mirror of
https://github.com/Stichting-MINIX-Research-Foundation/netbsd.git
synced 2025-08-07 13:09:33 -04:00
1247 lines
27 KiB
C
1247 lines
27 KiB
C
/* $NetBSD: vm.c,v 1.167 2015/06/02 14:07:48 pooka Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2007-2011 Antti Kantee. All Rights Reserved.
|
|
*
|
|
* Development of this software was supported by
|
|
* The Finnish Cultural Foundation and the Research Foundation of
|
|
* The Helsinki University of Technology.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Virtual memory emulation routines.
|
|
*/
|
|
|
|
/*
|
|
* XXX: we abuse pg->uanon for the virtual address of the storage
|
|
* for each page. phys_addr would fit the job description better,
|
|
* except that it will create unnecessary lossage on some platforms
|
|
* due to not being a pointer type.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: vm.c,v 1.167 2015/06/02 14:07:48 pooka Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/vmem.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/null.h>
|
|
#include <sys/vnode.h>
|
|
|
|
#include <machine/pmap.h>
|
|
|
|
#include <rump/rumpuser.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
#include <uvm/uvm_ddb.h>
|
|
#include <uvm/uvm_pdpolicy.h>
|
|
#include <uvm/uvm_prot.h>
|
|
#include <uvm/uvm_readahead.h>
|
|
#include <uvm/uvm_device.h>
|
|
|
|
#include "rump_private.h"
|
|
#include "rump_vfs_private.h"
|
|
|
|
kmutex_t uvm_pageqlock; /* non-free page lock */
|
|
kmutex_t uvm_fpageqlock; /* free page lock, non-gpl license */
|
|
kmutex_t uvm_swap_data_lock;
|
|
|
|
struct uvmexp uvmexp;
|
|
struct uvm uvm;
|
|
|
|
#ifdef __uvmexp_pagesize
|
|
const int * const uvmexp_pagesize = &uvmexp.pagesize;
|
|
const int * const uvmexp_pagemask = &uvmexp.pagemask;
|
|
const int * const uvmexp_pageshift = &uvmexp.pageshift;
|
|
#endif
|
|
|
|
static struct vm_map kernel_map_store;
|
|
struct vm_map *kernel_map = &kernel_map_store;
|
|
|
|
static struct vm_map module_map_store;
|
|
extern struct vm_map *module_map;
|
|
|
|
static struct pmap pmap_kernel;
|
|
struct pmap rump_pmap_local;
|
|
struct pmap *const kernel_pmap_ptr = &pmap_kernel;
|
|
|
|
vmem_t *kmem_arena;
|
|
vmem_t *kmem_va_arena;
|
|
|
|
static unsigned int pdaemon_waiters;
|
|
static kmutex_t pdaemonmtx;
|
|
static kcondvar_t pdaemoncv, oomwait;
|
|
|
|
/* all local non-proc0 processes share this vmspace */
|
|
struct vmspace *rump_vmspace_local;
|
|
|
|
unsigned long rump_physmemlimit = RUMPMEM_UNLIMITED;
|
|
static unsigned long pdlimit = RUMPMEM_UNLIMITED; /* page daemon memlimit */
|
|
static unsigned long curphysmem;
|
|
static unsigned long dddlim; /* 90% of memory limit used */
|
|
#define NEED_PAGEDAEMON() \
|
|
(rump_physmemlimit != RUMPMEM_UNLIMITED && curphysmem > dddlim)
|
|
#define PDRESERVE (2*MAXPHYS)
|
|
|
|
/*
|
|
* Try to free two pages worth of pages from objects.
|
|
* If this succesfully frees a full page cache page, we'll
|
|
* free the released page plus PAGE_SIZE/sizeof(vm_page).
|
|
*/
|
|
#define PAGEDAEMON_OBJCHUNK (2*PAGE_SIZE / sizeof(struct vm_page))
|
|
|
|
/*
|
|
* Keep a list of least recently used pages. Since the only way a
|
|
* rump kernel can "access" a page is via lookup, we put the page
|
|
* at the back of queue every time a lookup for it is done. If the
|
|
* page is in front of this global queue and we're short of memory,
|
|
* it's a candidate for pageout.
|
|
*/
|
|
static struct pglist vmpage_lruqueue;
|
|
static unsigned vmpage_onqueue;
|
|
|
|
static int
|
|
pg_compare_key(void *ctx, const void *n, const void *key)
|
|
{
|
|
voff_t a = ((const struct vm_page *)n)->offset;
|
|
voff_t b = *(const voff_t *)key;
|
|
|
|
if (a < b)
|
|
return -1;
|
|
else if (a > b)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pg_compare_nodes(void *ctx, const void *n1, const void *n2)
|
|
{
|
|
|
|
return pg_compare_key(ctx, n1, &((const struct vm_page *)n2)->offset);
|
|
}
|
|
|
|
const rb_tree_ops_t uvm_page_tree_ops = {
|
|
.rbto_compare_nodes = pg_compare_nodes,
|
|
.rbto_compare_key = pg_compare_key,
|
|
.rbto_node_offset = offsetof(struct vm_page, rb_node),
|
|
.rbto_context = NULL
|
|
};
|
|
|
|
/*
|
|
* vm pages
|
|
*/
|
|
|
|
static int
|
|
pgctor(void *arg, void *obj, int flags)
|
|
{
|
|
struct vm_page *pg = obj;
|
|
|
|
memset(pg, 0, sizeof(*pg));
|
|
pg->uanon = rump_hypermalloc(PAGE_SIZE, PAGE_SIZE,
|
|
(flags & PR_WAITOK) == PR_WAITOK, "pgalloc");
|
|
return pg->uanon == NULL;
|
|
}
|
|
|
|
static void
|
|
pgdtor(void *arg, void *obj)
|
|
{
|
|
struct vm_page *pg = obj;
|
|
|
|
rump_hyperfree(pg->uanon, PAGE_SIZE);
|
|
}
|
|
|
|
static struct pool_cache pagecache;
|
|
|
|
/*
|
|
* Called with the object locked. We don't support anons.
|
|
*/
|
|
struct vm_page *
|
|
uvm_pagealloc_strat(struct uvm_object *uobj, voff_t off, struct vm_anon *anon,
|
|
int flags, int strat, int free_list)
|
|
{
|
|
struct vm_page *pg;
|
|
|
|
KASSERT(uobj && mutex_owned(uobj->vmobjlock));
|
|
KASSERT(anon == NULL);
|
|
|
|
pg = pool_cache_get(&pagecache, PR_NOWAIT);
|
|
if (__predict_false(pg == NULL)) {
|
|
return NULL;
|
|
}
|
|
|
|
pg->offset = off;
|
|
pg->uobject = uobj;
|
|
|
|
pg->flags = PG_CLEAN|PG_BUSY|PG_FAKE;
|
|
if (flags & UVM_PGA_ZERO) {
|
|
uvm_pagezero(pg);
|
|
}
|
|
|
|
TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
|
|
(void)rb_tree_insert_node(&uobj->rb_tree, pg);
|
|
|
|
/*
|
|
* Don't put anons on the LRU page queue. We can't flush them
|
|
* (there's no concept of swap in a rump kernel), so no reason
|
|
* to bother with them.
|
|
*/
|
|
if (!UVM_OBJ_IS_AOBJ(uobj)) {
|
|
atomic_inc_uint(&vmpage_onqueue);
|
|
mutex_enter(&uvm_pageqlock);
|
|
TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
|
|
mutex_exit(&uvm_pageqlock);
|
|
}
|
|
|
|
uobj->uo_npages++;
|
|
|
|
return pg;
|
|
}
|
|
|
|
/*
|
|
* Release a page.
|
|
*
|
|
* Called with the vm object locked.
|
|
*/
|
|
void
|
|
uvm_pagefree(struct vm_page *pg)
|
|
{
|
|
struct uvm_object *uobj = pg->uobject;
|
|
|
|
KASSERT(mutex_owned(&uvm_pageqlock));
|
|
KASSERT(mutex_owned(uobj->vmobjlock));
|
|
|
|
if (pg->flags & PG_WANTED)
|
|
wakeup(pg);
|
|
|
|
TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
|
|
|
|
uobj->uo_npages--;
|
|
rb_tree_remove_node(&uobj->rb_tree, pg);
|
|
|
|
if (!UVM_OBJ_IS_AOBJ(uobj)) {
|
|
TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
|
|
atomic_dec_uint(&vmpage_onqueue);
|
|
}
|
|
|
|
pool_cache_put(&pagecache, pg);
|
|
}
|
|
|
|
void
|
|
uvm_pagezero(struct vm_page *pg)
|
|
{
|
|
|
|
pg->flags &= ~PG_CLEAN;
|
|
memset((void *)pg->uanon, 0, PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* uvm_page_locked_p: return true if object associated with page is
|
|
* locked. this is a weak check for runtime assertions only.
|
|
*/
|
|
|
|
bool
|
|
uvm_page_locked_p(struct vm_page *pg)
|
|
{
|
|
|
|
return mutex_owned(pg->uobject->vmobjlock);
|
|
}
|
|
|
|
/*
|
|
* Misc routines
|
|
*/
|
|
|
|
static kmutex_t pagermtx;
|
|
|
|
void
|
|
uvm_init(void)
|
|
{
|
|
char buf[64];
|
|
|
|
if (rumpuser_getparam("RUMP_MEMLIMIT", buf, sizeof(buf)) == 0) {
|
|
unsigned long tmp;
|
|
char *ep;
|
|
int mult;
|
|
|
|
tmp = strtoul(buf, &ep, 10);
|
|
if (strlen(ep) > 1)
|
|
panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
|
|
|
|
/* mini-dehumanize-number */
|
|
mult = 1;
|
|
switch (*ep) {
|
|
case 'k':
|
|
mult = 1024;
|
|
break;
|
|
case 'm':
|
|
mult = 1024*1024;
|
|
break;
|
|
case 'g':
|
|
mult = 1024*1024*1024;
|
|
break;
|
|
case 0:
|
|
break;
|
|
default:
|
|
panic("uvm_init: invalid RUMP_MEMLIMIT: %s", buf);
|
|
}
|
|
rump_physmemlimit = tmp * mult;
|
|
|
|
if (rump_physmemlimit / mult != tmp)
|
|
panic("uvm_init: RUMP_MEMLIMIT overflow: %s", buf);
|
|
|
|
/* reserve some memory for the pager */
|
|
if (rump_physmemlimit <= PDRESERVE)
|
|
panic("uvm_init: system reserves %d bytes of mem, "
|
|
"only %lu bytes given",
|
|
PDRESERVE, rump_physmemlimit);
|
|
pdlimit = rump_physmemlimit;
|
|
rump_physmemlimit -= PDRESERVE;
|
|
|
|
if (pdlimit < 1024*1024)
|
|
printf("uvm_init: WARNING: <1MB RAM limit, "
|
|
"hope you know what you're doing\n");
|
|
|
|
#define HUMANIZE_BYTES 9
|
|
CTASSERT(sizeof(buf) >= HUMANIZE_BYTES);
|
|
format_bytes(buf, HUMANIZE_BYTES, rump_physmemlimit);
|
|
#undef HUMANIZE_BYTES
|
|
dddlim = 9 * (rump_physmemlimit / 10);
|
|
} else {
|
|
strlcpy(buf, "unlimited (host limit)", sizeof(buf));
|
|
}
|
|
aprint_verbose("total memory = %s\n", buf);
|
|
|
|
TAILQ_INIT(&vmpage_lruqueue);
|
|
|
|
if (rump_physmemlimit == RUMPMEM_UNLIMITED) {
|
|
uvmexp.npages = physmem;
|
|
} else {
|
|
uvmexp.npages = pdlimit >> PAGE_SHIFT;
|
|
uvmexp.reserve_pagedaemon = PDRESERVE >> PAGE_SHIFT;
|
|
uvmexp.freetarg = (rump_physmemlimit-dddlim) >> PAGE_SHIFT;
|
|
}
|
|
/*
|
|
* uvmexp.free is not used internally or updated. The reason is
|
|
* that the memory hypercall allocator is allowed to allocate
|
|
* non-page sized chunks. We use a byte count in curphysmem
|
|
* instead.
|
|
*/
|
|
uvmexp.free = uvmexp.npages;
|
|
|
|
#ifndef __uvmexp_pagesize
|
|
uvmexp.pagesize = PAGE_SIZE;
|
|
uvmexp.pagemask = PAGE_MASK;
|
|
uvmexp.pageshift = PAGE_SHIFT;
|
|
#else
|
|
#define FAKE_PAGE_SHIFT 12
|
|
uvmexp.pageshift = FAKE_PAGE_SHIFT;
|
|
uvmexp.pagesize = 1<<FAKE_PAGE_SHIFT;
|
|
uvmexp.pagemask = (1<<FAKE_PAGE_SHIFT)-1;
|
|
#undef FAKE_PAGE_SHIFT
|
|
#endif
|
|
|
|
mutex_init(&pagermtx, MUTEX_DEFAULT, IPL_NONE);
|
|
mutex_init(&uvm_pageqlock, MUTEX_DEFAULT, IPL_NONE);
|
|
mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
|
|
/* just to appease linkage */
|
|
mutex_init(&uvm_fpageqlock, MUTEX_SPIN, IPL_VM);
|
|
|
|
mutex_init(&pdaemonmtx, MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&pdaemoncv, "pdaemon");
|
|
cv_init(&oomwait, "oomwait");
|
|
|
|
module_map = &module_map_store;
|
|
|
|
kernel_map->pmap = pmap_kernel();
|
|
|
|
pool_subsystem_init();
|
|
|
|
kmem_arena = vmem_create("kmem", 0, 1024*1024, PAGE_SIZE,
|
|
NULL, NULL, NULL,
|
|
0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
|
|
|
|
vmem_subsystem_init(kmem_arena);
|
|
|
|
kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
|
|
vmem_alloc, vmem_free, kmem_arena,
|
|
8 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
|
|
|
|
pool_cache_bootstrap(&pagecache, sizeof(struct vm_page), 0, 0, 0,
|
|
"page$", NULL, IPL_NONE, pgctor, pgdtor, NULL);
|
|
|
|
/* create vmspace used by local clients */
|
|
rump_vmspace_local = kmem_zalloc(sizeof(*rump_vmspace_local), KM_SLEEP);
|
|
uvmspace_init(rump_vmspace_local, &rump_pmap_local, 0, 0, false);
|
|
}
|
|
|
|
void
|
|
uvmspace_init(struct vmspace *vm, struct pmap *pmap, vaddr_t vmin, vaddr_t vmax,
|
|
bool topdown)
|
|
{
|
|
|
|
vm->vm_map.pmap = pmap;
|
|
vm->vm_refcnt = 1;
|
|
}
|
|
|
|
void
|
|
uvm_pagewire(struct vm_page *pg)
|
|
{
|
|
|
|
/* nada */
|
|
}
|
|
|
|
void
|
|
uvm_pageunwire(struct vm_page *pg)
|
|
{
|
|
|
|
/* nada */
|
|
}
|
|
|
|
/* where's your schmonz now? */
|
|
#define PUNLIMIT(a) \
|
|
p->p_rlimit[a].rlim_cur = p->p_rlimit[a].rlim_max = RLIM_INFINITY;
|
|
void
|
|
uvm_init_limits(struct proc *p)
|
|
{
|
|
|
|
#ifndef DFLSSIZ
|
|
#define DFLSSIZ (16*1024*1024)
|
|
#endif
|
|
p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
|
|
p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
|
|
PUNLIMIT(RLIMIT_DATA);
|
|
PUNLIMIT(RLIMIT_RSS);
|
|
PUNLIMIT(RLIMIT_AS);
|
|
/* nice, cascade */
|
|
}
|
|
#undef PUNLIMIT
|
|
|
|
/*
|
|
* This satisfies the "disgusting mmap hack" used by proplib.
|
|
*/
|
|
int
|
|
uvm_mmap_anon(struct proc *p, void **addrp, size_t size)
|
|
{
|
|
int error;
|
|
|
|
/* no reason in particular, but cf. uvm_default_mapaddr() */
|
|
if (*addrp != NULL)
|
|
panic("uvm_mmap() variant unsupported");
|
|
|
|
if (RUMP_LOCALPROC_P(curproc)) {
|
|
error = rumpuser_anonmmap(NULL, size, 0, 0, addrp);
|
|
} else {
|
|
error = rump_sysproxy_anonmmap(RUMP_SPVM2CTL(p->p_vmspace),
|
|
size, addrp);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Stubs for things referenced from vfs_vnode.c but not used.
|
|
*/
|
|
const dev_t zerodev;
|
|
|
|
struct uvm_object *
|
|
udv_attach(dev_t device, vm_prot_t accessprot, voff_t off, vsize_t size)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
struct pagerinfo {
|
|
vaddr_t pgr_kva;
|
|
int pgr_npages;
|
|
struct vm_page **pgr_pgs;
|
|
bool pgr_read;
|
|
|
|
LIST_ENTRY(pagerinfo) pgr_entries;
|
|
};
|
|
static LIST_HEAD(, pagerinfo) pagerlist = LIST_HEAD_INITIALIZER(pagerlist);
|
|
|
|
/*
|
|
* Pager "map" in routine. Instead of mapping, we allocate memory
|
|
* and copy page contents there. The reason for copying instead of
|
|
* mapping is simple: we do not assume we are running on virtual
|
|
* memory. Even if we could emulate virtual memory in some envs
|
|
* such as userspace, copying is much faster than trying to awkardly
|
|
* cope with remapping (see "Design and Implementation" pp.95-98).
|
|
* The downside of the approach is that the pager requires MAXPHYS
|
|
* free memory to perform paging, but short of virtual memory or
|
|
* making the pager do I/O in page-sized chunks we cannot do much
|
|
* about that.
|
|
*/
|
|
vaddr_t
|
|
uvm_pagermapin(struct vm_page **pgs, int npages, int flags)
|
|
{
|
|
struct pagerinfo *pgri;
|
|
vaddr_t curkva;
|
|
int i;
|
|
|
|
/* allocate structures */
|
|
pgri = kmem_alloc(sizeof(*pgri), KM_SLEEP);
|
|
pgri->pgr_kva = (vaddr_t)kmem_alloc(npages * PAGE_SIZE, KM_SLEEP);
|
|
pgri->pgr_npages = npages;
|
|
pgri->pgr_pgs = kmem_alloc(sizeof(struct vm_page *) * npages, KM_SLEEP);
|
|
pgri->pgr_read = (flags & UVMPAGER_MAPIN_READ) != 0;
|
|
|
|
/* copy contents to "mapped" memory */
|
|
for (i = 0, curkva = pgri->pgr_kva;
|
|
i < npages;
|
|
i++, curkva += PAGE_SIZE) {
|
|
/*
|
|
* We need to copy the previous contents of the pages to
|
|
* the window even if we are reading from the
|
|
* device, since the device might not fill the contents of
|
|
* the full mapped range and we will end up corrupting
|
|
* data when we unmap the window.
|
|
*/
|
|
memcpy((void*)curkva, pgs[i]->uanon, PAGE_SIZE);
|
|
pgri->pgr_pgs[i] = pgs[i];
|
|
}
|
|
|
|
mutex_enter(&pagermtx);
|
|
LIST_INSERT_HEAD(&pagerlist, pgri, pgr_entries);
|
|
mutex_exit(&pagermtx);
|
|
|
|
return pgri->pgr_kva;
|
|
}
|
|
|
|
/*
|
|
* map out the pager window. return contents from VA to page storage
|
|
* and free structures.
|
|
*
|
|
* Note: does not currently support partial frees
|
|
*/
|
|
void
|
|
uvm_pagermapout(vaddr_t kva, int npages)
|
|
{
|
|
struct pagerinfo *pgri;
|
|
vaddr_t curkva;
|
|
int i;
|
|
|
|
mutex_enter(&pagermtx);
|
|
LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
|
|
if (pgri->pgr_kva == kva)
|
|
break;
|
|
}
|
|
KASSERT(pgri);
|
|
if (pgri->pgr_npages != npages)
|
|
panic("uvm_pagermapout: partial unmapping not supported");
|
|
LIST_REMOVE(pgri, pgr_entries);
|
|
mutex_exit(&pagermtx);
|
|
|
|
if (pgri->pgr_read) {
|
|
for (i = 0, curkva = pgri->pgr_kva;
|
|
i < pgri->pgr_npages;
|
|
i++, curkva += PAGE_SIZE) {
|
|
memcpy(pgri->pgr_pgs[i]->uanon,(void*)curkva,PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
kmem_free(pgri->pgr_pgs, npages * sizeof(struct vm_page *));
|
|
kmem_free((void*)pgri->pgr_kva, npages * PAGE_SIZE);
|
|
kmem_free(pgri, sizeof(*pgri));
|
|
}
|
|
|
|
/*
|
|
* convert va in pager window to page structure.
|
|
* XXX: how expensive is this (global lock, list traversal)?
|
|
*/
|
|
struct vm_page *
|
|
uvm_pageratop(vaddr_t va)
|
|
{
|
|
struct pagerinfo *pgri;
|
|
struct vm_page *pg = NULL;
|
|
int i;
|
|
|
|
mutex_enter(&pagermtx);
|
|
LIST_FOREACH(pgri, &pagerlist, pgr_entries) {
|
|
if (pgri->pgr_kva <= va
|
|
&& va < pgri->pgr_kva + pgri->pgr_npages*PAGE_SIZE)
|
|
break;
|
|
}
|
|
if (pgri) {
|
|
i = (va - pgri->pgr_kva) >> PAGE_SHIFT;
|
|
pg = pgri->pgr_pgs[i];
|
|
}
|
|
mutex_exit(&pagermtx);
|
|
|
|
return pg;
|
|
}
|
|
|
|
/*
|
|
* Called with the vm object locked.
|
|
*
|
|
* Put vnode object pages at the end of the access queue to indicate
|
|
* they have been recently accessed and should not be immediate
|
|
* candidates for pageout. Do not do this for lookups done by
|
|
* the pagedaemon to mimic pmap_kentered mappings which don't track
|
|
* access information.
|
|
*/
|
|
struct vm_page *
|
|
uvm_pagelookup(struct uvm_object *uobj, voff_t off)
|
|
{
|
|
struct vm_page *pg;
|
|
bool ispagedaemon = curlwp == uvm.pagedaemon_lwp;
|
|
|
|
pg = rb_tree_find_node(&uobj->rb_tree, &off);
|
|
if (pg && !UVM_OBJ_IS_AOBJ(pg->uobject) && !ispagedaemon) {
|
|
mutex_enter(&uvm_pageqlock);
|
|
TAILQ_REMOVE(&vmpage_lruqueue, pg, pageq.queue);
|
|
TAILQ_INSERT_TAIL(&vmpage_lruqueue, pg, pageq.queue);
|
|
mutex_exit(&uvm_pageqlock);
|
|
}
|
|
|
|
return pg;
|
|
}
|
|
|
|
void
|
|
uvm_page_unbusy(struct vm_page **pgs, int npgs)
|
|
{
|
|
struct vm_page *pg;
|
|
int i;
|
|
|
|
KASSERT(npgs > 0);
|
|
KASSERT(mutex_owned(pgs[0]->uobject->vmobjlock));
|
|
|
|
for (i = 0; i < npgs; i++) {
|
|
pg = pgs[i];
|
|
if (pg == NULL)
|
|
continue;
|
|
|
|
KASSERT(pg->flags & PG_BUSY);
|
|
if (pg->flags & PG_WANTED)
|
|
wakeup(pg);
|
|
if (pg->flags & PG_RELEASED)
|
|
uvm_pagefree(pg);
|
|
else
|
|
pg->flags &= ~(PG_WANTED|PG_BUSY);
|
|
}
|
|
}
|
|
|
|
void
|
|
uvm_estimatepageable(int *active, int *inactive)
|
|
{
|
|
|
|
/* XXX: guessing game */
|
|
*active = 1024;
|
|
*inactive = 1024;
|
|
}
|
|
|
|
bool
|
|
vm_map_starved_p(struct vm_map *map)
|
|
{
|
|
|
|
if (map->flags & VM_MAP_WANTVA)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
int
|
|
uvm_loan(struct vm_map *map, vaddr_t start, vsize_t len, void *v, int flags)
|
|
{
|
|
|
|
panic("%s: unimplemented", __func__);
|
|
}
|
|
|
|
void
|
|
uvm_unloan(void *v, int npages, int flags)
|
|
{
|
|
|
|
panic("%s: unimplemented", __func__);
|
|
}
|
|
|
|
int
|
|
uvm_loanuobjpages(struct uvm_object *uobj, voff_t pgoff, int orignpages,
|
|
struct vm_page **opp)
|
|
{
|
|
|
|
return EBUSY;
|
|
}
|
|
|
|
struct vm_page *
|
|
uvm_loanbreak(struct vm_page *pg)
|
|
{
|
|
|
|
panic("%s: unimplemented", __func__);
|
|
}
|
|
|
|
void
|
|
ubc_purge(struct uvm_object *uobj)
|
|
{
|
|
|
|
}
|
|
|
|
vaddr_t
|
|
uvm_default_mapaddr(struct proc *p, vaddr_t base, vsize_t sz)
|
|
{
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
uvm_map_protect(struct vm_map *map, vaddr_t start, vaddr_t end,
|
|
vm_prot_t prot, bool set_max)
|
|
{
|
|
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
/*
|
|
* UVM km
|
|
*/
|
|
|
|
vaddr_t
|
|
uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
|
|
{
|
|
void *rv, *desired = NULL;
|
|
int alignbit, error;
|
|
|
|
#ifdef __x86_64__
|
|
/*
|
|
* On amd64, allocate all module memory from the lowest 2GB.
|
|
* This is because NetBSD kernel modules are compiled
|
|
* with -mcmodel=kernel and reserve only 4 bytes for
|
|
* offsets. If we load code compiled with -mcmodel=kernel
|
|
* anywhere except the lowest or highest 2GB, it will not
|
|
* work. Since userspace does not have access to the highest
|
|
* 2GB, use the lowest 2GB.
|
|
*
|
|
* Note: this assumes the rump kernel resides in
|
|
* the lowest 2GB as well.
|
|
*
|
|
* Note2: yes, it's a quick hack, but since this the only
|
|
* place where we care about the map we're allocating from,
|
|
* just use a simple "if" instead of coming up with a fancy
|
|
* generic solution.
|
|
*/
|
|
if (map == module_map) {
|
|
desired = (void *)(0x80000000 - size);
|
|
}
|
|
#endif
|
|
|
|
if (__predict_false(map == module_map)) {
|
|
alignbit = 0;
|
|
if (align) {
|
|
alignbit = ffs(align)-1;
|
|
}
|
|
error = rumpuser_anonmmap(desired, size, alignbit,
|
|
flags & UVM_KMF_EXEC, &rv);
|
|
} else {
|
|
error = rumpuser_malloc(size, align, &rv);
|
|
}
|
|
|
|
if (error) {
|
|
if (flags & (UVM_KMF_CANFAIL | UVM_KMF_NOWAIT))
|
|
return 0;
|
|
else
|
|
panic("uvm_km_alloc failed");
|
|
}
|
|
|
|
if (flags & UVM_KMF_ZERO)
|
|
memset(rv, 0, size);
|
|
|
|
return (vaddr_t)rv;
|
|
}
|
|
|
|
void
|
|
uvm_km_free(struct vm_map *map, vaddr_t vaddr, vsize_t size, uvm_flag_t flags)
|
|
{
|
|
|
|
if (__predict_false(map == module_map))
|
|
rumpuser_unmap((void *)vaddr, size);
|
|
else
|
|
rumpuser_free((void *)vaddr, size);
|
|
}
|
|
|
|
struct vm_map *
|
|
uvm_km_suballoc(struct vm_map *map, vaddr_t *minaddr, vaddr_t *maxaddr,
|
|
vsize_t size, int pageable, bool fixed, struct vm_map *submap)
|
|
{
|
|
|
|
return (struct vm_map *)417416;
|
|
}
|
|
|
|
int
|
|
uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
|
|
vmem_addr_t *addr)
|
|
{
|
|
vaddr_t va;
|
|
va = (vaddr_t)rump_hypermalloc(size, PAGE_SIZE,
|
|
(flags & VM_SLEEP), "kmalloc");
|
|
|
|
if (va) {
|
|
*addr = va;
|
|
return 0;
|
|
} else {
|
|
return ENOMEM;
|
|
}
|
|
}
|
|
|
|
void
|
|
uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
|
|
{
|
|
|
|
rump_hyperfree((void *)addr, size);
|
|
}
|
|
|
|
/*
|
|
* VM space locking routines. We don't really have to do anything,
|
|
* since the pages are always "wired" (both local and remote processes).
|
|
*/
|
|
int
|
|
uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access)
|
|
{
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
|
|
{
|
|
|
|
}
|
|
|
|
/*
|
|
* For the local case the buffer mappers don't need to do anything.
|
|
* For the remote case we need to reserve space and copy data in or
|
|
* out, depending on B_READ/B_WRITE.
|
|
*/
|
|
int
|
|
vmapbuf(struct buf *bp, vsize_t len)
|
|
{
|
|
int error = 0;
|
|
|
|
bp->b_saveaddr = bp->b_data;
|
|
|
|
/* remote case */
|
|
if (!RUMP_LOCALPROC_P(curproc)) {
|
|
bp->b_data = rump_hypermalloc(len, 0, true, "vmapbuf");
|
|
if (BUF_ISWRITE(bp)) {
|
|
error = copyin(bp->b_saveaddr, bp->b_data, len);
|
|
if (error) {
|
|
rump_hyperfree(bp->b_data, len);
|
|
bp->b_data = bp->b_saveaddr;
|
|
bp->b_saveaddr = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
void
|
|
vunmapbuf(struct buf *bp, vsize_t len)
|
|
{
|
|
|
|
/* remote case */
|
|
if (!RUMP_LOCALPROC_P(bp->b_proc)) {
|
|
if (BUF_ISREAD(bp)) {
|
|
bp->b_error = copyout_proc(bp->b_proc,
|
|
bp->b_data, bp->b_saveaddr, len);
|
|
}
|
|
rump_hyperfree(bp->b_data, len);
|
|
}
|
|
|
|
bp->b_data = bp->b_saveaddr;
|
|
bp->b_saveaddr = 0;
|
|
}
|
|
|
|
void
|
|
uvmspace_addref(struct vmspace *vm)
|
|
{
|
|
|
|
/*
|
|
* No dynamically allocated vmspaces exist.
|
|
*/
|
|
}
|
|
|
|
void
|
|
uvmspace_free(struct vmspace *vm)
|
|
{
|
|
|
|
/* nothing for now */
|
|
}
|
|
|
|
/*
|
|
* page life cycle stuff. it really doesn't exist, so just stubs.
|
|
*/
|
|
|
|
void
|
|
uvm_pageactivate(struct vm_page *pg)
|
|
{
|
|
|
|
/* nada */
|
|
}
|
|
|
|
void
|
|
uvm_pagedeactivate(struct vm_page *pg)
|
|
{
|
|
|
|
/* nada */
|
|
}
|
|
|
|
void
|
|
uvm_pagedequeue(struct vm_page *pg)
|
|
{
|
|
|
|
/* nada*/
|
|
}
|
|
|
|
void
|
|
uvm_pageenqueue(struct vm_page *pg)
|
|
{
|
|
|
|
/* nada */
|
|
}
|
|
|
|
void
|
|
uvmpdpol_anfree(struct vm_anon *an)
|
|
{
|
|
|
|
/* nada */
|
|
}
|
|
|
|
/*
|
|
* Physical address accessors.
|
|
*/
|
|
|
|
struct vm_page *
|
|
uvm_phys_to_vm_page(paddr_t pa)
|
|
{
|
|
|
|
return NULL;
|
|
}
|
|
|
|
paddr_t
|
|
uvm_vm_page_to_phys(const struct vm_page *pg)
|
|
{
|
|
|
|
return 0;
|
|
}
|
|
|
|
vaddr_t
|
|
uvm_uarea_alloc(void)
|
|
{
|
|
|
|
/* non-zero */
|
|
return (vaddr_t)11;
|
|
}
|
|
|
|
void
|
|
uvm_uarea_free(vaddr_t uarea)
|
|
{
|
|
|
|
/* nata, so creamy */
|
|
}
|
|
|
|
/*
|
|
* Routines related to the Page Baroness.
|
|
*/
|
|
|
|
void
|
|
uvm_wait(const char *msg)
|
|
{
|
|
|
|
if (__predict_false(rump_threads == 0))
|
|
panic("pagedaemon missing (RUMP_THREADS = 0)");
|
|
|
|
if (curlwp == uvm.pagedaemon_lwp) {
|
|
/* is it possible for us to later get memory? */
|
|
if (!uvmexp.paging)
|
|
panic("pagedaemon out of memory");
|
|
}
|
|
|
|
mutex_enter(&pdaemonmtx);
|
|
pdaemon_waiters++;
|
|
cv_signal(&pdaemoncv);
|
|
cv_wait(&oomwait, &pdaemonmtx);
|
|
mutex_exit(&pdaemonmtx);
|
|
}
|
|
|
|
void
|
|
uvm_pageout_start(int npages)
|
|
{
|
|
|
|
mutex_enter(&pdaemonmtx);
|
|
uvmexp.paging += npages;
|
|
mutex_exit(&pdaemonmtx);
|
|
}
|
|
|
|
void
|
|
uvm_pageout_done(int npages)
|
|
{
|
|
|
|
if (!npages)
|
|
return;
|
|
|
|
mutex_enter(&pdaemonmtx);
|
|
KASSERT(uvmexp.paging >= npages);
|
|
uvmexp.paging -= npages;
|
|
|
|
if (pdaemon_waiters) {
|
|
pdaemon_waiters = 0;
|
|
cv_broadcast(&oomwait);
|
|
}
|
|
mutex_exit(&pdaemonmtx);
|
|
}
|
|
|
|
static bool
|
|
processpage(struct vm_page *pg, bool *lockrunning)
|
|
{
|
|
struct uvm_object *uobj;
|
|
|
|
uobj = pg->uobject;
|
|
if (mutex_tryenter(uobj->vmobjlock)) {
|
|
if ((pg->flags & PG_BUSY) == 0) {
|
|
mutex_exit(&uvm_pageqlock);
|
|
uobj->pgops->pgo_put(uobj, pg->offset,
|
|
pg->offset + PAGE_SIZE,
|
|
PGO_CLEANIT|PGO_FREE);
|
|
KASSERT(!mutex_owned(uobj->vmobjlock));
|
|
return true;
|
|
} else {
|
|
mutex_exit(uobj->vmobjlock);
|
|
}
|
|
} else if (*lockrunning == false && ncpu > 1) {
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
struct lwp *l;
|
|
|
|
l = mutex_owner(uobj->vmobjlock);
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
if (ci->ci_curlwp == l) {
|
|
*lockrunning = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* The Diabolical pageDaemon Director (DDD).
|
|
*
|
|
* This routine can always use better heuristics.
|
|
*/
|
|
void
|
|
uvm_pageout(void *arg)
|
|
{
|
|
struct vm_page *pg;
|
|
struct pool *pp, *pp_first;
|
|
int cleaned, skip, skipped;
|
|
bool succ;
|
|
bool lockrunning;
|
|
|
|
mutex_enter(&pdaemonmtx);
|
|
for (;;) {
|
|
if (!NEED_PAGEDAEMON()) {
|
|
kernel_map->flags &= ~VM_MAP_WANTVA;
|
|
}
|
|
|
|
if (pdaemon_waiters) {
|
|
pdaemon_waiters = 0;
|
|
cv_broadcast(&oomwait);
|
|
}
|
|
|
|
cv_wait(&pdaemoncv, &pdaemonmtx);
|
|
uvmexp.pdwoke++;
|
|
|
|
/* tell the world that we are hungry */
|
|
kernel_map->flags |= VM_MAP_WANTVA;
|
|
mutex_exit(&pdaemonmtx);
|
|
|
|
/*
|
|
* step one: reclaim the page cache. this should give
|
|
* us the biggest earnings since whole pages are released
|
|
* into backing memory.
|
|
*/
|
|
pool_cache_reclaim(&pagecache);
|
|
if (!NEED_PAGEDAEMON()) {
|
|
mutex_enter(&pdaemonmtx);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Ok, so that didn't help. Next, try to hunt memory
|
|
* by pushing out vnode pages. The pages might contain
|
|
* useful cached data, but we need the memory.
|
|
*/
|
|
cleaned = 0;
|
|
skip = 0;
|
|
lockrunning = false;
|
|
again:
|
|
mutex_enter(&uvm_pageqlock);
|
|
while (cleaned < PAGEDAEMON_OBJCHUNK) {
|
|
skipped = 0;
|
|
TAILQ_FOREACH(pg, &vmpage_lruqueue, pageq.queue) {
|
|
|
|
/*
|
|
* skip over pages we _might_ have tried
|
|
* to handle earlier. they might not be
|
|
* exactly the same ones, but I'm not too
|
|
* concerned.
|
|
*/
|
|
while (skipped++ < skip)
|
|
continue;
|
|
|
|
if (processpage(pg, &lockrunning)) {
|
|
cleaned++;
|
|
goto again;
|
|
}
|
|
|
|
skip++;
|
|
}
|
|
break;
|
|
}
|
|
mutex_exit(&uvm_pageqlock);
|
|
|
|
/*
|
|
* Ok, someone is running with an object lock held.
|
|
* We want to yield the host CPU to make sure the
|
|
* thread is not parked on the host. Since sched_yield()
|
|
* doesn't appear to do anything on NetBSD, nanosleep
|
|
* for the smallest possible time and hope we're back in
|
|
* the game soon.
|
|
*/
|
|
if (cleaned == 0 && lockrunning) {
|
|
rumpuser_clock_sleep(RUMPUSER_CLOCK_RELWALL, 0, 1);
|
|
|
|
lockrunning = false;
|
|
skip = 0;
|
|
|
|
/* and here we go again */
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* And of course we need to reclaim the page cache
|
|
* again to actually release memory.
|
|
*/
|
|
pool_cache_reclaim(&pagecache);
|
|
if (!NEED_PAGEDAEMON()) {
|
|
mutex_enter(&pdaemonmtx);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* And then drain the pools. Wipe them out ... all of them.
|
|
*/
|
|
for (pp_first = NULL;;) {
|
|
rump_vfs_drainbufs(10 /* XXX: estimate! */);
|
|
|
|
succ = pool_drain(&pp);
|
|
if (succ || pp == pp_first)
|
|
break;
|
|
|
|
if (pp_first == NULL)
|
|
pp_first = pp;
|
|
}
|
|
|
|
/*
|
|
* Need to use PYEC on our bag of tricks.
|
|
* Unfortunately, the wife just borrowed it.
|
|
*/
|
|
|
|
mutex_enter(&pdaemonmtx);
|
|
if (!succ && cleaned == 0 && pdaemon_waiters &&
|
|
uvmexp.paging == 0) {
|
|
rumpuser_dprintf("pagedaemoness: failed to reclaim "
|
|
"memory ... sleeping (deadlock?)\n");
|
|
kpause("pddlk", false, hz, &pdaemonmtx);
|
|
}
|
|
}
|
|
|
|
panic("you can swap out any time you like, but you can never leave");
|
|
}
|
|
|
|
void
|
|
uvm_kick_pdaemon()
|
|
{
|
|
|
|
/*
|
|
* Wake up the diabolical pagedaemon director if we are over
|
|
* 90% of the memory limit. This is a complete and utter
|
|
* stetson-harrison decision which you are allowed to finetune.
|
|
* Don't bother locking. If we have some unflushed caches,
|
|
* other waker-uppers will deal with the issue.
|
|
*/
|
|
if (NEED_PAGEDAEMON()) {
|
|
cv_signal(&pdaemoncv);
|
|
}
|
|
}
|
|
|
|
void *
|
|
rump_hypermalloc(size_t howmuch, int alignment, bool waitok, const char *wmsg)
|
|
{
|
|
const unsigned long thelimit =
|
|
curlwp == uvm.pagedaemon_lwp ? pdlimit : rump_physmemlimit;
|
|
unsigned long newmem;
|
|
void *rv;
|
|
int error;
|
|
|
|
uvm_kick_pdaemon(); /* ouch */
|
|
|
|
/* first we must be within the limit */
|
|
limitagain:
|
|
if (thelimit != RUMPMEM_UNLIMITED) {
|
|
newmem = atomic_add_long_nv(&curphysmem, howmuch);
|
|
if (newmem > thelimit) {
|
|
newmem = atomic_add_long_nv(&curphysmem, -howmuch);
|
|
if (!waitok) {
|
|
return NULL;
|
|
}
|
|
uvm_wait(wmsg);
|
|
goto limitagain;
|
|
}
|
|
}
|
|
|
|
/* second, we must get something from the backend */
|
|
again:
|
|
error = rumpuser_malloc(howmuch, alignment, &rv);
|
|
if (__predict_false(error && waitok)) {
|
|
uvm_wait(wmsg);
|
|
goto again;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
void
|
|
rump_hyperfree(void *what, size_t size)
|
|
{
|
|
|
|
if (rump_physmemlimit != RUMPMEM_UNLIMITED) {
|
|
atomic_add_long(&curphysmem, -size);
|
|
}
|
|
rumpuser_free(what, size);
|
|
}
|