mirror of
https://github.com/Stichting-MINIX-Research-Foundation/netbsd.git
synced 2025-08-10 22:48:12 -04:00
675 lines
17 KiB
C
675 lines
17 KiB
C
/* $NetBSD: vfp_init.c,v 1.27 2013/11/18 18:02:01 matt Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2008 ARM Ltd
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the company may not be used to endorse or promote
|
|
* products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY
|
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/device.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/cpu.h>
|
|
|
|
#include <arm/locore.h>
|
|
#include <arm/pcb.h>
|
|
#include <arm/undefined.h>
|
|
#include <arm/vfpreg.h>
|
|
#include <arm/mcontext.h>
|
|
|
|
#include <uvm/uvm_extern.h> /* for pmap.h */
|
|
|
|
extern int cpu_media_and_vfp_features[];
|
|
extern int cpu_neon_present;
|
|
|
|
#ifdef FPU_VFP
|
|
|
|
/* FLDMD <X>, {d0-d15} */
|
|
static inline void
|
|
load_vfpregs_lo(const uint64_t *p)
|
|
{
|
|
/* vldmia rN, {d0-d15} */
|
|
__asm __volatile("ldc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
|
|
}
|
|
|
|
/* FSTMD <X>, {d0-d15} */
|
|
static inline void
|
|
save_vfpregs_lo(uint64_t *p)
|
|
{
|
|
__asm __volatile("stc\tp11, c0, [%0], {32}" :: "r" (p) : "memory");
|
|
}
|
|
|
|
#ifdef CPU_CORTEX
|
|
/* FLDMD <X>, {d16-d31} */
|
|
static inline void
|
|
load_vfpregs_hi(const uint64_t *p)
|
|
{
|
|
__asm __volatile("ldcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
|
|
}
|
|
|
|
/* FLDMD <X>, {d16-d31} */
|
|
static inline void
|
|
save_vfpregs_hi(uint64_t *p)
|
|
{
|
|
__asm __volatile("stcl\tp11, c0, [%0], {32}" :: "r" (&p[16]) : "memory");
|
|
}
|
|
#endif
|
|
|
|
static inline void
|
|
load_vfpregs(const struct vfpreg *fregs)
|
|
{
|
|
load_vfpregs_lo(fregs->vfp_regs);
|
|
#ifdef CPU_CORTEX
|
|
#ifdef CPU_ARM11
|
|
switch (curcpu()->ci_vfp_id) {
|
|
case FPU_VFP_CORTEXA5:
|
|
case FPU_VFP_CORTEXA7:
|
|
case FPU_VFP_CORTEXA8:
|
|
case FPU_VFP_CORTEXA9:
|
|
case FPU_VFP_CORTEXA15:
|
|
#endif
|
|
load_vfpregs_hi(fregs->vfp_regs);
|
|
#ifdef CPU_ARM11
|
|
break;
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static inline void
|
|
save_vfpregs(struct vfpreg *fregs)
|
|
{
|
|
save_vfpregs_lo(fregs->vfp_regs);
|
|
#ifdef CPU_CORTEX
|
|
#ifdef CPU_ARM11
|
|
switch (curcpu()->ci_vfp_id) {
|
|
case FPU_VFP_CORTEXA5:
|
|
case FPU_VFP_CORTEXA7:
|
|
case FPU_VFP_CORTEXA8:
|
|
case FPU_VFP_CORTEXA9:
|
|
case FPU_VFP_CORTEXA15:
|
|
#endif
|
|
save_vfpregs_hi(fregs->vfp_regs);
|
|
#ifdef CPU_ARM11
|
|
break;
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/* The real handler for VFP bounces. */
|
|
static int vfp_handler(u_int, u_int, trapframe_t *, int);
|
|
#ifdef CPU_CORTEX
|
|
static int neon_handler(u_int, u_int, trapframe_t *, int);
|
|
#endif
|
|
|
|
static void vfp_state_load(lwp_t *, u_int);
|
|
static void vfp_state_save(lwp_t *, u_int);
|
|
static void vfp_state_release(lwp_t *, u_int);
|
|
|
|
const pcu_ops_t arm_vfp_ops = {
|
|
.pcu_id = PCU_FPU,
|
|
.pcu_state_save = vfp_state_save,
|
|
.pcu_state_load = vfp_state_load,
|
|
.pcu_state_release = vfp_state_release,
|
|
};
|
|
|
|
struct evcnt vfpevent_use;
|
|
struct evcnt vfpevent_reuse;
|
|
struct evcnt vfpevent_fpe;
|
|
|
|
/*
|
|
* Used to test for a VFP. The following function is installed as a coproc10
|
|
* handler on the undefined instruction vector and then we issue a VFP
|
|
* instruction. If undefined_test is non zero then the VFP did not handle
|
|
* the instruction so must be absent, or disabled.
|
|
*/
|
|
|
|
static int undefined_test;
|
|
|
|
static int
|
|
vfp_test(u_int address, u_int insn, trapframe_t *frame, int fault_code)
|
|
{
|
|
|
|
frame->tf_pc += INSN_SIZE;
|
|
++undefined_test;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* FPU_VFP */
|
|
|
|
struct evcnt vfp_fpscr_ev =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "VFP", "FPSCR traps");
|
|
EVCNT_ATTACH_STATIC(vfp_fpscr_ev);
|
|
|
|
static int
|
|
vfp_fpscr_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
|
|
{
|
|
struct lwp * const l = curlwp;
|
|
const u_int regno = (insn >> 12) & 0xf;
|
|
/*
|
|
* Only match move to/from the FPSCR register and we
|
|
* can't be using the SP,LR,PC as a source.
|
|
*/
|
|
if ((insn & 0xffef0fff) != 0xeee10a10 || regno > 12)
|
|
return 1;
|
|
|
|
struct pcb * const pcb = lwp_getpcb(l);
|
|
|
|
#ifdef FPU_VFP
|
|
/*
|
|
* If FPU is valid somewhere, let's just reenable VFP and
|
|
* retry the instruction (only safe thing to do since the
|
|
* pcb has a stale copy).
|
|
*/
|
|
if (pcb->pcb_vfp.vfp_fpexc & VFP_FPEXC_EN)
|
|
return 1;
|
|
|
|
if (__predict_false(!vfp_used_p())) {
|
|
pcb->pcb_vfp.vfp_fpscr =
|
|
(VFP_FPSCR_DN | VFP_FPSCR_FZ); /* Runfast */
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We know know the pcb has the saved copy.
|
|
*/
|
|
register_t * const regp = &frame->tf_r0 + regno;
|
|
if (insn & 0x00100000) {
|
|
*regp = pcb->pcb_vfp.vfp_fpscr;
|
|
} else {
|
|
register_t tmp = *regp;
|
|
if (!(cpu_media_and_vfp_features[0] & ARM_MVFR0_EXCEPT_MASK))
|
|
tmp &= ~VFP_FPSCR_ESUM;
|
|
pcb->pcb_vfp.vfp_fpscr = tmp;
|
|
}
|
|
|
|
vfp_fpscr_ev.ev_count++;
|
|
|
|
frame->tf_pc += INSN_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
#ifndef FPU_VFP
|
|
/*
|
|
* If we don't want VFP support, we still need to handle emulating VFP FPSCR
|
|
* instructions.
|
|
*/
|
|
void
|
|
vfp_attach(void)
|
|
{
|
|
install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
|
|
}
|
|
|
|
#else
|
|
#if 0
|
|
static bool
|
|
vfp_patch_branch(uintptr_t code, uintptr_t func, uintptr_t newfunc)
|
|
{
|
|
for (;; code += sizeof(uint32_t)) {
|
|
uint32_t insn = *(uint32_t *)code;
|
|
if ((insn & 0xffd08000) == 0xe8908000) /* ldm ... { pc } */
|
|
return false;
|
|
if ((insn & 0xfffffff0) == 0xe12fff10) /* bx rN */
|
|
return false;
|
|
if ((insn & 0xf1a0f000) == 0xe1a0f000) /* mov pc, ... */
|
|
return false;
|
|
if ((insn >> 25) != 0x75) /* not b/bl insn */
|
|
continue;
|
|
intptr_t imm26 = ((int32_t)insn << 8) >> 6;
|
|
if (code + imm26 + 8 == func) {
|
|
int32_t imm24 = (newfunc - (code + 8)) >> 2;
|
|
uint32_t new_insn = (insn & 0xff000000)
|
|
| (imm24 & 0xffffff);
|
|
KASSERTMSG((uint32_t)((imm24 >> 24) + 1) <= 1, "%x",
|
|
((imm24 >> 24) + 1));
|
|
*(uint32_t *)code = new_insn;
|
|
cpu_idcache_wbinv_range(code, sizeof(uint32_t));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void
|
|
vfp_attach(void)
|
|
{
|
|
struct cpu_info * const ci = curcpu();
|
|
const char *model = NULL;
|
|
bool vfp_p = false;
|
|
|
|
if (CPU_ID_ARM11_P(curcpu()->ci_arm_cpuid)
|
|
|| CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
|
|
const uint32_t cpacr_vfp = CPACR_CPn(VFP_COPROC);
|
|
const uint32_t cpacr_vfp2 = CPACR_CPn(VFP_COPROC2);
|
|
|
|
/*
|
|
* We first need to enable access to the coprocessors.
|
|
*/
|
|
uint32_t cpacr = armreg_cpacr_read();
|
|
cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp);
|
|
cpacr |= __SHIFTIN(CPACR_ALL, cpacr_vfp2);
|
|
#if 0
|
|
if (CPU_ID_CORTEX_P(curcpu()->ci_arm_cpuid)) {
|
|
/*
|
|
* Disable access to the upper 16 FP registers and NEON.
|
|
*/
|
|
cpacr |= CPACR_V7_D32DIS;
|
|
cpacr |= CPACR_V7_ASEDIS;
|
|
}
|
|
#endif
|
|
armreg_cpacr_write(cpacr);
|
|
|
|
/*
|
|
* If we could enable them, then they exist.
|
|
*/
|
|
cpacr = armreg_cpacr_read();
|
|
vfp_p = __SHIFTOUT(cpacr, cpacr_vfp2) != CPACR_NOACCESS
|
|
|| __SHIFTOUT(cpacr, cpacr_vfp) != CPACR_NOACCESS;
|
|
}
|
|
|
|
void *uh = install_coproc_handler(VFP_COPROC, vfp_test);
|
|
|
|
undefined_test = 0;
|
|
|
|
const uint32_t fpsid = armreg_fpsid_read();
|
|
|
|
remove_coproc_handler(uh);
|
|
|
|
if (undefined_test != 0) {
|
|
aprint_normal_dev(ci->ci_dev, "No VFP detected\n");
|
|
install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
|
|
ci->ci_vfp_id = 0;
|
|
return;
|
|
}
|
|
|
|
ci->ci_vfp_id = fpsid;
|
|
switch (fpsid & ~ VFP_FPSID_REV_MSK) {
|
|
case FPU_VFP10_ARM10E:
|
|
model = "VFP10 R1";
|
|
break;
|
|
case FPU_VFP11_ARM11:
|
|
model = "VFP11";
|
|
break;
|
|
case FPU_VFP_CORTEXA5:
|
|
case FPU_VFP_CORTEXA7:
|
|
case FPU_VFP_CORTEXA8:
|
|
case FPU_VFP_CORTEXA9:
|
|
case FPU_VFP_CORTEXA15:
|
|
model = "NEON MPE (VFP 3.0+)";
|
|
cpu_neon_present = 1;
|
|
break;
|
|
default:
|
|
aprint_normal_dev(ci->ci_dev, "unrecognized VFP version %x\n",
|
|
fpsid);
|
|
install_coproc_handler(VFP_COPROC, vfp_fpscr_handler);
|
|
return;
|
|
}
|
|
|
|
cpu_fpu_present = 1;
|
|
cpu_media_and_vfp_features[0] = armreg_mvfr0_read();
|
|
cpu_media_and_vfp_features[1] = armreg_mvfr1_read();
|
|
if (fpsid != 0) {
|
|
aprint_normal("vfp%d at %s: %s\n",
|
|
device_unit(curcpu()->ci_dev),
|
|
device_xname(curcpu()->ci_dev),
|
|
model);
|
|
aprint_verbose("vfp%d: mvfr: [0]=%#x [1]=%#x\n",
|
|
device_unit(curcpu()->ci_dev),
|
|
cpu_media_and_vfp_features[0],
|
|
cpu_media_and_vfp_features[1]);
|
|
}
|
|
evcnt_attach_dynamic(&vfpevent_use, EVCNT_TYPE_MISC, NULL,
|
|
"VFP", "coproc use");
|
|
evcnt_attach_dynamic(&vfpevent_reuse, EVCNT_TYPE_MISC, NULL,
|
|
"VFP", "coproc re-use");
|
|
evcnt_attach_dynamic(&vfpevent_fpe, EVCNT_TYPE_TRAP, NULL,
|
|
"VFP", "coproc fault");
|
|
install_coproc_handler(VFP_COPROC, vfp_handler);
|
|
install_coproc_handler(VFP_COPROC2, vfp_handler);
|
|
#ifdef CPU_CORTEX
|
|
install_coproc_handler(CORE_UNKNOWN_HANDLER, neon_handler);
|
|
#endif
|
|
|
|
#if 0
|
|
vfp_patch_branch((uintptr_t)pmap_copy_page_generic,
|
|
(uintptr_t)bcopy_page, (uintptr_t)bcopy_page_vfp);
|
|
vfp_patch_branch((uintptr_t)pmap_zero_page_generic,
|
|
(uintptr_t)bzero_page, (uintptr_t)bzero_page_vfp);
|
|
#endif
|
|
}
|
|
|
|
/* The real handler for VFP bounces. */
|
|
static int
|
|
vfp_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
|
|
{
|
|
struct cpu_info * const ci = curcpu();
|
|
|
|
/* This shouldn't ever happen. */
|
|
if (fault_code != FAULT_USER)
|
|
panic("VFP fault at %#x in non-user mode", frame->tf_pc);
|
|
|
|
if (ci->ci_vfp_id == 0) {
|
|
/* No VFP detected, just fault. */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If we are just changing/fetching FPSCR, don't bother loading it.
|
|
*/
|
|
if (!vfp_fpscr_handler(address, insn, frame, fault_code))
|
|
return 0;
|
|
|
|
/*
|
|
* Make sure we own the FP.
|
|
*/
|
|
pcu_load(&arm_vfp_ops);
|
|
|
|
uint32_t fpexc = armreg_fpexc_read();
|
|
if (fpexc & VFP_FPEXC_EX) {
|
|
ksiginfo_t ksi;
|
|
KASSERT(fpexc & VFP_FPEXC_EN);
|
|
|
|
vfpevent_fpe.ev_count++;
|
|
|
|
pcu_save(&arm_vfp_ops);
|
|
|
|
/*
|
|
* Need the clear the exception condition so any signal
|
|
* can run.
|
|
*/
|
|
armreg_fpexc_write(fpexc & ~(VFP_FPEXC_EX|VFP_FPEXE_FSUM));
|
|
|
|
KSI_INIT_TRAP(&ksi);
|
|
ksi.ksi_signo = SIGFPE;
|
|
if (fpexc & VFP_FPEXC_IXF)
|
|
ksi.ksi_code = FPE_FLTRES;
|
|
else if (fpexc & VFP_FPEXC_UFF)
|
|
ksi.ksi_code = FPE_FLTUND;
|
|
else if (fpexc & VFP_FPEXC_OFF)
|
|
ksi.ksi_code = FPE_FLTOVF;
|
|
else if (fpexc & VFP_FPEXC_DZF)
|
|
ksi.ksi_code = FPE_FLTDIV;
|
|
else if (fpexc & VFP_FPEXC_IOF)
|
|
ksi.ksi_code = FPE_FLTINV;
|
|
ksi.ksi_addr = (uint32_t *)address;
|
|
ksi.ksi_trap = 0;
|
|
trapsignal(curlwp, &ksi);
|
|
return 0;
|
|
}
|
|
|
|
/* Need to restart the faulted instruction. */
|
|
// frame->tf_pc -= INSN_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CPU_CORTEX
|
|
/* The real handler for NEON bounces. */
|
|
static int
|
|
neon_handler(u_int address, u_int insn, trapframe_t *frame, int fault_code)
|
|
{
|
|
struct cpu_info * const ci = curcpu();
|
|
|
|
if (ci->ci_vfp_id == 0)
|
|
/* No VFP detected, just fault. */
|
|
return 1;
|
|
|
|
if ((insn & 0xfe000000) != 0xf2000000
|
|
&& (insn & 0xfe000000) != 0xf4000000)
|
|
/* Not NEON instruction, just fault. */
|
|
return 1;
|
|
|
|
/* This shouldn't ever happen. */
|
|
if (fault_code != FAULT_USER)
|
|
panic("NEON fault in non-user mode");
|
|
|
|
pcu_load(&arm_vfp_ops);
|
|
|
|
/* Need to restart the faulted instruction. */
|
|
// frame->tf_pc -= INSN_SIZE;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
vfp_state_load(lwp_t *l, u_int flags)
|
|
{
|
|
struct pcb * const pcb = lwp_getpcb(l);
|
|
|
|
KASSERT(flags & PCU_ENABLE);
|
|
|
|
if (flags & PCU_KERNEL) {
|
|
if ((flags & PCU_LOADED) == 0) {
|
|
pcb->pcb_kernel_vfp.vfp_fpexc = pcb->pcb_vfp.vfp_fpexc;
|
|
}
|
|
pcb->pcb_vfp.vfp_fpexc = VFP_FPEXC_EN;
|
|
armreg_fpexc_write(pcb->pcb_vfp.vfp_fpexc);
|
|
/*
|
|
* Load the kernel registers (just the first 16) if they've
|
|
* been used..
|
|
*/
|
|
if (flags & PCU_LOADED) {
|
|
load_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
|
|
}
|
|
return;
|
|
}
|
|
struct vfpreg * const fregs = &pcb->pcb_vfp;
|
|
|
|
/*
|
|
* Instrument VFP usage -- if a process has not previously
|
|
* used the VFP, mark it as having used VFP for the first time,
|
|
* and count this event.
|
|
*
|
|
* If a process has used the VFP, count a "used VFP, and took
|
|
* a trap to use it again" event.
|
|
*/
|
|
if (__predict_false((flags & PCU_LOADED) == 0)) {
|
|
vfpevent_use.ev_count++;
|
|
pcb->pcb_vfp.vfp_fpscr = /* Runfast */
|
|
(VFP_FPSCR_DN | VFP_FPSCR_FZ | VFP_FPSCR_RN);
|
|
} else {
|
|
vfpevent_reuse.ev_count++;
|
|
}
|
|
|
|
if (fregs->vfp_fpexc & VFP_FPEXC_EN) {
|
|
/*
|
|
* If we think the VFP is enabled, it must have be disabled by
|
|
* vfp_state_release for another LWP so we can just restore
|
|
* FPEXC and return since our VFP state is still loaded.
|
|
*/
|
|
armreg_fpexc_write(fregs->vfp_fpexc);
|
|
return;
|
|
}
|
|
|
|
/* Load and Enable the VFP (so that we can write the registers). */
|
|
if (flags & PCU_RELOAD) {
|
|
uint32_t fpexc = armreg_fpexc_read();
|
|
KDASSERT((fpexc & VFP_FPEXC_EX) == 0);
|
|
armreg_fpexc_write(fpexc | VFP_FPEXC_EN);
|
|
|
|
load_vfpregs(fregs);
|
|
armreg_fpscr_write(fregs->vfp_fpscr);
|
|
|
|
if (fregs->vfp_fpexc & VFP_FPEXC_EX) {
|
|
/* Need to restore the exception handling state. */
|
|
armreg_fpinst2_write(fregs->vfp_fpinst2);
|
|
if (fregs->vfp_fpexc & VFP_FPEXC_FP2V)
|
|
armreg_fpinst_write(fregs->vfp_fpinst);
|
|
}
|
|
}
|
|
|
|
/* Finally, restore the FPEXC but don't enable the VFP. */
|
|
fregs->vfp_fpexc |= VFP_FPEXC_EN;
|
|
armreg_fpexc_write(fregs->vfp_fpexc);
|
|
}
|
|
|
|
void
|
|
vfp_state_save(lwp_t *l, u_int flags)
|
|
{
|
|
struct pcb * const pcb = lwp_getpcb(l);
|
|
uint32_t fpexc = armreg_fpexc_read();
|
|
armreg_fpexc_write((fpexc | VFP_FPEXC_EN) & ~VFP_FPEXC_EX);
|
|
|
|
if (flags & PCU_KERNEL) {
|
|
/*
|
|
* Save the kernel set of VFP registers.
|
|
* (just the first 16).
|
|
*/
|
|
save_vfpregs_lo(pcb->pcb_kernel_vfp.vfp_regs);
|
|
return;
|
|
}
|
|
|
|
struct vfpreg * const fregs = &pcb->pcb_vfp;
|
|
|
|
/*
|
|
* Enable the VFP (so we can read the registers).
|
|
* Make sure the exception bit is cleared so that we can
|
|
* safely dump the registers.
|
|
*/
|
|
fregs->vfp_fpexc = fpexc;
|
|
if (fpexc & VFP_FPEXC_EX) {
|
|
/* Need to save the exception handling state */
|
|
fregs->vfp_fpinst = armreg_fpinst_read();
|
|
if (fpexc & VFP_FPEXC_FP2V)
|
|
fregs->vfp_fpinst2 = armreg_fpinst2_read();
|
|
}
|
|
fregs->vfp_fpscr = armreg_fpscr_read();
|
|
save_vfpregs(fregs);
|
|
|
|
/* Disable the VFP. */
|
|
armreg_fpexc_write(fpexc);
|
|
}
|
|
|
|
void
|
|
vfp_state_release(lwp_t *l, u_int flags)
|
|
{
|
|
struct pcb * const pcb = lwp_getpcb(l);
|
|
|
|
if (flags & PCU_KERNEL) {
|
|
/*
|
|
* Restore the FPEXC since we borrowed that field.
|
|
*/
|
|
pcb->pcb_vfp.vfp_fpexc = pcb->pcb_kernel_vfp.vfp_fpexc;
|
|
} else {
|
|
/*
|
|
* Now mark the VFP as disabled (and our state
|
|
* has been already saved or is being discarded).
|
|
*/
|
|
pcb->pcb_vfp.vfp_fpexc &= ~VFP_FPEXC_EN;
|
|
}
|
|
|
|
/*
|
|
* Turn off the FPU so the next time a VFP instruction is issued
|
|
* an exception happens. We don't know if this LWP's state was
|
|
* loaded but if we turned off the FPU for some other LWP, when
|
|
* pcu_load invokes vfp_state_load it will see that VFP_FPEXC_EN
|
|
* is still set so it just restore fpexc and return since its
|
|
* contents are still sitting in the VFP.
|
|
*/
|
|
armreg_fpexc_write(armreg_fpexc_read() & ~VFP_FPEXC_EN);
|
|
}
|
|
|
|
void
|
|
vfp_savecontext(void)
|
|
{
|
|
pcu_save(&arm_vfp_ops);
|
|
}
|
|
|
|
void
|
|
vfp_discardcontext(bool used_p)
|
|
{
|
|
pcu_discard(&arm_vfp_ops, used_p);
|
|
}
|
|
|
|
bool
|
|
vfp_used_p(void)
|
|
{
|
|
return pcu_used_p(&arm_vfp_ops);
|
|
}
|
|
|
|
void
|
|
vfp_kernel_acquire(void)
|
|
{
|
|
if (__predict_false(cpu_intr_p())) {
|
|
armreg_fpexc_write(VFP_FPEXC_EN);
|
|
if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
|
|
lwp_t * const l = curlwp;
|
|
struct pcb * const pcb = lwp_getpcb(l);
|
|
KASSERT((l->l_md.md_flags & MDLWP_VFPINTR) == 0);
|
|
l->l_md.md_flags |= MDLWP_VFPINTR;
|
|
save_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
|
|
}
|
|
} else {
|
|
pcu_kernel_acquire(&arm_vfp_ops);
|
|
}
|
|
}
|
|
|
|
void
|
|
vfp_kernel_release(void)
|
|
{
|
|
if (__predict_false(cpu_intr_p())) {
|
|
uint32_t fpexc = 0;
|
|
if (curcpu()->ci_data.cpu_pcu_curlwp[PCU_FPU] != NULL) {
|
|
lwp_t * const l = curlwp;
|
|
struct pcb * const pcb = lwp_getpcb(l);
|
|
KASSERT(l->l_md.md_flags & MDLWP_VFPINTR);
|
|
load_vfpregs_lo(&pcb->pcb_kernel_vfp.vfp_regs[16]);
|
|
l->l_md.md_flags &= ~MDLWP_VFPINTR;
|
|
fpexc = pcb->pcb_vfp.vfp_fpexc;
|
|
}
|
|
armreg_fpexc_write(fpexc);
|
|
} else {
|
|
pcu_kernel_release(&arm_vfp_ops);
|
|
}
|
|
}
|
|
|
|
void
|
|
vfp_getcontext(struct lwp *l, mcontext_t *mcp, int *flagsp)
|
|
{
|
|
if (vfp_used_p()) {
|
|
const struct pcb * const pcb = lwp_getpcb(l);
|
|
pcu_save(&arm_vfp_ops);
|
|
mcp->__fpu.__vfpregs.__vfp_fpscr = pcb->pcb_vfp.vfp_fpscr;
|
|
memcpy(mcp->__fpu.__vfpregs.__vfp_fstmx, pcb->pcb_vfp.vfp_regs,
|
|
sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
|
|
*flagsp |= _UC_FPU|_UC_ARM_VFP;
|
|
}
|
|
}
|
|
|
|
void
|
|
vfp_setcontext(struct lwp *l, const mcontext_t *mcp)
|
|
{
|
|
pcu_discard(&arm_vfp_ops, true);
|
|
struct pcb * const pcb = lwp_getpcb(l);
|
|
pcb->pcb_vfp.vfp_fpscr = mcp->__fpu.__vfpregs.__vfp_fpscr;
|
|
memcpy(pcb->pcb_vfp.vfp_regs, mcp->__fpu.__vfpregs.__vfp_fstmx,
|
|
sizeof(mcp->__fpu.__vfpregs.__vfp_fstmx));
|
|
}
|
|
|
|
#endif /* FPU_VFP */
|