netbsd/usr.sbin/npf/npfctl/npf_build.c
2015-10-15 10:25:28 +02:00

817 lines
20 KiB
C

/* $NetBSD: npf_build.c,v 1.40 2015/06/08 01:00:43 rmind Exp $ */
/*-
* Copyright (c) 2011-2014 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* npfctl(8) building of the configuration.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: npf_build.c,v 1.40 2015/06/08 01:00:43 rmind Exp $");
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <netinet/tcp.h>
#include <stdlib.h>
#include <inttypes.h>
#include <string.h>
#include <ctype.h>
#include <unistd.h>
#include <errno.h>
#include <err.h>
#include <pcap/pcap.h>
#include <cdbw.h>
#include "npfctl.h"
#define MAX_RULE_NESTING 16
static nl_config_t * npf_conf = NULL;
static bool npf_debug = false;
static nl_rule_t * the_rule = NULL;
static nl_rule_t * current_group[MAX_RULE_NESTING];
static unsigned rule_nesting_level = 0;
static nl_rule_t * defgroup = NULL;
static void npfctl_dump_bpf(struct bpf_program *);
void
npfctl_config_init(bool debug)
{
npf_conf = npf_config_create();
if (npf_conf == NULL) {
errx(EXIT_FAILURE, "npf_config_create failed");
}
npf_debug = debug;
memset(current_group, 0, sizeof(current_group));
}
int
npfctl_config_send(int fd, const char *out)
{
int error;
if (out) {
_npf_config_setsubmit(npf_conf, out);
printf("\nSaving to %s\n", out);
}
if (!defgroup) {
errx(EXIT_FAILURE, "default group was not defined");
}
npf_rule_insert(npf_conf, NULL, defgroup);
error = npf_config_submit(npf_conf, fd);
if (error == EEXIST) { /* XXX */
errx(EXIT_FAILURE, "(re)load failed: "
"some table has a duplicate entry?");
}
if (error) {
nl_error_t ne;
_npf_config_error(npf_conf, &ne);
npfctl_print_error(&ne);
}
if (fd) {
npf_config_destroy(npf_conf);
}
return error;
}
nl_config_t *
npfctl_config_ref(void)
{
return npf_conf;
}
nl_rule_t *
npfctl_rule_ref(void)
{
return the_rule;
}
bool
npfctl_debug_addif(const char *ifname)
{
const char tname[] = "npftest";
const size_t tnamelen = sizeof(tname) - 1;
if (npf_debug) {
_npf_debug_addif(npf_conf, ifname);
return strncmp(ifname, tname, tnamelen) == 0;
}
return 0;
}
unsigned
npfctl_table_getid(const char *name)
{
unsigned tid = (unsigned)-1;
nl_table_t *tl;
/* XXX dynamic ruleset */
if (!npf_conf) {
return (unsigned)-1;
}
/* XXX: Iterating all as we need to rewind for the next call. */
while ((tl = npf_table_iterate(npf_conf)) != NULL) {
const char *tname = npf_table_getname(tl);
if (strcmp(tname, name) == 0) {
tid = npf_table_getid(tl);
}
}
return tid;
}
static in_port_t
npfctl_get_singleport(const npfvar_t *vp)
{
port_range_t *pr;
in_port_t *port;
if (npfvar_get_count(vp) > 1) {
yyerror("multiple ports are not valid");
}
pr = npfvar_get_data(vp, NPFVAR_PORT_RANGE, 0);
if (pr->pr_start != pr->pr_end) {
yyerror("port range is not valid");
}
port = &pr->pr_start;
return *port;
}
static fam_addr_mask_t *
npfctl_get_singlefam(const npfvar_t *vp)
{
if (npfvar_get_count(vp) > 1) {
yyerror("multiple addresses are not valid");
}
return npfvar_get_data(vp, NPFVAR_FAM, 0);
}
static bool
npfctl_build_fam(npf_bpf_t *ctx, sa_family_t family,
fam_addr_mask_t *fam, int opts)
{
/*
* If family is specified, address does not match it and the
* address is extracted from the interface, then simply ignore.
* Otherwise, address of invalid family was passed manually.
*/
if (family != AF_UNSPEC && family != fam->fam_family) {
if (!fam->fam_ifindex) {
yyerror("specified address is not of the required "
"family %d", family);
}
return false;
}
family = fam->fam_family;
if (family != AF_INET && family != AF_INET6) {
yyerror("family %d is not supported", family);
}
/*
* Optimise 0.0.0.0/0 case to be NOP. Otherwise, address with
* zero mask would never match and therefore is not valid.
*/
if (fam->fam_mask == 0) {
static const npf_addr_t zero; /* must be static */
if (memcmp(&fam->fam_addr, &zero, sizeof(npf_addr_t))) {
yyerror("filter criterion would never match");
}
return false;
}
npfctl_bpf_cidr(ctx, opts, family, &fam->fam_addr, fam->fam_mask);
return true;
}
static void
npfctl_build_vars(npf_bpf_t *ctx, sa_family_t family, npfvar_t *vars, int opts)
{
const int type = npfvar_get_type(vars, 0);
size_t i;
npfctl_bpf_group(ctx);
for (i = 0; i < npfvar_get_count(vars); i++) {
void *data = npfvar_get_data(vars, type, i);
assert(data != NULL);
switch (type) {
case NPFVAR_FAM: {
fam_addr_mask_t *fam = data;
npfctl_build_fam(ctx, family, fam, opts);
break;
}
case NPFVAR_PORT_RANGE: {
port_range_t *pr = data;
npfctl_bpf_ports(ctx, opts, pr->pr_start, pr->pr_end);
break;
}
case NPFVAR_TABLE: {
u_int tid;
memcpy(&tid, data, sizeof(u_int));
npfctl_bpf_table(ctx, opts, tid);
break;
}
default:
assert(false);
}
}
npfctl_bpf_endgroup(ctx);
}
static void
npfctl_build_proto(npf_bpf_t *ctx, sa_family_t family, const opt_proto_t *op)
{
const npfvar_t *popts = op->op_opts;
const int proto = op->op_proto;
/* IP version and/or L4 protocol matching. */
if (family != AF_UNSPEC || proto != -1) {
npfctl_bpf_proto(ctx, family, proto);
}
switch (proto) {
case IPPROTO_TCP:
/* Build TCP flags matching (optional). */
if (popts) {
uint8_t *tf, *tf_mask;
assert(npfvar_get_count(popts) == 2);
tf = npfvar_get_data(popts, NPFVAR_TCPFLAG, 0);
tf_mask = npfvar_get_data(popts, NPFVAR_TCPFLAG, 1);
npfctl_bpf_tcpfl(ctx, *tf, *tf_mask, false);
}
break;
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
/* Build ICMP/ICMPv6 type and/or code matching. */
if (popts) {
int *icmp_type, *icmp_code;
assert(npfvar_get_count(popts) == 2);
icmp_type = npfvar_get_data(popts, NPFVAR_ICMP, 0);
icmp_code = npfvar_get_data(popts, NPFVAR_ICMP, 1);
npfctl_bpf_icmp(ctx, *icmp_type, *icmp_code);
}
break;
default:
/* No options for other protocols. */
break;
}
}
static bool
npfctl_build_code(nl_rule_t *rl, sa_family_t family, const opt_proto_t *op,
const filt_opts_t *fopts)
{
bool noproto, noaddrs, noports, need_tcpudp = false;
const addr_port_t *apfrom = &fopts->fo_from;
const addr_port_t *apto = &fopts->fo_to;
const int proto = op->op_proto;
npf_bpf_t *bc;
size_t len;
/* If none specified, then no byte-code. */
noproto = family == AF_UNSPEC && proto == -1 && !op->op_opts;
noaddrs = !apfrom->ap_netaddr && !apto->ap_netaddr;
noports = !apfrom->ap_portrange && !apto->ap_portrange;
if (noproto && noaddrs && noports) {
return false;
}
/*
* Sanity check: ports can only be used with TCP or UDP protocol.
* No filter options are supported for other protocols, only the
* IP addresses are allowed.
*/
if (!noports) {
switch (proto) {
case IPPROTO_TCP:
case IPPROTO_UDP:
break;
case -1:
need_tcpudp = true;
break;
default:
yyerror("invalid filter options for protocol %d", proto);
}
}
bc = npfctl_bpf_create();
/* Build layer 4 protocol blocks. */
npfctl_build_proto(bc, family, op);
/*
* If this is a stateful rule and TCP flags are not specified,
* then add "flags S/SAFR" filter for TCP protocol case.
*/
if ((npf_rule_getattr(rl) & NPF_RULE_STATEFUL) != 0 &&
(proto == -1 || (proto == IPPROTO_TCP && !op->op_opts))) {
npfctl_bpf_tcpfl(bc, TH_SYN,
TH_SYN | TH_ACK | TH_FIN | TH_RST, proto == -1);
}
/* Build IP address blocks. */
npfctl_build_vars(bc, family, apfrom->ap_netaddr, MATCH_SRC);
npfctl_build_vars(bc, family, apto->ap_netaddr, MATCH_DST);
/* Build port-range blocks. */
if (need_tcpudp) {
/* TCP/UDP check for the ports. */
npfctl_bpf_group(bc);
npfctl_bpf_proto(bc, AF_UNSPEC, IPPROTO_TCP);
npfctl_bpf_proto(bc, AF_UNSPEC, IPPROTO_UDP);
npfctl_bpf_endgroup(bc);
}
npfctl_build_vars(bc, family, apfrom->ap_portrange, MATCH_SRC);
npfctl_build_vars(bc, family, apto->ap_portrange, MATCH_DST);
/* Set the byte-code marks, if any. */
const void *bmarks = npfctl_bpf_bmarks(bc, &len);
if (npf_rule_setinfo(rl, bmarks, len) == -1) {
errx(EXIT_FAILURE, "npf_rule_setinfo failed");
}
/* Complete BPF byte-code and pass to the rule. */
struct bpf_program *bf = npfctl_bpf_complete(bc);
if (bf == NULL) {
npfctl_bpf_destroy(bc);
return true;
}
len = bf->bf_len * sizeof(struct bpf_insn);
if (npf_rule_setcode(rl, NPF_CODE_BPF, bf->bf_insns, len) == -1) {
errx(EXIT_FAILURE, "npf_rule_setcode failed");
}
npfctl_dump_bpf(bf);
npfctl_bpf_destroy(bc);
return true;
}
static void
npfctl_build_pcap(nl_rule_t *rl, const char *filter)
{
const size_t maxsnaplen = 64 * 1024;
struct bpf_program bf;
size_t len;
if (pcap_compile_nopcap(maxsnaplen, DLT_RAW, &bf,
filter, 1, PCAP_NETMASK_UNKNOWN) == -1) {
yyerror("invalid pcap-filter(7) syntax");
}
len = bf.bf_len * sizeof(struct bpf_insn);
if (npf_rule_setcode(rl, NPF_CODE_BPF, bf.bf_insns, len) == -1) {
errx(EXIT_FAILURE, "npf_rule_setcode failed");
}
npfctl_dump_bpf(&bf);
pcap_freecode(&bf);
}
static void
npfctl_build_rpcall(nl_rproc_t *rp, const char *name, npfvar_t *args)
{
npf_extmod_t *extmod;
nl_ext_t *extcall;
int error;
extmod = npf_extmod_get(name, &extcall);
if (extmod == NULL) {
yyerror("unknown rule procedure '%s'", name);
}
for (size_t i = 0; i < npfvar_get_count(args); i++) {
const char *param, *value;
proc_param_t *p;
p = npfvar_get_data(args, NPFVAR_PROC_PARAM, i);
param = p->pp_param;
value = p->pp_value;
error = npf_extmod_param(extmod, extcall, param, value);
switch (error) {
case EINVAL:
yyerror("invalid parameter '%s'", param);
default:
break;
}
}
error = npf_rproc_extcall(rp, extcall);
if (error) {
yyerror(error == EEXIST ?
"duplicate procedure call" : "unexpected error");
}
}
/*
* npfctl_build_rproc: create and insert a rule procedure.
*/
void
npfctl_build_rproc(const char *name, npfvar_t *procs)
{
nl_rproc_t *rp;
size_t i;
rp = npf_rproc_create(name);
if (rp == NULL) {
errx(EXIT_FAILURE, "%s failed", __func__);
}
npf_rproc_insert(npf_conf, rp);
for (i = 0; i < npfvar_get_count(procs); i++) {
proc_call_t *pc = npfvar_get_data(procs, NPFVAR_PROC, i);
npfctl_build_rpcall(rp, pc->pc_name, pc->pc_opts);
}
}
void
npfctl_build_maprset(const char *name, int attr, const char *ifname)
{
const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT);
nl_rule_t *rl;
/* If no direction is not specified, then both. */
if ((attr & attr_di) == 0) {
attr |= attr_di;
}
/* Allow only "in/out" attributes. */
attr = NPF_RULE_GROUP | NPF_RULE_GROUP | (attr & attr_di);
rl = npf_rule_create(name, attr, ifname);
npf_nat_insert(npf_conf, rl, NPF_PRI_LAST);
}
/*
* npfctl_build_group: create a group, insert into the global ruleset,
* update the current group pointer and increase the nesting level.
*/
void
npfctl_build_group(const char *name, int attr, const char *ifname, bool def)
{
const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT);
nl_rule_t *rl;
if (def || (attr & attr_di) == 0) {
attr |= attr_di;
}
rl = npf_rule_create(name, attr | NPF_RULE_GROUP, ifname);
npf_rule_setprio(rl, NPF_PRI_LAST);
if (def) {
if (defgroup) {
yyerror("multiple default groups are not valid");
}
if (rule_nesting_level) {
yyerror("default group can only be at the top level");
}
defgroup = rl;
} else {
nl_rule_t *cg = current_group[rule_nesting_level];
npf_rule_insert(npf_conf, cg, rl);
}
/* Set the current group and increase the nesting level. */
if (rule_nesting_level >= MAX_RULE_NESTING) {
yyerror("rule nesting limit reached");
}
current_group[++rule_nesting_level] = rl;
}
void
npfctl_build_group_end(void)
{
assert(rule_nesting_level > 0);
current_group[rule_nesting_level--] = NULL;
}
/*
* npfctl_build_rule: create a rule, build byte-code from filter options,
* if any, and insert into the ruleset of current group, or set the rule.
*/
void
npfctl_build_rule(uint32_t attr, const char *ifname, sa_family_t family,
const opt_proto_t *op, const filt_opts_t *fopts,
const char *pcap_filter, const char *rproc)
{
nl_rule_t *rl;
attr |= (npf_conf ? 0 : NPF_RULE_DYNAMIC);
rl = npf_rule_create(NULL, attr, ifname);
if (pcap_filter) {
npfctl_build_pcap(rl, pcap_filter);
} else {
npfctl_build_code(rl, family, op, fopts);
}
if (rproc) {
npf_rule_setproc(rl, rproc);
}
if (npf_conf) {
nl_rule_t *cg = current_group[rule_nesting_level];
if (rproc && !npf_rproc_exists_p(npf_conf, rproc)) {
yyerror("rule procedure '%s' is not defined", rproc);
}
assert(cg != NULL);
npf_rule_setprio(rl, NPF_PRI_LAST);
npf_rule_insert(npf_conf, cg, rl);
} else {
/* We have parsed a single rule - set it. */
the_rule = rl;
}
}
/*
* npfctl_build_nat: create a single NAT policy of a specified
* type with a given filter options.
*/
static nl_nat_t *
npfctl_build_nat(int type, const char *ifname, const addr_port_t *ap,
const filt_opts_t *fopts, u_int flags)
{
const opt_proto_t op = { .op_proto = -1, .op_opts = NULL };
fam_addr_mask_t *am = npfctl_get_singlefam(ap->ap_netaddr);
in_port_t port;
nl_nat_t *nat;
if (ap->ap_portrange) {
port = npfctl_get_singleport(ap->ap_portrange);
flags &= ~NPF_NAT_PORTMAP;
flags |= NPF_NAT_PORTS;
} else {
port = 0;
}
nat = npf_nat_create(type, flags, ifname, am->fam_family,
&am->fam_addr, am->fam_mask, port);
npfctl_build_code(nat, am->fam_family, &op, fopts);
npf_nat_insert(npf_conf, nat, NPF_PRI_LAST);
return nat;
}
/*
* npfctl_build_natseg: validate and create NAT policies.
*/
void
npfctl_build_natseg(int sd, int type, const char *ifname,
const addr_port_t *ap1, const addr_port_t *ap2,
const filt_opts_t *fopts, u_int algo)
{
fam_addr_mask_t *am1 = NULL, *am2 = NULL;
nl_nat_t *nt1 = NULL, *nt2 = NULL;
filt_opts_t imfopts;
uint16_t adj = 0;
u_int flags;
bool binat;
assert(ifname != NULL);
/*
* Bi-directional NAT is a combination of inbound NAT and outbound
* NAT policies with the translation segments inverted respectively.
*/
binat = (NPF_NATIN | NPF_NATOUT) == type;
switch (sd) {
case NPFCTL_NAT_DYNAMIC:
/*
* Dynamic NAT: traditional NAPT is expected. Unless it
* is bi-directional NAT, perform port mapping.
*/
flags = !binat ? (NPF_NAT_PORTS | NPF_NAT_PORTMAP) : 0;
break;
case NPFCTL_NAT_STATIC:
/* Static NAT: mechanic translation. */
flags = NPF_NAT_STATIC;
break;
default:
abort();
}
/*
* Validate the mappings and their configuration.
*/
if ((type & NPF_NATIN) != 0) {
if (!ap1->ap_netaddr)
yyerror("inbound network segment is not specified");
am1 = npfctl_get_singlefam(ap1->ap_netaddr);
}
if ((type & NPF_NATOUT) != 0) {
if (!ap2->ap_netaddr)
yyerror("outbound network segment is not specified");
am2 = npfctl_get_singlefam(ap2->ap_netaddr);
}
switch (algo) {
case NPF_ALGO_NPT66:
if (am1 == NULL || am2 == NULL)
yyerror("1:1 mapping of two segments must be "
"used for NPTv6");
if (am1->fam_mask != am2->fam_mask)
yyerror("asymmetric translation is not supported");
adj = npfctl_npt66_calcadj(am1->fam_mask,
&am1->fam_addr, &am2->fam_addr);
break;
default:
if ((am1 && am1->fam_mask != NPF_NO_NETMASK) ||
(am2 && am2->fam_mask != NPF_NO_NETMASK))
yyerror("net-to-net translation is not supported");
break;
}
/*
* If the filter criteria is not specified explicitly, apply implicit
* filtering according to the given network segments.
*
* Note: filled below, depending on the type.
*/
if (__predict_true(!fopts)) {
fopts = &imfopts;
}
if (type & NPF_NATIN) {
memset(&imfopts, 0, sizeof(filt_opts_t));
memcpy(&imfopts.fo_to, ap2, sizeof(addr_port_t));
nt1 = npfctl_build_nat(NPF_NATIN, ifname, ap1, fopts, flags);
}
if (type & NPF_NATOUT) {
memset(&imfopts, 0, sizeof(filt_opts_t));
memcpy(&imfopts.fo_from, ap1, sizeof(addr_port_t));
nt2 = npfctl_build_nat(NPF_NATOUT, ifname, ap2, fopts, flags);
}
if (algo == NPF_ALGO_NPT66) {
npf_nat_setnpt66(nt1, ~adj);
npf_nat_setnpt66(nt2, adj);
}
}
/*
* npfctl_fill_table: fill NPF table with entries from a specified file.
*/
static void
npfctl_fill_table(nl_table_t *tl, u_int type, const char *fname)
{
struct cdbw *cdbw = NULL; /* XXX: gcc */
char *buf = NULL;
int l = 0;
FILE *fp;
size_t n;
if (type == NPF_TABLE_CDB && (cdbw = cdbw_open()) == NULL) {
err(EXIT_FAILURE, "cdbw_open");
}
fp = fopen(fname, "r");
if (fp == NULL) {
err(EXIT_FAILURE, "open '%s'", fname);
}
while (l++, getline(&buf, &n, fp) != -1) {
fam_addr_mask_t fam;
int alen;
if (*buf == '\n' || *buf == '#') {
continue;
}
if (!npfctl_parse_cidr(buf, &fam, &alen)) {
errx(EXIT_FAILURE,
"%s:%d: invalid table entry", fname, l);
}
if (type != NPF_TABLE_TREE && fam.fam_mask != NPF_NO_NETMASK) {
errx(EXIT_FAILURE, "%s:%d: mask used with the "
"non-tree table", fname, l);
}
/*
* Create and add a table entry.
*/
if (type == NPF_TABLE_CDB) {
const npf_addr_t *addr = &fam.fam_addr;
if (cdbw_put(cdbw, addr, alen, addr, alen) == -1) {
err(EXIT_FAILURE, "cdbw_put");
}
} else {
npf_table_add_entry(tl, fam.fam_family,
&fam.fam_addr, fam.fam_mask);
}
}
if (buf != NULL) {
free(buf);
}
if (type == NPF_TABLE_CDB) {
struct stat sb;
char sfn[32];
void *cdb;
int fd;
strlcpy(sfn, "/tmp/npfcdb.XXXXXX", sizeof(sfn));
if ((fd = mkstemp(sfn)) == -1) {
err(EXIT_FAILURE, "mkstemp");
}
unlink(sfn);
if (cdbw_output(cdbw, fd, "npf-table-cdb", NULL) == -1) {
err(EXIT_FAILURE, "cdbw_output");
}
cdbw_close(cdbw);
if (fstat(fd, &sb) == -1) {
err(EXIT_FAILURE, "fstat");
}
if ((cdb = mmap(NULL, sb.st_size, PROT_READ,
MAP_FILE | MAP_PRIVATE, fd, 0)) == MAP_FAILED) {
err(EXIT_FAILURE, "mmap");
}
npf_table_setdata(tl, cdb, sb.st_size);
close(fd);
}
}
/*
* npfctl_build_table: create an NPF table, add to the configuration and,
* if required, fill with contents from a file.
*/
void
npfctl_build_table(const char *tname, u_int type, const char *fname)
{
static unsigned tid = 0;
nl_table_t *tl;
tl = npf_table_create(tname, tid++, type);
assert(tl != NULL);
if (npf_table_insert(npf_conf, tl)) {
yyerror("table '%s' is already defined", tname);
}
if (fname) {
npfctl_fill_table(tl, type, fname);
} else if (type == NPF_TABLE_CDB) {
errx(EXIT_FAILURE, "tables of cdb type must be static");
}
}
/*
* npfctl_build_alg: create an NPF application level gateway and add it
* to the configuration.
*/
void
npfctl_build_alg(const char *al_name)
{
if (_npf_alg_load(npf_conf, al_name) != 0) {
errx(EXIT_FAILURE, "ALG '%s' already loaded", al_name);
}
}
static void
npfctl_dump_bpf(struct bpf_program *bf)
{
if (npf_debug) {
extern char *yytext;
extern int yylineno;
int rule_line = yylineno - (int)(*yytext == '\n');
printf("\nRULE AT LINE %d\n", rule_line);
bpf_dump(bf, 0);
}
}