mirror of
https://github.com/Stichting-MINIX-Research-Foundation/netbsd.git
synced 2025-08-07 21:19:47 -04:00
1721 lines
44 KiB
C
1721 lines
44 KiB
C
/* $NetBSD: if_emac.c,v 1.43 2014/10/16 19:11:38 snj Exp $ */
|
|
|
|
/*
|
|
* Copyright 2001, 2002 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Simon Burge and Jason Thorpe for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* emac(4) supports following ibm4xx's EMACs.
|
|
* XXXX: ZMII and 'TCP Accelaration Hardware' not support yet...
|
|
*
|
|
* tested
|
|
* ------
|
|
* 405EP - 10/100 x2
|
|
* 405EX/EXr o 10/100/1000 x2 (EXr x1), STA v2, 256bit hash-Table, RGMII
|
|
* 405GP/GPr o 10/100
|
|
* 440EP - 10/100 x2, ZMII
|
|
* 440GP - 10/100 x2, ZMII
|
|
* 440GX - 10/100/1000 x4, ZMII/RGMII(ch 2, 3), TAH(ch 2, 3)
|
|
* 440SP - 10/100/1000
|
|
* 440SPe - 10/100/1000, STA v2
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_emac.c,v 1.43 2014/10/16 19:11:38 snj Exp $");
|
|
|
|
#include "opt_emac.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <powerpc/ibm4xx/cpu.h>
|
|
#include <powerpc/ibm4xx/dcr4xx.h>
|
|
#include <powerpc/ibm4xx/mal405gp.h>
|
|
#include <powerpc/ibm4xx/dev/emacreg.h>
|
|
#include <powerpc/ibm4xx/dev/if_emacreg.h>
|
|
#include <powerpc/ibm4xx/dev/if_emacvar.h>
|
|
#include <powerpc/ibm4xx/dev/malvar.h>
|
|
#include <powerpc/ibm4xx/dev/opbreg.h>
|
|
#include <powerpc/ibm4xx/dev/opbvar.h>
|
|
#include <powerpc/ibm4xx/dev/plbvar.h>
|
|
#if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
|
|
#include <powerpc/ibm4xx/dev/rmiivar.h>
|
|
#endif
|
|
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include "locators.h"
|
|
|
|
|
|
/*
|
|
* Transmit descriptor list size. There are two Tx channels, each with
|
|
* up to 256 hardware descriptors available. We currently use one Tx
|
|
* channel. We tell the upper layers that they can queue a lot of
|
|
* packets, and we go ahead and manage up to 64 of them at a time. We
|
|
* allow up to 16 DMA segments per packet.
|
|
*/
|
|
#define EMAC_NTXSEGS 16
|
|
#define EMAC_TXQUEUELEN 64
|
|
#define EMAC_TXQUEUELEN_MASK (EMAC_TXQUEUELEN - 1)
|
|
#define EMAC_TXQUEUE_GC (EMAC_TXQUEUELEN / 4)
|
|
#define EMAC_NTXDESC 256
|
|
#define EMAC_NTXDESC_MASK (EMAC_NTXDESC - 1)
|
|
#define EMAC_NEXTTX(x) (((x) + 1) & EMAC_NTXDESC_MASK)
|
|
#define EMAC_NEXTTXS(x) (((x) + 1) & EMAC_TXQUEUELEN_MASK)
|
|
|
|
/*
|
|
* Receive descriptor list size. There is one Rx channel with up to 256
|
|
* hardware descriptors available. We allocate 64 receive descriptors,
|
|
* each with a 2k buffer (MCLBYTES).
|
|
*/
|
|
#define EMAC_NRXDESC 64
|
|
#define EMAC_NRXDESC_MASK (EMAC_NRXDESC - 1)
|
|
#define EMAC_NEXTRX(x) (((x) + 1) & EMAC_NRXDESC_MASK)
|
|
#define EMAC_PREVRX(x) (((x) - 1) & EMAC_NRXDESC_MASK)
|
|
|
|
/*
|
|
* Transmit/receive descriptors that are DMA'd to the EMAC.
|
|
*/
|
|
struct emac_control_data {
|
|
struct mal_descriptor ecd_txdesc[EMAC_NTXDESC];
|
|
struct mal_descriptor ecd_rxdesc[EMAC_NRXDESC];
|
|
};
|
|
|
|
#define EMAC_CDOFF(x) offsetof(struct emac_control_data, x)
|
|
#define EMAC_CDTXOFF(x) EMAC_CDOFF(ecd_txdesc[(x)])
|
|
#define EMAC_CDRXOFF(x) EMAC_CDOFF(ecd_rxdesc[(x)])
|
|
|
|
/*
|
|
* Software state for transmit jobs.
|
|
*/
|
|
struct emac_txsoft {
|
|
struct mbuf *txs_mbuf; /* head of mbuf chain */
|
|
bus_dmamap_t txs_dmamap; /* our DMA map */
|
|
int txs_firstdesc; /* first descriptor in packet */
|
|
int txs_lastdesc; /* last descriptor in packet */
|
|
int txs_ndesc; /* # of descriptors used */
|
|
};
|
|
|
|
/*
|
|
* Software state for receive descriptors.
|
|
*/
|
|
struct emac_rxsoft {
|
|
struct mbuf *rxs_mbuf; /* head of mbuf chain */
|
|
bus_dmamap_t rxs_dmamap; /* our DMA map */
|
|
};
|
|
|
|
/*
|
|
* Software state per device.
|
|
*/
|
|
struct emac_softc {
|
|
device_t sc_dev; /* generic device information */
|
|
int sc_instance; /* instance no. */
|
|
bus_space_tag_t sc_st; /* bus space tag */
|
|
bus_space_handle_t sc_sh; /* bus space handle */
|
|
bus_dma_tag_t sc_dmat; /* bus DMA tag */
|
|
struct ethercom sc_ethercom; /* ethernet common data */
|
|
void *sc_sdhook; /* shutdown hook */
|
|
void *sc_powerhook; /* power management hook */
|
|
|
|
struct mii_data sc_mii; /* MII/media information */
|
|
struct callout sc_callout; /* tick callout */
|
|
|
|
uint32_t sc_mr1; /* copy of Mode Register 1 */
|
|
uint32_t sc_stacr_read; /* Read opcode of STAOPC of STACR */
|
|
uint32_t sc_stacr_write; /* Write opcode of STAOPC of STACR */
|
|
uint32_t sc_stacr_bits; /* misc bits of STACR */
|
|
bool sc_stacr_completed; /* Operation completed of STACR */
|
|
int sc_htsize; /* Hash Table size */
|
|
|
|
bus_dmamap_t sc_cddmamap; /* control data dma map */
|
|
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
|
|
|
|
/* Software state for transmit/receive descriptors. */
|
|
struct emac_txsoft sc_txsoft[EMAC_TXQUEUELEN];
|
|
struct emac_rxsoft sc_rxsoft[EMAC_NRXDESC];
|
|
|
|
/* Control data structures. */
|
|
struct emac_control_data *sc_control_data;
|
|
#define sc_txdescs sc_control_data->ecd_txdesc
|
|
#define sc_rxdescs sc_control_data->ecd_rxdesc
|
|
|
|
#ifdef EMAC_EVENT_COUNTERS
|
|
struct evcnt sc_ev_rxintr; /* Rx interrupts */
|
|
struct evcnt sc_ev_txintr; /* Tx interrupts */
|
|
struct evcnt sc_ev_rxde; /* Rx descriptor interrupts */
|
|
struct evcnt sc_ev_txde; /* Tx descriptor interrupts */
|
|
struct evcnt sc_ev_intr; /* General EMAC interrupts */
|
|
|
|
struct evcnt sc_ev_txreap; /* Calls to Tx descriptor reaper */
|
|
struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
|
|
struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
|
|
struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
|
|
struct evcnt sc_ev_tu; /* Tx underrun */
|
|
#endif /* EMAC_EVENT_COUNTERS */
|
|
|
|
int sc_txfree; /* number of free Tx descriptors */
|
|
int sc_txnext; /* next ready Tx descriptor */
|
|
|
|
int sc_txsfree; /* number of free Tx jobs */
|
|
int sc_txsnext; /* next ready Tx job */
|
|
int sc_txsdirty; /* dirty Tx jobs */
|
|
|
|
int sc_rxptr; /* next ready RX descriptor/descsoft */
|
|
|
|
void (*sc_rmii_enable)(device_t, int); /* reduced MII enable */
|
|
void (*sc_rmii_disable)(device_t, int); /* reduced MII disable*/
|
|
void (*sc_rmii_speed)(device_t, int, int); /* reduced MII speed */
|
|
};
|
|
|
|
#ifdef EMAC_EVENT_COUNTERS
|
|
#define EMAC_EVCNT_INCR(ev) (ev)->ev_count++
|
|
#else
|
|
#define EMAC_EVCNT_INCR(ev) /* nothing */
|
|
#endif
|
|
|
|
#define EMAC_CDTXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDTXOFF((x)))
|
|
#define EMAC_CDRXADDR(sc, x) ((sc)->sc_cddma + EMAC_CDRXOFF((x)))
|
|
|
|
#define EMAC_CDTXSYNC(sc, x, n, ops) \
|
|
do { \
|
|
int __x, __n; \
|
|
\
|
|
__x = (x); \
|
|
__n = (n); \
|
|
\
|
|
/* If it will wrap around, sync to the end of the ring. */ \
|
|
if ((__x + __n) > EMAC_NTXDESC) { \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * \
|
|
(EMAC_NTXDESC - __x), (ops)); \
|
|
__n -= (EMAC_NTXDESC - __x); \
|
|
__x = 0; \
|
|
} \
|
|
\
|
|
/* Now sync whatever is left. */ \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
EMAC_CDTXOFF(__x), sizeof(struct mal_descriptor) * __n, (ops)); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define EMAC_CDRXSYNC(sc, x, ops) \
|
|
do { \
|
|
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
|
|
EMAC_CDRXOFF((x)), sizeof(struct mal_descriptor), (ops)); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define EMAC_INIT_RXDESC(sc, x) \
|
|
do { \
|
|
struct emac_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
|
|
struct mal_descriptor *__rxd = &(sc)->sc_rxdescs[(x)]; \
|
|
struct mbuf *__m = __rxs->rxs_mbuf; \
|
|
\
|
|
/* \
|
|
* Note: We scoot the packet forward 2 bytes in the buffer \
|
|
* so that the payload after the Ethernet header is aligned \
|
|
* to a 4-byte boundary. \
|
|
*/ \
|
|
__m->m_data = __m->m_ext.ext_buf + 2; \
|
|
\
|
|
__rxd->md_data = __rxs->rxs_dmamap->dm_segs[0].ds_addr + 2; \
|
|
__rxd->md_data_len = __m->m_ext.ext_size - 2; \
|
|
__rxd->md_stat_ctrl = MAL_RX_EMPTY | MAL_RX_INTERRUPT | \
|
|
/* Set wrap on last descriptor. */ \
|
|
(((x) == EMAC_NRXDESC - 1) ? MAL_RX_WRAP : 0); \
|
|
EMAC_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
#define EMAC_WRITE(sc, reg, val) \
|
|
bus_space_write_stream_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
|
|
#define EMAC_READ(sc, reg) \
|
|
bus_space_read_stream_4((sc)->sc_st, (sc)->sc_sh, (reg))
|
|
|
|
#define EMAC_SET_FILTER(aht, crc) \
|
|
do { \
|
|
(aht)[3 - (((crc) >> 26) >> 4)] |= 1 << (((crc) >> 26) & 0xf); \
|
|
} while (/*CONSTCOND*/0)
|
|
#define EMAC_SET_FILTER256(aht, crc) \
|
|
do { \
|
|
(aht)[7 - (((crc) >> 24) >> 5)] |= 1 << (((crc) >> 24) & 0x1f); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
static int emac_match(device_t, cfdata_t, void *);
|
|
static void emac_attach(device_t, device_t, void *);
|
|
|
|
static int emac_intr(void *);
|
|
static void emac_shutdown(void *);
|
|
|
|
static void emac_start(struct ifnet *);
|
|
static int emac_ioctl(struct ifnet *, u_long, void *);
|
|
static int emac_init(struct ifnet *);
|
|
static void emac_stop(struct ifnet *, int);
|
|
static void emac_watchdog(struct ifnet *);
|
|
|
|
static int emac_add_rxbuf(struct emac_softc *, int);
|
|
static void emac_rxdrain(struct emac_softc *);
|
|
static int emac_set_filter(struct emac_softc *);
|
|
static int emac_txreap(struct emac_softc *);
|
|
|
|
static void emac_soft_reset(struct emac_softc *);
|
|
static void emac_smart_reset(struct emac_softc *);
|
|
|
|
static int emac_mii_readreg(device_t, int, int);
|
|
static void emac_mii_writereg(device_t, int, int, int);
|
|
static void emac_mii_statchg(struct ifnet *);
|
|
static uint32_t emac_mii_wait(struct emac_softc *);
|
|
static void emac_mii_tick(void *);
|
|
|
|
int emac_copy_small = 0;
|
|
|
|
CFATTACH_DECL_NEW(emac, sizeof(struct emac_softc),
|
|
emac_match, emac_attach, NULL, NULL);
|
|
|
|
|
|
static int
|
|
emac_match(device_t parent, cfdata_t cf, void *aux)
|
|
{
|
|
struct opb_attach_args *oaa = aux;
|
|
|
|
/* match only on-chip ethernet devices */
|
|
if (strcmp(oaa->opb_name, cf->cf_name) == 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
emac_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct opb_attach_args *oaa = aux;
|
|
struct emac_softc *sc = device_private(self);
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
const char * xname = device_xname(self);
|
|
bus_dma_segment_t seg;
|
|
int error, i, nseg, opb_freq, opbc, mii_phy = MII_PHY_ANY;
|
|
const uint8_t *enaddr;
|
|
prop_dictionary_t dict = device_properties(self);
|
|
prop_data_t ea;
|
|
|
|
bus_space_map(oaa->opb_bt, oaa->opb_addr, EMAC_NREG, 0, &sc->sc_sh);
|
|
|
|
sc->sc_dev = self;
|
|
sc->sc_instance = oaa->opb_instance;
|
|
sc->sc_st = oaa->opb_bt;
|
|
sc->sc_dmat = oaa->opb_dmat;
|
|
|
|
callout_init(&sc->sc_callout, 0);
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal(": Ethernet Media Access Controller\n");
|
|
|
|
/* Fetch the Ethernet address. */
|
|
ea = prop_dictionary_get(dict, "mac-address");
|
|
if (ea == NULL) {
|
|
aprint_error_dev(self, "unable to get mac-address property\n");
|
|
return;
|
|
}
|
|
KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
|
|
KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
|
|
enaddr = prop_data_data_nocopy(ea);
|
|
aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
|
|
|
|
#if defined(EMAC_ZMII_PHY) || defined(EMAC_RGMII_PHY)
|
|
/* Fetch the MII offset. */
|
|
prop_dictionary_get_uint32(dict, "mii-phy", &mii_phy);
|
|
|
|
#ifdef EMAC_ZMII_PHY
|
|
if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_ZMII)
|
|
zmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
|
|
&sc->sc_rmii_disable, &sc->sc_rmii_speed);
|
|
#endif
|
|
#ifdef EMAC_RGMII_PHY
|
|
if (oaa->opb_flags & OPB_FLAGS_EMAC_RMII_RGMII)
|
|
rgmii_attach(parent, sc->sc_instance, &sc->sc_rmii_enable,
|
|
&sc->sc_rmii_disable, &sc->sc_rmii_speed);
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct emac_control_data), 0, 0, &seg, 1, &nseg, 0)) != 0) {
|
|
aprint_error_dev(self,
|
|
"unable to allocate control data, error = %d\n", error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
|
|
sizeof(struct emac_control_data), (void **)&sc->sc_control_data,
|
|
BUS_DMA_COHERENT)) != 0) {
|
|
aprint_error_dev(self,
|
|
"unable to map control data, error = %d\n", error);
|
|
goto fail_1;
|
|
}
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct emac_control_data), 1,
|
|
sizeof(struct emac_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
|
|
aprint_error_dev(self,
|
|
"unable to create control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
|
|
sc->sc_control_data, sizeof(struct emac_control_data), NULL,
|
|
0)) != 0) {
|
|
aprint_error_dev(self,
|
|
"unable to load control data DMA map, error = %d\n", error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < EMAC_TXQUEUELEN; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
EMAC_NTXSEGS, MCLBYTES, 0, 0,
|
|
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
|
|
aprint_error_dev(self,
|
|
"unable to create tx DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < EMAC_NRXDESC; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
|
|
aprint_error_dev(self,
|
|
"unable to create rx DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail_5;
|
|
}
|
|
sc->sc_rxsoft[i].rxs_mbuf = NULL;
|
|
}
|
|
|
|
/* Soft Reset the EMAC. The chip to a known state. */
|
|
emac_soft_reset(sc);
|
|
|
|
opb_freq = opb_get_frequency();
|
|
switch (opb_freq) {
|
|
case 50000000: opbc = STACR_OPBC_50MHZ; break;
|
|
case 66666666: opbc = STACR_OPBC_66MHZ; break;
|
|
case 83333333: opbc = STACR_OPBC_83MHZ; break;
|
|
case 100000000: opbc = STACR_OPBC_100MHZ; break;
|
|
|
|
default:
|
|
if (opb_freq > 100000000) {
|
|
opbc = STACR_OPBC_A100MHZ;
|
|
break;
|
|
}
|
|
aprint_error_dev(self, "unsupport OPB frequency %dMHz\n",
|
|
opb_freq / 1000 / 1000);
|
|
goto fail_5;
|
|
}
|
|
if (oaa->opb_flags & OPB_FLAGS_EMAC_GBE) {
|
|
sc->sc_mr1 =
|
|
MR1_RFS_GBE(MR1__FS_16KB) |
|
|
MR1_TFS_GBE(MR1__FS_16KB) |
|
|
MR1_TR0_MULTIPLE |
|
|
MR1_OBCI(opbc);
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
|
|
|
|
if (oaa->opb_flags & OPB_FLAGS_EMAC_STACV2) {
|
|
sc->sc_stacr_read = STACR_STAOPC_READ;
|
|
sc->sc_stacr_write = STACR_STAOPC_WRITE;
|
|
sc->sc_stacr_bits = STACR_OC;
|
|
sc->sc_stacr_completed = false;
|
|
} else {
|
|
sc->sc_stacr_read = STACR_READ;
|
|
sc->sc_stacr_write = STACR_WRITE;
|
|
sc->sc_stacr_completed = true;
|
|
}
|
|
} else {
|
|
/*
|
|
* Set up Mode Register 1 - set receive and transmit FIFOs to
|
|
* maximum size, allow transmit of multiple packets (only
|
|
* channel 0 is used).
|
|
*
|
|
* XXX: Allow pause packets??
|
|
*/
|
|
sc->sc_mr1 =
|
|
MR1_RFS(MR1__FS_4KB) |
|
|
MR1_TFS(MR1__FS_2KB) |
|
|
MR1_TR0_MULTIPLE;
|
|
|
|
sc->sc_stacr_read = STACR_READ;
|
|
sc->sc_stacr_write = STACR_WRITE;
|
|
sc->sc_stacr_bits = STACR_OPBC(opbc);
|
|
sc->sc_stacr_completed = true;
|
|
}
|
|
|
|
intr_establish(oaa->opb_irq, IST_LEVEL, IPL_NET, emac_intr, sc);
|
|
mal_intr_establish(sc->sc_instance, sc);
|
|
|
|
if (oaa->opb_flags & OPB_FLAGS_EMAC_HT256)
|
|
sc->sc_htsize = 256;
|
|
else
|
|
sc->sc_htsize = 64;
|
|
|
|
/* Clear all interrupts */
|
|
EMAC_WRITE(sc, EMAC_ISR, ISR_ALL);
|
|
|
|
/*
|
|
* Initialise the media structures.
|
|
*/
|
|
mii->mii_ifp = ifp;
|
|
mii->mii_readreg = emac_mii_readreg;
|
|
mii->mii_writereg = emac_mii_writereg;
|
|
mii->mii_statchg = emac_mii_statchg;
|
|
|
|
sc->sc_ethercom.ec_mii = mii;
|
|
ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
|
|
mii_attach(self, mii, 0xffffffff, mii_phy, MII_OFFSET_ANY,
|
|
MIIF_DOPAUSE);
|
|
if (LIST_FIRST(&mii->mii_phys) == NULL) {
|
|
ifmedia_add(&mii->mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_NONE);
|
|
} else
|
|
ifmedia_set(&mii->mii_media, IFM_ETHER|IFM_AUTO);
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
strcpy(ifp->if_xname, xname);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_start = emac_start;
|
|
ifp->if_ioctl = emac_ioctl;
|
|
ifp->if_init = emac_init;
|
|
ifp->if_stop = emac_stop;
|
|
ifp->if_watchdog = emac_watchdog;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* We can support 802.1Q VLAN-sized frames.
|
|
*/
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
|
|
|
|
/*
|
|
* Attach the interface.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
|
|
#ifdef EMAC_EVENT_COUNTERS
|
|
/*
|
|
* Attach the event counters.
|
|
*/
|
|
evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
|
|
NULL, xname, "txintr");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
|
|
NULL, xname, "rxintr");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txde, EVCNT_TYPE_INTR,
|
|
NULL, xname, "txde");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxde, EVCNT_TYPE_INTR,
|
|
NULL, xname, "rxde");
|
|
evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
|
|
NULL, xname, "intr");
|
|
|
|
evcnt_attach_dynamic(&sc->sc_ev_txreap, EVCNT_TYPE_MISC,
|
|
NULL, xname, "txreap");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
|
|
NULL, xname, "txsstall");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
|
|
NULL, xname, "txdstall");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
|
|
NULL, xname, "txdrop");
|
|
evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
|
|
NULL, xname, "tu");
|
|
#endif /* EMAC_EVENT_COUNTERS */
|
|
|
|
/*
|
|
* Make sure the interface is shutdown during reboot.
|
|
*/
|
|
sc->sc_sdhook = shutdownhook_establish(emac_shutdown, sc);
|
|
if (sc->sc_sdhook == NULL)
|
|
aprint_error_dev(self,
|
|
"WARNING: unable to establish shutdown hook\n");
|
|
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall through.
|
|
*/
|
|
fail_5:
|
|
for (i = 0; i < EMAC_NRXDESC; i++) {
|
|
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_rxsoft[i].rxs_dmamap);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < EMAC_TXQUEUELEN; i++) {
|
|
if (sc->sc_txsoft[i].txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
sc->sc_txsoft[i].txs_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
|
|
sizeof(struct emac_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &seg, nseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* EMAC General interrupt handler
|
|
*/
|
|
static int
|
|
emac_intr(void *arg)
|
|
{
|
|
struct emac_softc *sc = arg;
|
|
uint32_t status;
|
|
|
|
EMAC_EVCNT_INCR(&sc->sc_ev_intr);
|
|
status = EMAC_READ(sc, EMAC_ISR);
|
|
|
|
/* Clear the interrupt status bits. */
|
|
EMAC_WRITE(sc, EMAC_ISR, status);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
emac_shutdown(void *arg)
|
|
{
|
|
struct emac_softc *sc = arg;
|
|
|
|
emac_stop(&sc->sc_ethercom.ec_if, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* ifnet interface functions
|
|
*/
|
|
|
|
static void
|
|
emac_start(struct ifnet *ifp)
|
|
{
|
|
struct emac_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0;
|
|
struct emac_txsoft *txs;
|
|
bus_dmamap_t dmamap;
|
|
int error, firsttx, nexttx, lasttx, ofree, seg;
|
|
|
|
lasttx = 0; /* XXX gcc */
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous number of free descriptors.
|
|
*/
|
|
ofree = sc->sc_txfree;
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
for (;;) {
|
|
/* Grab a packet off the queue. */
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Get a work queue entry. Reclaim used Tx descriptors if
|
|
* we are running low.
|
|
*/
|
|
if (sc->sc_txsfree < EMAC_TXQUEUE_GC) {
|
|
emac_txreap(sc);
|
|
if (sc->sc_txsfree == 0) {
|
|
EMAC_EVCNT_INCR(&sc->sc_ev_txsstall);
|
|
break;
|
|
}
|
|
}
|
|
|
|
txs = &sc->sc_txsoft[sc->sc_txsnext];
|
|
dmamap = txs->txs_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the alloted number of segments, or we
|
|
* were short on resources. In this case, we'll copy
|
|
* and try again.
|
|
*/
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_WRITE|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
if (error == EFBIG) {
|
|
EMAC_EVCNT_INCR(&sc->sc_ev_txdrop);
|
|
aprint_error_ifnet(ifp,
|
|
"Tx packet consumes too many "
|
|
"DMA segments, dropping...\n");
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
m_freem(m0);
|
|
continue;
|
|
}
|
|
/* Short on resources, just stop for now. */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Ensure we have enough descriptors free to describe
|
|
* the packet.
|
|
*/
|
|
if (dmamap->dm_nsegs > sc->sc_txfree) {
|
|
/*
|
|
* Not enough free descriptors to transmit this
|
|
* packet. We haven't committed anything yet,
|
|
* so just unload the DMA map, put the packet
|
|
* back on the queue, and punt. Notify the upper
|
|
* layer that there are not more slots left.
|
|
*
|
|
*/
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
bus_dmamap_unload(sc->sc_dmat, dmamap);
|
|
EMAC_EVCNT_INCR(&sc->sc_ev_txdstall);
|
|
break;
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
|
|
/*
|
|
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
|
|
*/
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Store a pointer to the packet so that we can free it
|
|
* later.
|
|
*/
|
|
txs->txs_mbuf = m0;
|
|
txs->txs_firstdesc = sc->sc_txnext;
|
|
txs->txs_ndesc = dmamap->dm_nsegs;
|
|
|
|
/*
|
|
* Initialize the transmit descriptor.
|
|
*/
|
|
firsttx = sc->sc_txnext;
|
|
for (nexttx = sc->sc_txnext, seg = 0;
|
|
seg < dmamap->dm_nsegs;
|
|
seg++, nexttx = EMAC_NEXTTX(nexttx)) {
|
|
struct mal_descriptor *txdesc =
|
|
&sc->sc_txdescs[nexttx];
|
|
|
|
/*
|
|
* If this is the first descriptor we're
|
|
* enqueueing, don't set the TX_READY bit just
|
|
* yet. That could cause a race condition.
|
|
* We'll do it below.
|
|
*/
|
|
txdesc->md_data = dmamap->dm_segs[seg].ds_addr;
|
|
txdesc->md_data_len = dmamap->dm_segs[seg].ds_len;
|
|
txdesc->md_stat_ctrl =
|
|
(txdesc->md_stat_ctrl & MAL_TX_WRAP) |
|
|
(nexttx == firsttx ? 0 : MAL_TX_READY) |
|
|
EMAC_TXC_GFCS | EMAC_TXC_GPAD;
|
|
lasttx = nexttx;
|
|
}
|
|
|
|
/* Set the LAST bit on the last segment. */
|
|
sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_LAST;
|
|
|
|
/*
|
|
* Set up last segment descriptor to send an interrupt after
|
|
* that descriptor is transmitted, and bypass existing Tx
|
|
* descriptor reaping method (for now...).
|
|
*/
|
|
sc->sc_txdescs[lasttx].md_stat_ctrl |= MAL_TX_INTERRUPT;
|
|
|
|
|
|
txs->txs_lastdesc = lasttx;
|
|
|
|
/* Sync the descriptors we're using. */
|
|
EMAC_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* The entire packet chain is set up. Give the
|
|
* first descriptor to the chip now.
|
|
*/
|
|
sc->sc_txdescs[firsttx].md_stat_ctrl |= MAL_TX_READY;
|
|
EMAC_CDTXSYNC(sc, firsttx, 1,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
/*
|
|
* Tell the EMAC that a new packet is available.
|
|
*/
|
|
EMAC_WRITE(sc, EMAC_TMR0, TMR0_GNP0 | TMR0_TFAE_2);
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_txfree -= txs->txs_ndesc;
|
|
sc->sc_txnext = nexttx;
|
|
|
|
sc->sc_txsfree--;
|
|
sc->sc_txsnext = EMAC_NEXTTXS(sc->sc_txsnext);
|
|
|
|
/*
|
|
* Pass the packet to any BPF listeners.
|
|
*/
|
|
bpf_mtap(ifp, m0);
|
|
}
|
|
|
|
if (sc->sc_txfree == 0)
|
|
/* No more slots left; notify upper layer. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
|
|
if (sc->sc_txfree != ofree)
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
|
|
static int
|
|
emac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct emac_softc *sc = ifp->if_softc;
|
|
int s, error;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFMTU:
|
|
{
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int maxmtu;
|
|
|
|
if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU)
|
|
maxmtu = EMAC_MAX_MTU;
|
|
else
|
|
maxmtu = ETHERMTU;
|
|
|
|
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
|
|
error = EINVAL;
|
|
else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
|
|
break;
|
|
else if (ifp->if_flags & IFF_UP)
|
|
error = emac_init(ifp);
|
|
else
|
|
error = 0;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
error = emac_set_filter(sc);
|
|
else
|
|
error = 0;
|
|
}
|
|
}
|
|
|
|
/* try to get more packets going */
|
|
emac_start(ifp);
|
|
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
emac_init(struct ifnet *ifp)
|
|
{
|
|
struct emac_softc *sc = ifp->if_softc;
|
|
struct emac_rxsoft *rxs;
|
|
const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
|
|
int error, i;
|
|
|
|
error = 0;
|
|
|
|
/* Cancel any pending I/O. */
|
|
emac_stop(ifp, 0);
|
|
|
|
/* Reset the chip to a known state. */
|
|
emac_soft_reset(sc);
|
|
|
|
/*
|
|
* Initialise the transmit descriptor ring.
|
|
*/
|
|
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
|
|
/* set wrap on last descriptor */
|
|
sc->sc_txdescs[EMAC_NTXDESC - 1].md_stat_ctrl |= MAL_TX_WRAP;
|
|
EMAC_CDTXSYNC(sc, 0, EMAC_NTXDESC,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
sc->sc_txfree = EMAC_NTXDESC;
|
|
sc->sc_txnext = 0;
|
|
|
|
/*
|
|
* Initialise the transmit job descriptors.
|
|
*/
|
|
for (i = 0; i < EMAC_TXQUEUELEN; i++)
|
|
sc->sc_txsoft[i].txs_mbuf = NULL;
|
|
sc->sc_txsfree = EMAC_TXQUEUELEN;
|
|
sc->sc_txsnext = 0;
|
|
sc->sc_txsdirty = 0;
|
|
|
|
/*
|
|
* Initialise the receiver descriptor and receive job
|
|
* descriptor rings.
|
|
*/
|
|
for (i = 0; i < EMAC_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf == NULL) {
|
|
if ((error = emac_add_rxbuf(sc, i)) != 0) {
|
|
aprint_error_ifnet(ifp,
|
|
"unable to allocate or map rx buffer %d,"
|
|
" error = %d\n",
|
|
i, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
emac_rxdrain(sc);
|
|
goto out;
|
|
}
|
|
} else
|
|
EMAC_INIT_RXDESC(sc, i);
|
|
}
|
|
sc->sc_rxptr = 0;
|
|
|
|
/*
|
|
* Set the current media.
|
|
*/
|
|
if ((error = ether_mediachange(ifp)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Load the MAC address.
|
|
*/
|
|
EMAC_WRITE(sc, EMAC_IAHR, enaddr[0] << 8 | enaddr[1]);
|
|
EMAC_WRITE(sc, EMAC_IALR,
|
|
enaddr[2] << 24 | enaddr[3] << 16 | enaddr[4] << 8 | enaddr[5]);
|
|
|
|
/* Enable the transmit and receive channel on the MAL. */
|
|
error = mal_start(sc->sc_instance,
|
|
EMAC_CDTXADDR(sc, 0), EMAC_CDRXADDR(sc, 0));
|
|
if (error)
|
|
goto out;
|
|
|
|
sc->sc_mr1 &= ~MR1_JPSM;
|
|
if (ifp->if_mtu > ETHERMTU)
|
|
/* Enable Jumbo Packet Support Mode */
|
|
sc->sc_mr1 |= MR1_JPSM;
|
|
|
|
/* Set fifos, media modes. */
|
|
EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
|
|
|
|
/*
|
|
* Enable Individual and (possibly) Broadcast Address modes,
|
|
* runt packets, and strip padding.
|
|
*/
|
|
EMAC_WRITE(sc, EMAC_RMR, RMR_IAE | RMR_RRP | RMR_SP | RMR_TFAE_2 |
|
|
(ifp->if_flags & IFF_PROMISC ? RMR_PME : 0) |
|
|
(ifp->if_flags & IFF_BROADCAST ? RMR_BAE : 0));
|
|
|
|
/*
|
|
* Set multicast filter.
|
|
*/
|
|
emac_set_filter(sc);
|
|
|
|
/*
|
|
* Set low- and urgent-priority request thresholds.
|
|
*/
|
|
EMAC_WRITE(sc, EMAC_TMR1,
|
|
((7 << TMR1_TLR_SHIFT) & TMR1_TLR_MASK) | /* 16 word burst */
|
|
((15 << TMR1_TUR_SHIFT) & TMR1_TUR_MASK));
|
|
/*
|
|
* Set Transmit Request Threshold Register.
|
|
*/
|
|
EMAC_WRITE(sc, EMAC_TRTR, TRTR_256);
|
|
|
|
/*
|
|
* Set high and low receive watermarks.
|
|
*/
|
|
EMAC_WRITE(sc, EMAC_RWMR,
|
|
30 << RWMR_RLWM_SHIFT | 64 << RWMR_RLWM_SHIFT);
|
|
|
|
/*
|
|
* Set frame gap.
|
|
*/
|
|
EMAC_WRITE(sc, EMAC_IPGVR, 8);
|
|
|
|
/*
|
|
* Set interrupt status enable bits for EMAC.
|
|
*/
|
|
EMAC_WRITE(sc, EMAC_ISER,
|
|
ISR_TXPE | /* TX Parity Error */
|
|
ISR_RXPE | /* RX Parity Error */
|
|
ISR_TXUE | /* TX Underrun Event */
|
|
ISR_RXOE | /* RX Overrun Event */
|
|
ISR_OVR | /* Overrun Error */
|
|
ISR_PP | /* Pause Packet */
|
|
ISR_BP | /* Bad Packet */
|
|
ISR_RP | /* Runt Packet */
|
|
ISR_SE | /* Short Event */
|
|
ISR_ALE | /* Alignment Error */
|
|
ISR_BFCS | /* Bad FCS */
|
|
ISR_PTLE | /* Packet Too Long Error */
|
|
ISR_ORE | /* Out of Range Error */
|
|
ISR_IRE | /* In Range Error */
|
|
ISR_SE0 | /* Signal Quality Error 0 (SQE) */
|
|
ISR_TE0 | /* Transmit Error 0 */
|
|
ISR_MOS | /* MMA Operation Succeeded */
|
|
ISR_MOF); /* MMA Operation Failed */
|
|
|
|
/*
|
|
* Enable the transmit and receive channel on the EMAC.
|
|
*/
|
|
EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
|
|
|
|
/*
|
|
* Start the one second MII clock.
|
|
*/
|
|
callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
|
|
|
|
/*
|
|
* ... all done!
|
|
*/
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
out:
|
|
if (error) {
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
aprint_error_ifnet(ifp, "interface not running\n");
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
emac_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct emac_softc *sc = ifp->if_softc;
|
|
struct emac_txsoft *txs;
|
|
int i;
|
|
|
|
/* Stop the one second clock. */
|
|
callout_stop(&sc->sc_callout);
|
|
|
|
/* Down the MII */
|
|
mii_down(&sc->sc_mii);
|
|
|
|
/* Disable interrupts. */
|
|
EMAC_WRITE(sc, EMAC_ISER, 0);
|
|
|
|
/* Disable the receive and transmit channels. */
|
|
mal_stop(sc->sc_instance);
|
|
|
|
/* Disable the transmit enable and receive MACs. */
|
|
EMAC_WRITE(sc, EMAC_MR0,
|
|
EMAC_READ(sc, EMAC_MR0) & ~(MR0_TXE | MR0_RXE));
|
|
|
|
/* Release any queued transmit buffers. */
|
|
for (i = 0; i < EMAC_TXQUEUELEN; i++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
if (txs->txs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
}
|
|
|
|
if (disable)
|
|
emac_rxdrain(sc);
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
static void
|
|
emac_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct emac_softc *sc = ifp->if_softc;
|
|
|
|
/*
|
|
* Since we're not interrupting every packet, sweep
|
|
* up before we report an error.
|
|
*/
|
|
emac_txreap(sc);
|
|
|
|
if (sc->sc_txfree != EMAC_NTXDESC) {
|
|
aprint_error_ifnet(ifp,
|
|
"device timeout (txfree %d txsfree %d txnext %d)\n",
|
|
sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
|
|
ifp->if_oerrors++;
|
|
|
|
/* Reset the interface. */
|
|
(void)emac_init(ifp);
|
|
} else if (ifp->if_flags & IFF_DEBUG)
|
|
aprint_error_ifnet(ifp, "recovered from device timeout\n");
|
|
|
|
/* try to get more packets going */
|
|
emac_start(ifp);
|
|
}
|
|
|
|
static int
|
|
emac_add_rxbuf(struct emac_softc *sc, int idx)
|
|
{
|
|
struct emac_rxsoft *rxs = &sc->sc_rxsoft[idx];
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return ENOBUFS;
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
if (rxs->rxs_mbuf != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
|
|
rxs->rxs_mbuf = m;
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
|
|
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't load rx DMA map %d, error = %d\n", idx, error);
|
|
panic("emac_add_rxbuf"); /* XXX */
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
|
|
EMAC_INIT_RXDESC(sc, idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
emac_rxdrain(struct emac_softc *sc)
|
|
{
|
|
struct emac_rxsoft *rxs;
|
|
int i;
|
|
|
|
for (i = 0; i < EMAC_NRXDESC; i++) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
if (rxs->rxs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
|
|
m_freem(rxs->rxs_mbuf);
|
|
rxs->rxs_mbuf = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
emac_set_filter(struct emac_softc *sc)
|
|
{
|
|
struct ether_multistep step;
|
|
struct ether_multi *enm;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
uint32_t rmr, crc, mask, tmp, reg, gaht[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
int regs, cnt = 0, i;
|
|
|
|
if (sc->sc_htsize == 256) {
|
|
reg = EMAC_GAHT256(0);
|
|
regs = 8;
|
|
} else {
|
|
reg = EMAC_GAHT64(0);
|
|
regs = 4;
|
|
}
|
|
mask = (1ULL << (sc->sc_htsize / regs)) - 1;
|
|
|
|
rmr = EMAC_READ(sc, EMAC_RMR);
|
|
rmr &= ~(RMR_PMME | RMR_MAE);
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
|
|
ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo,
|
|
enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
gaht[0] = gaht[1] = gaht[2] = gaht[3] =
|
|
gaht[4] = gaht[5] = gaht[6] = gaht[7] = mask;
|
|
break;
|
|
}
|
|
|
|
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
|
|
if (sc->sc_htsize == 256)
|
|
EMAC_SET_FILTER256(gaht, crc);
|
|
else
|
|
EMAC_SET_FILTER(gaht, crc);
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
cnt++;
|
|
}
|
|
|
|
for (i = 1, tmp = gaht[0]; i < regs; i++)
|
|
tmp &= gaht[i];
|
|
if (tmp == mask) {
|
|
/* All categories are true. */
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
rmr |= RMR_PMME;
|
|
} else if (cnt != 0) {
|
|
/* Some categories are true. */
|
|
for (i = 0; i < regs; i++)
|
|
EMAC_WRITE(sc, reg + (i << 2), gaht[i]);
|
|
rmr |= RMR_MAE;
|
|
}
|
|
EMAC_WRITE(sc, EMAC_RMR, rmr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reap completed Tx descriptors.
|
|
*/
|
|
static int
|
|
emac_txreap(struct emac_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct emac_txsoft *txs;
|
|
int handled, i;
|
|
uint32_t txstat;
|
|
|
|
EMAC_EVCNT_INCR(&sc->sc_ev_txreap);
|
|
handled = 0;
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/*
|
|
* Go through our Tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
for (i = sc->sc_txsdirty; sc->sc_txsfree != EMAC_TXQUEUELEN;
|
|
i = EMAC_NEXTTXS(i), sc->sc_txsfree++) {
|
|
txs = &sc->sc_txsoft[i];
|
|
|
|
EMAC_CDTXSYNC(sc, txs->txs_lastdesc,
|
|
txs->txs_dmamap->dm_nsegs,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
txstat = sc->sc_txdescs[txs->txs_lastdesc].md_stat_ctrl;
|
|
if (txstat & MAL_TX_READY)
|
|
break;
|
|
|
|
handled = 1;
|
|
|
|
/*
|
|
* Check for errors and collisions.
|
|
*/
|
|
if (txstat & (EMAC_TXS_UR | EMAC_TXS_ED))
|
|
ifp->if_oerrors++;
|
|
|
|
#ifdef EMAC_EVENT_COUNTERS
|
|
if (txstat & EMAC_TXS_UR)
|
|
EMAC_EVCNT_INCR(&sc->sc_ev_tu);
|
|
#endif /* EMAC_EVENT_COUNTERS */
|
|
|
|
if (txstat &
|
|
(EMAC_TXS_EC | EMAC_TXS_MC | EMAC_TXS_SC | EMAC_TXS_LC)) {
|
|
if (txstat & EMAC_TXS_EC)
|
|
ifp->if_collisions += 16;
|
|
else if (txstat & EMAC_TXS_MC)
|
|
ifp->if_collisions += 2; /* XXX? */
|
|
else if (txstat & EMAC_TXS_SC)
|
|
ifp->if_collisions++;
|
|
if (txstat & EMAC_TXS_LC)
|
|
ifp->if_collisions++;
|
|
} else
|
|
ifp->if_opackets++;
|
|
|
|
if (ifp->if_flags & IFF_DEBUG) {
|
|
if (txstat & EMAC_TXS_ED)
|
|
aprint_error_ifnet(ifp, "excessive deferral\n");
|
|
if (txstat & EMAC_TXS_EC)
|
|
aprint_error_ifnet(ifp,
|
|
"excessive collisions\n");
|
|
}
|
|
|
|
sc->sc_txfree += txs->txs_ndesc;
|
|
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
|
|
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
|
|
/* Update the dirty transmit buffer pointer. */
|
|
sc->sc_txsdirty = i;
|
|
|
|
/*
|
|
* If there are no more pending transmissions, cancel the watchdog
|
|
* timer.
|
|
*/
|
|
if (sc->sc_txsfree == EMAC_TXQUEUELEN)
|
|
ifp->if_timer = 0;
|
|
|
|
return handled;
|
|
}
|
|
|
|
|
|
/*
|
|
* Reset functions
|
|
*/
|
|
|
|
static void
|
|
emac_soft_reset(struct emac_softc *sc)
|
|
{
|
|
uint32_t sdr;
|
|
int t = 0;
|
|
|
|
/*
|
|
* The PHY must provide a TX Clk in order perform a soft reset the
|
|
* EMAC. If none is present, select the internal clock,
|
|
* SDR0_MFR[E0CS,E1CS]. After the soft reset, select the external
|
|
* clock.
|
|
*/
|
|
|
|
sdr = mfsdr(DCR_SDR0_MFR);
|
|
sdr |= SDR0_MFR_ECS(sc->sc_instance);
|
|
mtsdr(DCR_SDR0_MFR, sdr);
|
|
|
|
EMAC_WRITE(sc, EMAC_MR0, MR0_SRST);
|
|
|
|
sdr = mfsdr(DCR_SDR0_MFR);
|
|
sdr &= ~SDR0_MFR_ECS(sc->sc_instance);
|
|
mtsdr(DCR_SDR0_MFR, sdr);
|
|
|
|
delay(5);
|
|
|
|
/* wait finish */
|
|
while (EMAC_READ(sc, EMAC_MR0) & MR0_SRST) {
|
|
if (++t == 1000000 /* 1sec XXXXX */) {
|
|
aprint_error_dev(sc->sc_dev, "Soft Reset failed\n");
|
|
return;
|
|
}
|
|
delay(1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
emac_smart_reset(struct emac_softc *sc)
|
|
{
|
|
uint32_t mr0;
|
|
int t = 0;
|
|
|
|
mr0 = EMAC_READ(sc, EMAC_MR0);
|
|
if (mr0 & (MR0_TXE | MR0_RXE)) {
|
|
mr0 &= ~(MR0_TXE | MR0_RXE);
|
|
EMAC_WRITE(sc, EMAC_MR0, mr0);
|
|
|
|
/* wait idel state */
|
|
while ((EMAC_READ(sc, EMAC_MR0) & (MR0_TXI | MR0_RXI)) !=
|
|
(MR0_TXI | MR0_RXI)) {
|
|
if (++t == 1000000 /* 1sec XXXXX */) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"Smart Reset failed\n");
|
|
return;
|
|
}
|
|
delay(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* MII related functions
|
|
*/
|
|
|
|
static int
|
|
emac_mii_readreg(device_t self, int phy, int reg)
|
|
{
|
|
struct emac_softc *sc = device_private(self);
|
|
uint32_t sta_reg;
|
|
|
|
if (sc->sc_rmii_enable)
|
|
sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
|
|
|
|
/* wait for PHY data transfer to complete */
|
|
if (emac_mii_wait(sc))
|
|
goto fail;
|
|
|
|
sta_reg =
|
|
sc->sc_stacr_read |
|
|
(reg << STACR_PRA_SHIFT) |
|
|
(phy << STACR_PCDA_SHIFT) |
|
|
sc->sc_stacr_bits;
|
|
EMAC_WRITE(sc, EMAC_STACR, sta_reg);
|
|
|
|
if (emac_mii_wait(sc))
|
|
goto fail;
|
|
sta_reg = EMAC_READ(sc, EMAC_STACR);
|
|
|
|
if (sc->sc_rmii_disable)
|
|
sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
|
|
|
|
if (sta_reg & STACR_PHYE)
|
|
return 0;
|
|
return sta_reg >> STACR_PHYD_SHIFT;
|
|
|
|
fail:
|
|
if (sc->sc_rmii_disable)
|
|
sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
emac_mii_writereg(device_t self, int phy, int reg, int val)
|
|
{
|
|
struct emac_softc *sc = device_private(self);
|
|
uint32_t sta_reg;
|
|
|
|
if (sc->sc_rmii_enable)
|
|
sc->sc_rmii_enable(device_parent(self), sc->sc_instance);
|
|
|
|
/* wait for PHY data transfer to complete */
|
|
if (emac_mii_wait(sc))
|
|
goto out;
|
|
|
|
sta_reg =
|
|
(val << STACR_PHYD_SHIFT) |
|
|
sc->sc_stacr_write |
|
|
(reg << STACR_PRA_SHIFT) |
|
|
(phy << STACR_PCDA_SHIFT) |
|
|
sc->sc_stacr_bits;
|
|
EMAC_WRITE(sc, EMAC_STACR, sta_reg);
|
|
|
|
if (emac_mii_wait(sc))
|
|
goto out;
|
|
if (EMAC_READ(sc, EMAC_STACR) & STACR_PHYE)
|
|
aprint_error_dev(sc->sc_dev, "MII PHY Error\n");
|
|
|
|
out:
|
|
if (sc->sc_rmii_disable)
|
|
sc->sc_rmii_disable(device_parent(self), sc->sc_instance);
|
|
}
|
|
|
|
static void
|
|
emac_mii_statchg(struct ifnet *ifp)
|
|
{
|
|
struct emac_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
|
|
/*
|
|
* MR1 can only be written immediately after a reset...
|
|
*/
|
|
emac_smart_reset(sc);
|
|
|
|
sc->sc_mr1 &= ~(MR1_FDE | MR1_ILE | MR1_EIFC | MR1_MF_MASK | MR1_IST);
|
|
if (mii->mii_media_active & IFM_FDX)
|
|
sc->sc_mr1 |= (MR1_FDE | MR1_EIFC | MR1_IST);
|
|
if (mii->mii_media_active & IFM_FLOW)
|
|
sc->sc_mr1 |= MR1_EIFC;
|
|
if (mii->mii_media_active & IFM_LOOP)
|
|
sc->sc_mr1 |= MR1_ILE;
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_1000_T:
|
|
sc->sc_mr1 |= (MR1_MF_1000MBS | MR1_IST);
|
|
break;
|
|
|
|
case IFM_100_TX:
|
|
sc->sc_mr1 |= (MR1_MF_100MBS | MR1_IST);
|
|
break;
|
|
|
|
case IFM_10_T:
|
|
sc->sc_mr1 |= MR1_MF_10MBS;
|
|
break;
|
|
|
|
case IFM_NONE:
|
|
break;
|
|
|
|
default:
|
|
aprint_error_dev(sc->sc_dev, "unknown sub-type %d\n",
|
|
IFM_SUBTYPE(mii->mii_media_active));
|
|
break;
|
|
}
|
|
if (sc->sc_rmii_speed)
|
|
sc->sc_rmii_speed(device_parent(sc->sc_dev), sc->sc_instance,
|
|
IFM_SUBTYPE(mii->mii_media_active));
|
|
|
|
EMAC_WRITE(sc, EMAC_MR1, sc->sc_mr1);
|
|
|
|
/* Enable TX and RX if already RUNNING */
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
EMAC_WRITE(sc, EMAC_MR0, MR0_TXE | MR0_RXE);
|
|
}
|
|
|
|
static uint32_t
|
|
emac_mii_wait(struct emac_softc *sc)
|
|
{
|
|
int i;
|
|
uint32_t oc;
|
|
|
|
/* wait for PHY data transfer to complete */
|
|
i = 0;
|
|
oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
|
|
while ((oc == STACR_OC) != sc->sc_stacr_completed) {
|
|
delay(7);
|
|
if (i++ > 5) {
|
|
aprint_error_dev(sc->sc_dev, "MII timed out\n");
|
|
return -1;
|
|
}
|
|
oc = EMAC_READ(sc, EMAC_STACR) & STACR_OC;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
emac_mii_tick(void *arg)
|
|
{
|
|
struct emac_softc *sc = arg;
|
|
int s;
|
|
|
|
if (!device_is_active(sc->sc_dev))
|
|
return;
|
|
|
|
s = splnet();
|
|
mii_tick(&sc->sc_mii);
|
|
splx(s);
|
|
|
|
callout_reset(&sc->sc_callout, hz, emac_mii_tick, sc);
|
|
}
|
|
|
|
int
|
|
emac_txeob_intr(void *arg)
|
|
{
|
|
struct emac_softc *sc = arg;
|
|
int handled = 0;
|
|
|
|
EMAC_EVCNT_INCR(&sc->sc_ev_txintr);
|
|
handled |= emac_txreap(sc);
|
|
|
|
/* try to get more packets going */
|
|
emac_start(&sc->sc_ethercom.ec_if);
|
|
|
|
return handled;
|
|
}
|
|
|
|
int
|
|
emac_rxeob_intr(void *arg)
|
|
{
|
|
struct emac_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct emac_rxsoft *rxs;
|
|
struct mbuf *m;
|
|
uint32_t rxstat;
|
|
int i, len;
|
|
|
|
EMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
|
|
|
|
for (i = sc->sc_rxptr; ; i = EMAC_NEXTRX(i)) {
|
|
rxs = &sc->sc_rxsoft[i];
|
|
|
|
EMAC_CDRXSYNC(sc, i,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
rxstat = sc->sc_rxdescs[i].md_stat_ctrl;
|
|
|
|
if (rxstat & MAL_RX_EMPTY) {
|
|
/*
|
|
* We have processed all of the receive buffers.
|
|
*/
|
|
/* Flush current empty descriptor */
|
|
EMAC_CDRXSYNC(sc, i,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If an error occurred, update stats, clear the status
|
|
* word, and leave the packet buffer in place. It will
|
|
* simply be reused the next time the ring comes around.
|
|
*/
|
|
if (rxstat & (EMAC_RXS_OE | EMAC_RXS_BP | EMAC_RXS_SE |
|
|
EMAC_RXS_AE | EMAC_RXS_BFCS | EMAC_RXS_PTL | EMAC_RXS_ORE |
|
|
EMAC_RXS_IRE)) {
|
|
#define PRINTERR(bit, str) \
|
|
if (rxstat & (bit)) \
|
|
aprint_error_ifnet(ifp, \
|
|
"receive error: %s\n", str)
|
|
ifp->if_ierrors++;
|
|
PRINTERR(EMAC_RXS_OE, "overrun error");
|
|
PRINTERR(EMAC_RXS_BP, "bad packet");
|
|
PRINTERR(EMAC_RXS_RP, "runt packet");
|
|
PRINTERR(EMAC_RXS_SE, "short event");
|
|
PRINTERR(EMAC_RXS_AE, "alignment error");
|
|
PRINTERR(EMAC_RXS_BFCS, "bad FCS");
|
|
PRINTERR(EMAC_RXS_PTL, "packet too long");
|
|
PRINTERR(EMAC_RXS_ORE, "out of range error");
|
|
PRINTERR(EMAC_RXS_IRE, "in range error");
|
|
#undef PRINTERR
|
|
EMAC_INIT_RXDESC(sc, i);
|
|
continue;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
|
|
/*
|
|
* No errors; receive the packet. Note, the 405GP emac
|
|
* includes the CRC with every packet.
|
|
*/
|
|
len = sc->sc_rxdescs[i].md_data_len - ETHER_CRC_LEN;
|
|
|
|
/*
|
|
* If the packet is small enough to fit in a
|
|
* single header mbuf, allocate one and copy
|
|
* the data into it. This greatly reduces
|
|
* memory consumption when we receive lots
|
|
* of small packets.
|
|
*
|
|
* Otherwise, we add a new buffer to the receive
|
|
* chain. If this fails, we drop the packet and
|
|
* recycle the old buffer.
|
|
*/
|
|
if (emac_copy_small != 0 && len <= MHLEN) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
goto dropit;
|
|
memcpy(mtod(m, void *),
|
|
mtod(rxs->rxs_mbuf, void *), len);
|
|
EMAC_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
} else {
|
|
m = rxs->rxs_mbuf;
|
|
if (emac_add_rxbuf(sc, i) != 0) {
|
|
dropit:
|
|
ifp->if_ierrors++;
|
|
EMAC_INIT_RXDESC(sc, i);
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
rxs->rxs_dmamap, 0,
|
|
rxs->rxs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
/*
|
|
* Pass this up to any BPF listeners, but only
|
|
* pass it up the stack if it's for us.
|
|
*/
|
|
bpf_mtap(ifp, m);
|
|
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
/* Update the receive pointer. */
|
|
sc->sc_rxptr = i;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
emac_txde_intr(void *arg)
|
|
{
|
|
struct emac_softc *sc = arg;
|
|
|
|
EMAC_EVCNT_INCR(&sc->sc_ev_txde);
|
|
aprint_error_dev(sc->sc_dev, "emac_txde_intr\n");
|
|
return 1;
|
|
}
|
|
|
|
int
|
|
emac_rxde_intr(void *arg)
|
|
{
|
|
struct emac_softc *sc = arg;
|
|
int i;
|
|
|
|
EMAC_EVCNT_INCR(&sc->sc_ev_rxde);
|
|
aprint_error_dev(sc->sc_dev, "emac_rxde_intr\n");
|
|
/*
|
|
* XXX!
|
|
* This is a bit drastic; we just drop all descriptors that aren't
|
|
* "clean". We should probably send any that are up the stack.
|
|
*/
|
|
for (i = 0; i < EMAC_NRXDESC; i++) {
|
|
EMAC_CDRXSYNC(sc, i,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
if (sc->sc_rxdescs[i].md_data_len != MCLBYTES)
|
|
EMAC_INIT_RXDESC(sc, i);
|
|
}
|
|
|
|
return 1;
|
|
}
|