This repository has been archived on 2024-06-01. You can view files and clone it, but cannot push or open issues or pull requests.
cathook/src/sdk/netmessage.cpp
2018-05-06 17:06:07 +02:00

501 lines
12 KiB
C++

/*
* netmessage.cpp
*
* Created on: Dec 3, 2016
* Author: nullifiedcat
*/
#include <core/logging.hpp>
#include <netmessage.hpp>
#include "common.hpp"
bf_write::bf_write()
{
m_pData = NULL;
m_nDataBytes = 0;
m_nDataBits = -1; // set to -1 so we generate overflow on any operation
m_iCurBit = 0;
m_bOverflow = false;
m_bAssertOnOverflow = true;
m_pDebugName = NULL;
}
unsigned long g_LittleBits[32];
// Precalculated bit masks for WriteUBitLong. Using these tables instead of
// doing the calculations gives a 33% speedup in WriteUBitLong.
unsigned long g_BitWriteMasks[32][33];
// (1 << i) - 1
unsigned long g_ExtraMasks[33];
#include "bitvec.h"
inline int BitForBitnum(int bitnum)
{
return GetBitForBitnum(bitnum);
}
class CBitWriteMasksInit
{
public:
CBitWriteMasksInit()
{
for (unsigned int startbit = 0; startbit < 32; startbit++)
{
for (unsigned int nBitsLeft = 0; nBitsLeft < 33; nBitsLeft++)
{
unsigned int endbit = startbit + nBitsLeft;
g_BitWriteMasks[startbit][nBitsLeft] =
BitForBitnum(startbit) - 1;
if (endbit < 32)
g_BitWriteMasks[startbit][nBitsLeft] |=
~(BitForBitnum(endbit) - 1);
}
}
for (unsigned int maskBit = 0; maskBit < 32; maskBit++)
g_ExtraMasks[maskBit] = BitForBitnum(maskBit) - 1;
g_ExtraMasks[32] = ~0ul;
for (unsigned int littleBit = 0; littleBit < 32; littleBit++)
StoreLittleDWord(&g_LittleBits[littleBit], 0, 1u << littleBit);
}
};
static CBitWriteMasksInit g_BitWriteMasksInit;
bf_write::bf_write(const char *pDebugName, void *pData, int nBytes, int nBits)
{
m_bAssertOnOverflow = true;
m_pDebugName = pDebugName;
StartWriting(pData, nBytes, 0, nBits);
}
bf_write::bf_write(void *pData, int nBytes, int nBits)
{
m_bAssertOnOverflow = true;
m_pDebugName = NULL;
StartWriting(pData, nBytes, 0, nBits);
}
bool bf_write::WriteBytes(const void *pBuf, int nBytes)
{
return WriteBits(pBuf, nBytes << 3);
}
bool bf_write::WriteBits(const void *pInData, int nBits)
{
#if defined(BB_PROFILING)
VPROF("bf_write::WriteBits");
#endif
unsigned char *pOut = (unsigned char *) pInData;
int nBitsLeft = nBits;
// Bounds checking..
if ((m_iCurBit + nBits) > m_nDataBits)
{
SetOverflowFlag();
CallErrorHandler(BITBUFERROR_BUFFER_OVERRUN, GetDebugName());
return false;
}
// Align output to dword boundary
while (((unsigned long) pOut & 3) != 0 && nBitsLeft >= 8)
{
WriteUBitLong(*pOut, 8, false);
++pOut;
nBitsLeft -= 8;
}
if (IsPC() && (nBitsLeft >= 32) && (m_iCurBit & 7) == 0)
{
// current bit is byte aligned, do block copy
int numbytes = nBitsLeft >> 3;
int numbits = numbytes << 3;
Q_memcpy((char *) m_pData + (m_iCurBit >> 3), pOut, numbytes);
pOut += numbytes;
nBitsLeft -= numbits;
m_iCurBit += numbits;
}
// X360TBD: Can't write dwords in WriteBits because they'll get swapped
if (IsPC() && nBitsLeft >= 32)
{
unsigned long iBitsRight = (m_iCurBit & 31);
unsigned long iBitsLeft = 32 - iBitsRight;
unsigned long bitMaskLeft = g_BitWriteMasks[iBitsRight][32];
unsigned long bitMaskRight = g_BitWriteMasks[0][iBitsRight];
unsigned long *pData = &m_pData[m_iCurBit >> 5];
// Read dwords.
while (nBitsLeft >= 32)
{
unsigned long curData = *(unsigned long *) pOut;
pOut += sizeof(unsigned long);
*pData &= bitMaskLeft;
*pData |= curData << iBitsRight;
pData++;
if (iBitsLeft < 32)
{
curData >>= iBitsLeft;
*pData &= bitMaskRight;
*pData |= curData;
}
nBitsLeft -= 32;
m_iCurBit += 32;
}
}
// write remaining bytes
while (nBitsLeft >= 8)
{
WriteUBitLong(*pOut, 8, false);
++pOut;
nBitsLeft -= 8;
}
// write remaining bits
if (nBitsLeft)
{
WriteUBitLong(*pOut, nBitsLeft, false);
}
return !IsOverflowed();
}
void bf_write::StartWriting(void *pData, int nBytes, int iStartBit, int nBits)
{
// Make sure it's dword aligned and padded.
Assert((nBytes % 4) == 0);
Assert(((unsigned long) pData & 3) == 0);
// The writing code will overrun the end of the buffer if it isn't dword
// aligned, so truncate to force alignment
nBytes &= ~3;
m_pData = (unsigned long *) pData;
m_nDataBytes = nBytes;
if (nBits == -1)
{
m_nDataBits = nBytes << 3;
}
else
{
Assert(nBits <= nBytes * 8);
m_nDataBits = nBits;
}
m_iCurBit = iStartBit;
m_bOverflow = false;
}
void bf_write::Reset()
{
m_iCurBit = 0;
m_bOverflow = false;
}
bool bf_write::WriteString(const char *pStr)
{
if (pStr)
{
do
{
WriteChar(*pStr);
++pStr;
} while (*(pStr - 1) != 0);
}
else
{
WriteChar(0);
}
return !IsOverflowed();
}
bf_read::bf_read()
{
m_pData = NULL;
m_nDataBytes = 0;
m_nDataBits = -1; // set to -1 so we overflow on any operation
m_iCurBit = 0;
m_bOverflow = false;
m_bAssertOnOverflow = true;
m_pDebugName = NULL;
}
bf_read::bf_read(const void *pData, int nBytes, int nBits)
{
m_bAssertOnOverflow = true;
StartReading(pData, nBytes, 0, nBits);
}
bf_read::bf_read(const char *pDebugName, const void *pData, int nBytes,
int nBits)
{
m_bAssertOnOverflow = true;
m_pDebugName = pDebugName;
StartReading(pData, nBytes, 0, nBits);
}
void bf_read::StartReading(const void *pData, int nBytes, int iStartBit,
int nBits)
{
// Make sure we're dword aligned.
Assert(((unsigned long) pData & 3) == 0);
m_pData = (unsigned char *) pData;
m_nDataBytes = nBytes;
if (nBits == -1)
{
m_nDataBits = m_nDataBytes << 3;
}
else
{
Assert(nBits <= nBytes * 8);
m_nDataBits = nBits;
}
m_iCurBit = iStartBit;
m_bOverflow = false;
}
bool bf_read::ReadString(char *pStr, int maxLen, bool bLine, int *pOutNumChars)
{
Assert(maxLen != 0);
bool bTooSmall = false;
int iChar = 0;
while (1)
{
char val = ReadChar();
if (val == 0)
break;
else if (bLine && val == '\n')
break;
if (iChar < (maxLen - 1))
{
pStr[iChar] = val;
++iChar;
}
else
{
bTooSmall = true;
}
}
// Make sure it's null-terminated.
Assert(iChar < maxLen);
pStr[iChar] = 0;
if (pOutNumChars)
*pOutNumChars = iChar;
return !IsOverflowed() && !bTooSmall;
}
void bf_write::WriteSBitLong(int data, int numbits)
{
// Do we have a valid # of bits to encode with?
// Note: it does this wierdness here so it's bit-compatible with regular
// integer data in the buffer. (Some old code writes direct integers right
// into the buffer).
if (data < 0)
{
WriteUBitLong((unsigned int) (0x80000000 + data), numbits - 1, false);
WriteOneBit(1);
}
else
{
WriteUBitLong((unsigned int) data, numbits - 1);
WriteOneBit(0);
}
}
void bf_write::WriteChar(int val)
{
WriteSBitLong(val, sizeof(char) << 3);
}
void bf_write::WriteByte(int val)
{
WriteUBitLong(val, sizeof(unsigned char) << 3);
}
void bf_write::WriteLong(long val)
{
WriteSBitLong(val, sizeof(long) << 3);
}
bool CLC_RespondCvarValue::WriteToBuffer(bf_write &buffer)
{
buffer.WriteUBitLong(GetType(), NETMSG_TYPE_BITS);
buffer.WriteSBitLong(m_iCookie, 32);
buffer.WriteSBitLong(m_eStatusCode, 4);
buffer.WriteString(m_szCvarName);
buffer.WriteString(m_szCvarValue);
return !buffer.IsOverflowed();
}
bool CLC_RespondCvarValue::ReadFromBuffer(bf_read &buffer)
{
m_iCookie = buffer.ReadSBitLong(32);
m_eStatusCode = (EQueryCvarValueStatus) buffer.ReadSBitLong(4);
// Read the name.
buffer.ReadString(m_szCvarNameBuffer, sizeof(m_szCvarNameBuffer));
m_szCvarName = m_szCvarNameBuffer;
// Read the value.
buffer.ReadString(m_szCvarValueBuffer, sizeof(m_szCvarValueBuffer));
m_szCvarValue = m_szCvarValueBuffer;
return !buffer.IsOverflowed();
}
const char *CLC_RespondCvarValue::ToString(void) const
{
return strfmt("%s: status: %d, value: %s, cookie: %d", GetName(),
m_eStatusCode, m_szCvarValue, m_iCookie);
}
bool NET_NOP::WriteToBuffer(bf_write &buffer)
{
buffer.WriteUBitLong(GetType(), 6);
return !buffer.IsOverflowed();
}
bool NET_NOP::ReadFromBuffer(bf_read &buffer)
{
return true;
}
const char *NET_NOP::ToString(void) const
{
return "(null)";
}
bool NET_SignonState::WriteToBuffer(bf_write &buffer)
{
buffer.WriteUBitLong(GetType(), 6);
buffer.WriteByte(m_nSignonState);
buffer.WriteLong(m_nSpawnCount);
return !buffer.IsOverflowed();
}
bool NET_SignonState::ReadFromBuffer(bf_read &buffer)
{
/*m_nSignonState = buffer.ReadByte();
m_nSpawnCount = buffer.ReadLong();
*/
return true;
}
const char *NET_SignonState::ToString(void) const
{
return strfmt("net_SignonState: state %i, count %i", m_nSignonState,
m_nSpawnCount);
}
const char *CLC_VoiceData::ToString(void) const
{
return strfmt("%s: %i bytes", GetName(), m_nLength);
}
bool CLC_VoiceData::WriteToBuffer(bf_write &buffer)
{
buffer.WriteUBitLong(GetType(), NETMSG_TYPE_BITS);
m_nLength = m_DataOut.GetNumBitsWritten();
buffer.WriteWord(m_nLength); // length in bits
return buffer.WriteBits(m_DataOut.GetBasePointer(), m_nLength);
}
bool CLC_VoiceData::ReadFromBuffer(bf_read &buffer)
{
m_nLength = buffer.ReadWord(); // length in bits
m_DataIn = buffer;
return buffer.SeekRelative(m_nLength);
}
bool NET_SetConVar::WriteToBuffer(bf_write &buffer)
{
// logging::Info("Writing to buffer 0x%08x!", buf);
buffer.WriteUBitLong(GetType(), 6);
// logging::Info("A");
int numvars = 1; // m_ConVars.Count();
// logging::Info("B");
// Note how many we're sending
buffer.WriteByte(numvars);
// logging::Info("C");
// for (int i=0; i< numvars; i++ )
//{
// cvar_t * cvar = &m_ConVars[i];
buffer.WriteString(convar.name);
buffer.WriteString(convar.value);
//}
// logging::Info("D");
return !buffer.IsOverflowed();
}
bool NET_SetConVar::ReadFromBuffer(bf_read &buffer)
{
int numvars = buffer.ReadByte();
// m_ConVars.RemoveAll();
for (int i = 0; i < numvars; i++)
{
cvar_t cvar;
buffer.ReadString(cvar.name, sizeof(cvar.name));
buffer.ReadString(cvar.value, sizeof(cvar.value));
// m_ConVars.AddToTail( cvar );
}
return !buffer.IsOverflowed();
}
const char *NET_SetConVar::ToString(void) const
{
/*snprintf(s_text, sizeof(s_text), "%s: %i cvars, \"%s\"=\"%s\"",
GetName(), m_ConVars.Count(),
m_ConVars[0].name, m_ConVars[0].value );
return s_text;*/
return "(NULL)";
}
bool NET_StringCmd::WriteToBuffer(bf_write &buffer)
{
buffer.WriteUBitLong(GetType(), 6);
return buffer.WriteString(m_szCommand ? m_szCommand
: " NET_StringCmd NULL");
}
bool NET_StringCmd::ReadFromBuffer(bf_read &buffer)
{
m_szCommand = m_szCommandBuffer;
return buffer.ReadString(m_szCommandBuffer, sizeof(m_szCommandBuffer));
}
const char *NET_StringCmd::ToString(void) const
{
return "STRINGCMD";
}