TO_XKPHYS_CACHED(pa);
#else
const vaddr_t va = MIPS_PHYS_TO_KSEG0(pa);
#endif
return (void *)va;
}
/*
* Return true if we freed it, false if we didn't.
*/
bool
cpu_uarea_free(void *va)
{
#ifdef _LP64
if (!MIPS_XKPHYS_P(va))
return false;
paddr_t pa = MIPS_XKPHYS_TO_PHYS(va);
#else
if (!MIPS_KSEG0_P(va))
return false;
paddr_t pa = MIPS_KSEG0_TO_PHYS(va);
#endif
#ifdef MIPS3_PLUS
if (MIPS_CACHE_VIRTUAL_ALIAS)
mips_dcache_inv_range((vaddr_t)va, USPACE);
#endif
for (const paddr_t epa = pa + USPACE; pa < epa; pa += PAGE_SIZE) {
struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
KASSERT(pg != NULL);
uvm_pagefree(pg);
}
return true;
}
void
cpu_lwp_free(struct lwp *l, int proc)
{
(void)l;
}
vaddr_t
cpu_lwp_pc(struct lwp *l)
{
return l->l_md.md_utf->tf_regs[_R_PC];
}
void
cpu_lwp_free2(struct lwp *l)
{
(void)l;
}
/*
* Map a user I/O request into kernel virtual address space.
*/
int
vmapbuf(struct buf *bp, vsize_t len)
{
vaddr_t kva; /* Kernel VA (new to) */
if ((bp->b_flags & B_PHYS) == 0)
panic("vmapbuf");
vaddr_t uva = mips_trunc_page(bp->b_data);
const vaddr_t off = (vaddr_t)bp->b_data - uva;
len = mips_round_page(off + len);
kva = uvm_km_alloc(phys_map, len, atop(uva) & uvmexp.colormask,
UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
KASSERT((atop(kva ^ uva) & uvmexp.colormask) == 0);
bp->b_saveaddr = bp->b_data;
bp->b_data = (void *)(kva + off);
struct pmap * const upmap = vm_map_pmap(&bp->b_proc->p_vmspace->vm_map);
do {
paddr_t pa; /* physical address */
if (pmap_extract(upmap, uva, &pa) == false)
panic("vmapbuf: null page frame");
pmap_kenter_pa(kva, pa, VM_PROT_READ | VM_PROT_WRITE,
PMAP_WIRED);
uva += PAGE_SIZE;
kva += PAGE_SIZE;
len -= PAGE_SIZE;
} while (len);
pmap_update(pmap_kernel());
return 0;
}
/*
* Unmap a previously-mapped user I/O request.
*/
void
vunmapbuf(struct buf *bp, vsize_t len)
{
vaddr_t kva;
if ((bp->b_flags & B_PHYS) == 0)
panic("vunmapbuf");
kva = mips_trunc_page(bp->b_data);
len = mips_round_page((vaddr_t)bp->b_data - kva + len);
pmap_kremove(kva, len);
pmap_update(pmap_kernel());
uvm_km_free(phys_map, kva, len, UVM_KMF_VAONLY);
bp->b_data = bp->b_saveaddr;
bp->b_saveaddr = NULL;
}
/*
* Map a (kernel) virtual address to a physical address.
*
* MIPS processor has 3 distinct kernel address ranges:
*
* - kseg0 kernel "virtual address" for the cached physical address space.
* - kseg1 kernel "virtual address" for the uncached physical address space.
* - kseg2 normal kernel "virtual address" mapped via the TLB.
*/
paddr_t
kvtophys(vaddr_t kva)
{
pt_entry_t *pte;
paddr_t phys;
if (kva >= VM_MIN_KERNEL_ADDRESS) {
if (kva >= VM_MAX_KERNEL_ADDRESS)
goto overrun;
pte = kvtopte(kva);
if ((size_t) (pte - Sysmap) >= Sysmapsize) {
printf("oops: Sysmap overrun, max %d index %zd\n",
Sysmapsize, pte - Sysmap);
}
if (!mips_pg_v(pte->pt_entry)) {
printf("kvtophys: pte not valid for %#"PRIxVADDR"\n",
kva);
}
phys = mips_tlbpfn_to_paddr(pte->pt_entry) | (kva & PGOFSET);
return phys;
}
if (MIPS_KSEG1_P(kva))
return MIPS_KSEG1_TO_PHYS(kva);
if (MIPS_KSEG0_P(kva))
return MIPS_KSEG0_TO_PHYS(kva);
#ifdef _LP64
if (MIPS_XKPHYS_P(kva))
return MIPS_XKPHYS_TO_PHYS(kva);
#endif
overrun:
printf("Virtual address %#"PRIxVADDR": cannot map to physical\n", kva);
#ifdef DDB
Debugger();
return 0; /* XXX */
#endif
panic("kvtophys");
}
/*
* Make a kernel mapping valid for I/O, e.g. non-cachable.
* Alignment and length constraints are as-if NBPG==PAGE_SIZE.
*/
int
ioaccess(vaddr_t vaddr, paddr_t paddr, vsize_t len)
{
while (len > PAGE_SIZE) {
pmap_kenter_pa(vaddr, paddr, VM_PROT_WRITE, 0);
len -= PAGE_SIZE;
vaddr += PAGE_SIZE;
paddr += PAGE_SIZE;
}
if (len) {
/* We could warn.. */
pmap_kenter_pa(vaddr, paddr, VM_PROT_WRITE, 0);
}
/* BUGBUG should use pmap_enter() instead and check results! */
return 0;
}
/*
* Opposite to the above: just forget the mapping.
*/
int
iounaccess(vaddr_t vaddr, vsize_t len)
{
pmap_kremove(vaddr, len);
return 0;
}