//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // //===========================================================================// #ifndef IMESH_H #define IMESH_H #ifdef _WIN32 #pragma once #endif #include #include #include "materialsystem/imaterial.h" #include "mathlib/mathlib.h" #include "tier0/dbg.h" #include "tier1/interface.h" #include "tier2/meshutils.h" #if defined(DX_TO_GL_ABSTRACTION) // Swap these so that we do color swapping on 10.6.2, which doesn't have // EXT_vertex_array_bgra #define OPENGL_SWAP_COLORS #endif //----------------------------------------------------------------------------- // forward declarations //----------------------------------------------------------------------------- class IMaterial; class CMeshBuilder; class IMaterialVar; typedef uint64 VertexFormat_t; //----------------------------------------------------------------------------- // Define this to find write-combine problems //----------------------------------------------------------------------------- #ifdef _DEBUG //#ifndef DEBUG_WRITE_COMBINE //#define DEBUG_WRITE_COMBINE 1 //#endif #endif //----------------------------------------------------------------------------- // The Vertex Buffer interface //----------------------------------------------------------------------------- enum { VERTEX_MAX_TEXTURE_COORDINATES = 8, BONE_MATRIX_INDEX_INVALID = 255 }; // Internal maximums for sizes. Don't use directly, use // IMaterialSystem::GetMaxToRender() enum { INDEX_BUFFER_SIZE = 32768, DYNAMIC_VERTEX_BUFFER_MEMORY = (1024 + 512) * 1024, DYNAMIC_VERTEX_BUFFER_MEMORY_SMALL = 384 * 1024, // Only allocate this much during map transitions }; // Vertex fields must be written in well-defined order to achieve write // combining, which is a perf booster enum WriteCombineOrdering_t { MB_FIELD_NONE = -1, MB_FIELD_POSITION = 0, MB_FIELD_BONE_WEIGHTS, MB_FIELD_BONE_INDEX, MB_FIELD_NORMAL, MB_FIELD_COLOR, MB_FIELD_SPECULAR, MB_FIELD_TEXCOORD_FIRST, MB_FIELD_TEXCOORD_LAST = MB_FIELD_TEXCOORD_FIRST + VERTEX_MAX_TEXTURE_COORDINATES - 1, MB_FIELD_TANGENT_S, MB_FIELD_TANGENT_T, MB_FIELD_USERDATA, }; #define MB_FIELD_TEXCOORD(nStage) (MB_FIELD_TEXCOORD_FIRST + (nStage)) struct VertexDesc_t { // These can be set to zero if there are pointers to dummy buffers, when the // actual buffer format doesn't contain the data but it needs to be safe to // use all the CMeshBuilder functions. int m_VertexSize_Position; int m_VertexSize_BoneWeight; int m_VertexSize_BoneMatrixIndex; int m_VertexSize_Normal; int m_VertexSize_Color; int m_VertexSize_Specular; int m_VertexSize_TexCoord[VERTEX_MAX_TEXTURE_COORDINATES]; int m_VertexSize_TangentS; int m_VertexSize_TangentT; int m_VertexSize_Wrinkle; int m_VertexSize_UserData; int m_ActualVertexSize; // Size of the vertices.. Some of the m_VertexSize_ // elements above are set to this value and some // are set to zero depending on which fields exist // in a buffer's vertex format. // The type of compression applied to this vertex data VertexCompressionType_t m_CompressionType; // Number of bone weights per vertex... int m_NumBoneWeights; // Pointers to our current vertex data float *m_pPosition; float *m_pBoneWeight; #ifndef NEW_SKINNING unsigned char *m_pBoneMatrixIndex; #else float *m_pBoneMatrixIndex; #endif float *m_pNormal; unsigned char *m_pColor; unsigned char *m_pSpecular; float *m_pTexCoord[VERTEX_MAX_TEXTURE_COORDINATES]; // Tangent space *associated with one particular set of texcoords* float *m_pTangentS; float *m_pTangentT; float *m_pWrinkle; // user data float *m_pUserData; // The first vertex index (used for buffered vertex buffers, or cards that // don't support stream offset) int m_nFirstVertex; // The offset in bytes of the memory we're writing into // from the start of the D3D buffer (will be 0 for static meshes) unsigned int m_nOffset; #ifdef DEBUG_WRITE_COMBINE int m_nLastWrittenField; unsigned char *m_pLastWrittenAddress; #endif }; struct IndexDesc_t { // Pointers to the index data unsigned short *m_pIndices; // The offset in bytes of the memory we're writing into // from the start of the D3D buffer (will be 0 for static meshes) unsigned int m_nOffset; // The first index (used for buffered index buffers, or cards that don't // support stream offset) unsigned int m_nFirstIndex; // 1 if the device is active, 0 if the device isn't active. // Faster than doing if checks for null m_pIndices if someone is // trying to write the m_pIndices while the device is inactive. unsigned char m_nIndexSize; }; //----------------------------------------------------------------------------- // The Mesh memory descriptor //----------------------------------------------------------------------------- struct MeshDesc_t : public VertexDesc_t, public IndexDesc_t {}; //----------------------------------------------------------------------------- // Standard vertex formats for models //----------------------------------------------------------------------------- struct ModelVertexDX7_t { Vector m_vecPosition; Vector2D m_flBoneWeights; unsigned int m_nBoneIndices; Vector m_vecNormal; unsigned int m_nColor; // ARGB Vector2D m_vecTexCoord; }; struct ModelVertexDX8_t : public ModelVertexDX7_t { Vector4D m_vecUserData; }; //----------------------------------------------------------------------------- // Utility methods for buffer builders //----------------------------------------------------------------------------- inline float *OffsetFloatPointer(float *pBufferPointer, int nVertexCount, int vertexSize) { return reinterpret_cast( reinterpret_cast(pBufferPointer) + nVertexCount * vertexSize); } inline const float *OffsetFloatPointer(const float *pBufferPointer, int nVertexCount, int vertexSize) { return reinterpret_cast( reinterpret_cast(pBufferPointer) + nVertexCount * vertexSize); } inline void IncrementFloatPointer(float *&pBufferPointer, int vertexSize) { pBufferPointer = reinterpret_cast( reinterpret_cast(pBufferPointer) + vertexSize); } //----------------------------------------------------------------------------- // Used in lists of indexed primitives. //----------------------------------------------------------------------------- class CPrimList { public: CPrimList(); CPrimList(int nFirstIndex, int nIndexCount); int m_FirstIndex; int m_NumIndices; }; inline CPrimList::CPrimList() {} inline CPrimList::CPrimList(int nFirstIndex, int nIndexCount) { m_FirstIndex = nFirstIndex; m_NumIndices = nIndexCount; } abstract_class IVertexBuffer { public: // Add a virtual destructor to silence the clang warning. // This is harmless but not important since the only derived class // doesn't have a destructor. virtual ~IVertexBuffer() {} // NOTE: The following two methods are only valid for static vertex buffers // Returns the number of vertices and the format of the vertex buffer virtual int VertexCount() const = 0; virtual VertexFormat_t GetVertexFormat() const = 0; // Is this vertex buffer dynamic? virtual bool IsDynamic() const = 0; // NOTE: For dynamic vertex buffers only! // Casts the memory of the dynamic vertex buffer to the appropriate type virtual void BeginCastBuffer(VertexFormat_t format) = 0; virtual void EndCastBuffer() = 0; // Returns the number of vertices that can still be written into the buffer virtual int GetRoomRemaining() const = 0; virtual bool Lock(int nVertexCount, bool bAppend, VertexDesc_t &desc) = 0; virtual void Unlock(int nVertexCount, VertexDesc_t &desc) = 0; // Spews the mesh data virtual void Spew(int nVertexCount, const VertexDesc_t &desc) = 0; // Call this in debug mode to make sure our data is good. virtual void ValidateData(int nVertexCount, const VertexDesc_t &desc) = 0; }; abstract_class IIndexBuffer { public: // Add a virtual destructor to silence the clang warning. // This is harmless but not important since the only derived class // doesn't have a destructor. virtual ~IIndexBuffer() {} // NOTE: The following two methods are only valid for static index buffers // Returns the number of indices and the format of the index buffer virtual int IndexCount() const = 0; virtual MaterialIndexFormat_t IndexFormat() const = 0; // Is this index buffer dynamic? virtual bool IsDynamic() const = 0; // NOTE: For dynamic index buffers only! // Casts the memory of the dynamic index buffer to the appropriate type virtual void BeginCastBuffer(MaterialIndexFormat_t format) = 0; virtual void EndCastBuffer() = 0; // Returns the number of indices that can still be written into the buffer virtual int GetRoomRemaining() const = 0; // Locks, unlocks the index buffer virtual bool Lock(int nMaxIndexCount, bool bAppend, IndexDesc_t &desc) = 0; virtual void Unlock(int nWrittenIndexCount, IndexDesc_t &desc) = 0; // FIXME: Remove this!! // Locks, unlocks the index buffer for modify virtual void ModifyBegin(bool bReadOnly, int nFirstIndex, int nIndexCount, IndexDesc_t &desc) = 0; virtual void ModifyEnd(IndexDesc_t & desc) = 0; // Spews the mesh data virtual void Spew(int nIndexCount, const IndexDesc_t &desc) = 0; // Ensures the data in the index buffer is valid virtual void ValidateData(int nIndexCount, const IndexDesc_t &desc) = 0; }; //----------------------------------------------------------------------------- // Interface to the mesh - needs to contain an IVertexBuffer and an IIndexBuffer // to emulate old mesh behavior //----------------------------------------------------------------------------- abstract_class IMesh : public IVertexBuffer, public IIndexBuffer { public: // ----------------------------------- // Sets/gets the primitive type virtual void SetPrimitiveType(MaterialPrimitiveType_t type) = 0; // Draws the mesh virtual void Draw(int nFirstIndex = -1, int nIndexCount = 0) = 0; virtual void SetColorMesh(IMesh * pColorMesh, int nVertexOffset) = 0; // Draw a list of (lists of) primitives. Batching your lists together that // use the same lightmap, material, vertex and index buffers with multipass // shaders can drastically reduce state-switching overhead. NOTE: this only // works with STATIC meshes. virtual void Draw(CPrimList * pLists, int nLists) = 0; // Copy verts and/or indices to a mesh builder. This only works for temp // meshes! virtual void CopyToMeshBuilder( int iStartVert, // Which vertices to copy. int nVerts, int iStartIndex, // Which indices to copy. int nIndices, int indexOffset, // This is added to each index. CMeshBuilder &builder) = 0; // Spews the mesh data virtual void Spew(int nVertexCount, int nIndexCount, const MeshDesc_t &desc) = 0; // Call this in debug mode to make sure our data is good. virtual void ValidateData(int nVertexCount, int nIndexCount, const MeshDesc_t &desc) = 0; // New version // Locks/unlocks the mesh, providing space for nVertexCount and nIndexCount. // nIndexCount of -1 means don't lock the index buffer... virtual void LockMesh(int nVertexCount, int nIndexCount, MeshDesc_t &desc) = 0; virtual void ModifyBegin(int nFirstVertex, int nVertexCount, int nFirstIndex, int nIndexCount, MeshDesc_t &desc) = 0; virtual void ModifyEnd(MeshDesc_t & desc) = 0; virtual void UnlockMesh(int nVertexCount, int nIndexCount, MeshDesc_t &desc) = 0; virtual void ModifyBeginEx(bool bReadOnly, int nFirstVertex, int nVertexCount, int nFirstIndex, int nIndexCount, MeshDesc_t &desc) = 0; virtual void SetFlexMesh(IMesh * pMesh, int nVertexOffset) = 0; virtual void DisableFlexMesh() = 0; virtual void MarkAsDrawn() = 0; virtual unsigned ComputeMemoryUsed() = 0; }; #include "meshreader.h" #define INVALID_BUFFER_OFFSET 0xFFFFFFFFUL // flags for advancevertex optimization #define VTX_HAVEPOS 1 #define VTX_HAVENORMAL 2 #define VTX_HAVECOLOR 4 #define VTX_HAVEALL (VTX_HAVEPOS | VTX_HAVENORMAL | VTX_HAVECOLOR) //----------------------------------------------------------------------------- // // Helper class used to define vertex buffers // //----------------------------------------------------------------------------- class CVertexBuilder : private VertexDesc_t { public: CVertexBuilder(); CVertexBuilder(IVertexBuffer *pVertexBuffer, VertexFormat_t fmt = 0); ~CVertexBuilder(); // Begins, ends modification of the index buffer (returns true if the lock // succeeded) A lock may not succeed if append is set to true and there // isn't enough room NOTE: Append is only used with dynamic index buffers; // it's ignored for static buffers bool Lock(int nMaxIndexCount, bool bAppend = false); void Unlock(); // Spews the current data // NOTE: Can only be called during a lock/unlock block void SpewData(); // Returns the number of indices we can fit into the buffer without needing // to discard int GetRoomRemaining() const; // Binds this vertex buffer void Bind(IMatRenderContext *pContext, int nStreamID, VertexFormat_t usage = 0); // Returns the byte offset int Offset() const; // This must be called before Begin, if a vertex buffer with a compressed // format is to be used void SetCompressionType(VertexCompressionType_t compressionType); void ValidateCompressionType(); void Begin(IVertexBuffer *pVertexBuffer, int nVertexCount, int *nFirstVertex); void Begin(IVertexBuffer *pVertexBuffer, int nVertexCount); // Use this when you're done writing // Set bDraw to true to call m_pMesh->Draw automatically. void End(bool bSpewData = false); // Locks the vertex buffer to modify existing data // Passing nVertexCount == -1 says to lock all the vertices for // modification. void BeginModify(IVertexBuffer *pVertexBuffer, int nFirstVertex = 0, int nVertexCount = -1); void EndModify(bool bSpewData = false); // returns the number of vertices int VertexCount() const; // Returns the total number of vertices across all Locks() int TotalVertexCount() const; // Resets the mesh builder so it points to the start of everything again void Reset(); // Returns the size of the vertex int VertexSize() { return m_ActualVertexSize; } // returns the data size of a given texture coordinate int TextureCoordinateSize(int nTexCoordNumber) { return m_VertexSize_TexCoord[nTexCoordNumber]; } // Returns the base vertex memory pointer void *BaseVertexData(); // Selects the nth Vertex and Index void SelectVertex(int idx); // Advances the current vertex and index by one void AdvanceVertex(void); template void AdvanceVertexF(void); void AdvanceVertices(int nVerts); int GetCurrentVertex() const; int GetFirstVertex() const; // Data retrieval... const float *Position() const; const float *Normal() const; unsigned int Color() const; unsigned char *Specular() const; const float *TexCoord(int stage) const; const float *TangentS() const; const float *TangentT() const; const float *BoneWeight() const; float Wrinkle() const; int NumBoneWeights() const; #ifndef NEW_SKINNING unsigned char *BoneMatrix() const; #else float *BoneMatrix() const; #endif // position setting void Position3f(float x, float y, float z); void Position3fv(const float *v); // normal setting void Normal3f(float nx, float ny, float nz); void Normal3fv(const float *n); void NormalDelta3fv(const float *n); void NormalDelta3f(float nx, float ny, float nz); // normal setting (templatized for code which needs to support compressed // vertices) template void CompressedNormal3f(float nx, float ny, float nz); template void CompressedNormal3fv(const float *n); // color setting void Color3f(float r, float g, float b); void Color3fv(const float *rgb); void Color4f(float r, float g, float b, float a); void Color4fv(const float *rgba); // Faster versions of color void Color3ub(unsigned char r, unsigned char g, unsigned char b); void Color3ubv(unsigned char const *rgb); void Color4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a); void Color4ubv(unsigned char const *rgba); // specular color setting void Specular3f(float r, float g, float b); void Specular3fv(const float *rgb); void Specular4f(float r, float g, float b, float a); void Specular4fv(const float *rgba); // Faster version of specular void Specular3ub(unsigned char r, unsigned char g, unsigned char b); void Specular3ubv(unsigned char const *c); void Specular4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a); void Specular4ubv(unsigned char const *c); // texture coordinate setting void TexCoord1f(int stage, float s); void TexCoord2f(int stage, float s, float t); void TexCoord2fv(int stage, const float *st); void TexCoord3f(int stage, float s, float t, float u); void TexCoord3fv(int stage, const float *stu); void TexCoord4f(int stage, float s, float t, float u, float w); void TexCoord4fv(int stage, const float *stuv); void TexCoordSubRect2f(int stage, float s, float t, float offsetS, float offsetT, float scaleS, float scaleT); void TexCoordSubRect2fv(int stage, const float *st, const float *offset, const float *scale); // tangent space void TangentS3f(float sx, float sy, float sz); void TangentS3fv(const float *s); void TangentT3f(float tx, float ty, float tz); void TangentT3fv(const float *t); // Wrinkle void Wrinkle1f(float flWrinkle); // bone weights void BoneWeight(int idx, float weight); // bone weights (templatized for code which needs to support compressed // vertices) template void CompressedBoneWeight3fv(const float *pWeights); // bone matrix index void BoneMatrix(int idx, int matrixIndex); // Generic per-vertex data void UserData(const float *pData); // Generic per-vertex data (templatized for code which needs to support // compressed vertices) template void CompressedUserData(const float *pData); // Fast Vertex! No need to call advance vertex, and no random access // allowed. WARNING - these are low level functions that are intended only // for use in the software vertex skinner. void FastVertex(const ModelVertexDX7_t &vertex); void FastVertexSSE(const ModelVertexDX7_t &vertex); // store 4 dx7 vertices fast. for special sse dx7 pipeline void Fast4VerticesSSE(ModelVertexDX7_t const *vtx_a, ModelVertexDX7_t const *vtx_b, ModelVertexDX7_t const *vtx_c, ModelVertexDX7_t const *vtx_d); void FastVertex(const ModelVertexDX8_t &vertex); void FastVertexSSE(const ModelVertexDX8_t &vertex); // Add number of verts and current vert since FastVertex routines do not // update. void FastAdvanceNVertices(int n); #if defined(_X360) void VertexDX8ToX360(const ModelVertexDX8_t &vertex); #endif // FIXME: Remove! Backward compat so we can use this from a CMeshBuilder. void AttachBegin(IMesh *pMesh, int nMaxVertexCount, const MeshDesc_t &desc); void AttachEnd(); void AttachBeginModify(IMesh *pMesh, int nFirstVertex, int nVertexCount, const MeshDesc_t &desc); void AttachEndModify(); private: // The vertex buffer we're modifying IVertexBuffer *m_pVertexBuffer; // Used to make sure Begin/End calls and BeginModify/EndModify calls match. bool m_bModify; // Max number of indices and vertices int m_nMaxVertexCount; // Number of indices and vertices int m_nVertexCount; // The current vertex and index mutable int m_nCurrentVertex; // Optimization: Pointer to the current pos, norm, texcoord, and color mutable float *m_pCurrPosition; mutable float *m_pCurrNormal; mutable float *m_pCurrTexCoord[VERTEX_MAX_TEXTURE_COORDINATES]; mutable unsigned char *m_pCurrColor; // Total number of vertices appended int m_nTotalVertexCount; // First vertex buffer offset + index unsigned int m_nBufferOffset; unsigned int m_nBufferFirstVertex; #if (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4) // Debug checks to make sure we write userdata4/tangents AFTER normals bool m_bWrittenNormal : 1; bool m_bWrittenUserData : 1; #endif friend class CMeshBuilder; }; //----------------------------------------------------------------------------- // // Inline methods of CVertexBuilder // //----------------------------------------------------------------------------- inline CVertexBuilder::CVertexBuilder() { m_pVertexBuffer = NULL; m_nBufferOffset = INVALID_BUFFER_OFFSET; m_nBufferFirstVertex = 0; m_nVertexCount = 0; m_nCurrentVertex = 0; m_nMaxVertexCount = 0; m_nTotalVertexCount = 0; m_CompressionType = VERTEX_COMPRESSION_INVALID; #ifdef _DEBUG m_pCurrPosition = NULL; m_pCurrNormal = NULL; m_pCurrColor = NULL; memset(m_pCurrTexCoord, 0, sizeof(m_pCurrTexCoord)); m_bModify = false; #endif } inline CVertexBuilder::CVertexBuilder(IVertexBuffer *pVertexBuffer, VertexFormat_t fmt) { m_pVertexBuffer = pVertexBuffer; m_nBufferOffset = INVALID_BUFFER_OFFSET; m_nBufferFirstVertex = 0; m_nVertexCount = 0; m_nCurrentVertex = 0; m_nMaxVertexCount = 0; m_nTotalVertexCount = 0; m_CompressionType = VERTEX_COMPRESSION_INVALID; if (m_pVertexBuffer->IsDynamic()) { m_pVertexBuffer->BeginCastBuffer(fmt); } else { Assert(m_pVertexBuffer->GetVertexFormat() == fmt); } #ifdef _DEBUG m_pCurrPosition = NULL; m_pCurrNormal = NULL; m_pCurrColor = NULL; memset(m_pCurrTexCoord, 0, sizeof(m_pCurrTexCoord)); m_bModify = false; #endif } inline CVertexBuilder::~CVertexBuilder() { if (m_pVertexBuffer && m_pVertexBuffer->IsDynamic()) { m_pVertexBuffer->EndCastBuffer(); } } //----------------------------------------------------------------------------- // Begins, ends modification of the index buffer //----------------------------------------------------------------------------- inline bool CVertexBuilder::Lock(int nMaxVertexCount, bool bAppend) { Assert(m_pVertexBuffer); m_bModify = false; m_nMaxVertexCount = nMaxVertexCount; bool bFirstLock = (m_nBufferOffset == INVALID_BUFFER_OFFSET); if (bFirstLock) { bAppend = false; } if (!bAppend) { m_nTotalVertexCount = 0; } // Lock the vertex buffer if (!m_pVertexBuffer->Lock(m_nMaxVertexCount, bAppend, *this)) { m_nMaxVertexCount = 0; return false; } Reset(); if (bFirstLock) { m_nBufferOffset = m_nOffset; m_nBufferFirstVertex = m_nFirstVertex; } return true; } inline void CVertexBuilder::Unlock() { Assert(!m_bModify && m_pVertexBuffer); #ifdef _DEBUG m_pVertexBuffer->ValidateData(m_nVertexCount, *this); #endif m_pVertexBuffer->Unlock(m_nVertexCount, *this); m_nTotalVertexCount += m_nVertexCount; m_nMaxVertexCount = 0; #ifdef _DEBUG // Null out our data... m_pCurrPosition = NULL; m_pCurrNormal = NULL; m_pCurrColor = NULL; memset(m_pCurrTexCoord, 0, sizeof(m_pCurrTexCoord)); memset(static_cast(this), 0, sizeof(VertexDesc_t)); #endif } inline void CVertexBuilder::SpewData() { m_pVertexBuffer->Spew(m_nVertexCount, *this); } //----------------------------------------------------------------------------- // Binds this vertex buffer //----------------------------------------------------------------------------- inline void CVertexBuilder::Bind(IMatRenderContext *pContext, int nStreamID, VertexFormat_t usage) { if (m_pVertexBuffer && (m_nBufferOffset != INVALID_BUFFER_OFFSET)) { pContext->BindVertexBuffer( nStreamID, m_pVertexBuffer, m_nBufferOffset, m_nFirstVertex, m_nTotalVertexCount, usage ? usage : m_pVertexBuffer->GetVertexFormat()); } else { pContext->BindVertexBuffer(nStreamID, NULL, 0, 0, 0, 0); } } //----------------------------------------------------------------------------- // Returns the byte offset //----------------------------------------------------------------------------- inline int CVertexBuilder::Offset() const { return m_nBufferOffset; } inline int CVertexBuilder::GetFirstVertex() const { return m_nBufferFirstVertex; } //----------------------------------------------------------------------------- // Specify the type of vertex compression that this CMeshBuilder will perform //----------------------------------------------------------------------------- inline void CVertexBuilder::SetCompressionType( VertexCompressionType_t compressionType) { // The real purpose of this method is to allow us to emit a Warning in // Begin() m_CompressionType = compressionType; } inline void CVertexBuilder::ValidateCompressionType() { #ifdef _DEBUG VertexCompressionType_t vbCompressionType = CompressionType(m_pVertexBuffer->GetVertexFormat()); if (vbCompressionType != VERTEX_COMPRESSION_NONE) { Assert(m_CompressionType == vbCompressionType); if (m_CompressionType != vbCompressionType) { Warning( "ERROR: CVertexBuilder::SetCompressionType() must be called to " "specify the same vertex compression type (%s) as the vertex " "buffer being modified." "Junk vertices will be rendered, or there will be a crash in " "CVertexBuilder!\n", vbCompressionType == VERTEX_COMPRESSION_ON ? "VERTEX_COMPRESSION_ON" : "VERTEX_COMPRESSION_NONE"); } // Never use vertex compression for dynamic VBs (the conversions can // really hurt perf) Assert(!m_pVertexBuffer->IsDynamic()); } #endif } inline void CVertexBuilder::Begin(IVertexBuffer *pVertexBuffer, int nVertexCount) { Assert(pVertexBuffer && (!m_pVertexBuffer)); m_pVertexBuffer = pVertexBuffer; m_bModify = false; m_nMaxVertexCount = nVertexCount; m_nVertexCount = 0; // Make sure SetCompressionType was called correctly, if this VB is // compressed ValidateCompressionType(); // Lock the vertex and index buffer m_pVertexBuffer->Lock(m_nMaxVertexCount, false, *this); // Point to the start of the buffers.. Reset(); } //----------------------------------------------------------------------------- // Use this when you're done modifying the mesh //----------------------------------------------------------------------------- inline void CVertexBuilder::End(bool bSpewData) { // Make sure they called Begin() Assert(!m_bModify); if (bSpewData) { m_pVertexBuffer->Spew(m_nVertexCount, *this); } #ifdef _DEBUG m_pVertexBuffer->ValidateData(m_nVertexCount, *this); #endif // Unlock our buffers m_pVertexBuffer->Unlock(m_nVertexCount, *this); m_pVertexBuffer = 0; m_nMaxVertexCount = 0; m_CompressionType = VERTEX_COMPRESSION_INVALID; #ifdef _DEBUG // Null out our pointers... m_pCurrPosition = NULL; m_pCurrNormal = NULL; m_pCurrColor = NULL; memset(m_pCurrTexCoord, 0, sizeof(m_pCurrTexCoord)); memset(static_cast(this), 0, sizeof(VertexDesc_t)); #endif } //----------------------------------------------------------------------------- // FIXME: Remove! Backward compat so we can use this from a CMeshBuilder. //----------------------------------------------------------------------------- inline void CVertexBuilder::AttachBegin(IMesh *pMesh, int nMaxVertexCount, const MeshDesc_t &desc) { VertexCompressionType_t compressionType = m_CompressionType; m_pVertexBuffer = pMesh; memcpy(static_cast(this), static_cast(&desc), sizeof(VertexDesc_t)); m_nMaxVertexCount = nMaxVertexCount; m_NumBoneWeights = m_NumBoneWeights == 0 ? 0 : 2; // Two weights if any m_nVertexCount = 0; m_bModify = false; if (compressionType != VERTEX_COMPRESSION_INVALID) m_CompressionType = compressionType; // Make sure SetCompressionType was called correctly, if this VB is // compressed ValidateCompressionType(); if (m_nBufferOffset == INVALID_BUFFER_OFFSET) { m_nTotalVertexCount = 0; m_nBufferOffset = static_cast(&desc)->m_nOffset; m_nBufferFirstVertex = desc.m_nFirstVertex; } } inline void CVertexBuilder::AttachEnd() { // Make sure they called Begin() Assert(!m_bModify); m_nMaxVertexCount = 0; m_pVertexBuffer = NULL; m_CompressionType = VERTEX_COMPRESSION_INVALID; #ifdef _DEBUG // Null out our pointers... m_pCurrPosition = NULL; m_pCurrNormal = NULL; m_pCurrColor = NULL; memset(m_pCurrTexCoord, 0, sizeof(m_pCurrTexCoord)); memset(static_cast(this), 0, sizeof(VertexDesc_t)); #endif } inline void CVertexBuilder::AttachBeginModify(IMesh *pMesh, int nFirstVertex, int nVertexCount, const MeshDesc_t &desc) { Assert(pMesh && (!m_pVertexBuffer)); m_pVertexBuffer = pMesh; memcpy(static_cast(this), static_cast(&desc), sizeof(VertexDesc_t)); m_nMaxVertexCount = m_nVertexCount = nVertexCount; m_NumBoneWeights = m_NumBoneWeights == 0 ? 0 : 2; // Two weights if any m_bModify = true; // Make sure SetCompressionType was called correctly, if this VB is // compressed ValidateCompressionType(); } inline void CVertexBuilder::AttachEndModify() { Assert(m_pVertexBuffer); Assert(m_bModify); // Make sure they called BeginModify. m_pVertexBuffer = 0; m_nMaxVertexCount = 0; m_CompressionType = VERTEX_COMPRESSION_INVALID; #ifdef _DEBUG // Null out our pointers... m_pCurrPosition = NULL; m_pCurrNormal = NULL; m_pCurrColor = NULL; memset(m_pCurrTexCoord, 0, sizeof(m_pCurrTexCoord)); memset(static_cast(this), 0, sizeof(VertexDesc_t)); #endif } //----------------------------------------------------------------------------- // Computes the first min non-null address //----------------------------------------------------------------------------- inline unsigned char *FindMinAddress(void *pAddress1, void *pAddress2, int nAddress2Size) { if (nAddress2Size == 0) return (unsigned char *)pAddress1; if (!pAddress1) return (unsigned char *)pAddress2; return (pAddress1 < pAddress2) ? (unsigned char *)pAddress1 : (unsigned char *)pAddress2; } //----------------------------------------------------------------------------- // Resets the vertex buffer builder so it points to the start of everything // again //----------------------------------------------------------------------------- inline void CVertexBuilder::Reset() { m_nCurrentVertex = 0; m_pCurrPosition = m_pPosition; m_pCurrNormal = m_pNormal; for (int i = 0; i < NELEMS(m_pCurrTexCoord); i++) { m_pCurrTexCoord[i] = m_pTexCoord[i]; } m_pCurrColor = m_pColor; #if (defined(_DEBUG) && \ (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4)) m_bWrittenNormal = false; m_bWrittenUserData = false; #endif #ifdef DEBUG_WRITE_COMBINE // Logic for m_pLastWrittenAddress is tricky. It really wants the min of the // non-null address pointers. m_nLastWrittenField = MB_FIELD_NONE; m_pLastWrittenAddress = NULL; m_pLastWrittenAddress = FindMinAddress(m_pLastWrittenAddress, m_pPosition, m_VertexSize_Position); m_pLastWrittenAddress = FindMinAddress(m_pLastWrittenAddress, m_pBoneWeight, m_VertexSize_BoneWeight); m_pLastWrittenAddress = FindMinAddress(m_pLastWrittenAddress, m_pBoneMatrixIndex, m_VertexSize_BoneMatrixIndex); m_pLastWrittenAddress = FindMinAddress(m_pLastWrittenAddress, m_pNormal, m_VertexSize_Normal); m_pLastWrittenAddress = FindMinAddress(m_pLastWrittenAddress, m_pColor, m_VertexSize_Color); m_pLastWrittenAddress = FindMinAddress(m_pLastWrittenAddress, m_pSpecular, m_VertexSize_Specular); for (int i = 0; i < VERTEX_MAX_TEXTURE_COORDINATES; ++i) { m_pLastWrittenAddress = FindMinAddress( m_pLastWrittenAddress, m_pTexCoord[i], m_VertexSize_TexCoord[i]); } m_pLastWrittenAddress = FindMinAddress(m_pLastWrittenAddress, m_pTangentS, m_VertexSize_TangentS); m_pLastWrittenAddress = FindMinAddress(m_pLastWrittenAddress, m_pTangentT, m_VertexSize_TangentT); m_pLastWrittenAddress = FindMinAddress(m_pLastWrittenAddress, m_pUserData, m_VertexSize_UserData); #endif } //----------------------------------------------------------------------------- // returns the number of vertices //----------------------------------------------------------------------------- inline int CVertexBuilder::VertexCount() const { return m_nVertexCount; } //----------------------------------------------------------------------------- // Returns the total number of vertices across all Locks() //----------------------------------------------------------------------------- inline int CVertexBuilder::TotalVertexCount() const { return m_nTotalVertexCount; } //----------------------------------------------------------------------------- // Returns the base vertex memory pointer //----------------------------------------------------------------------------- inline void *CVertexBuilder::BaseVertexData() { // FIXME: If there's no position specified, we need to find // the base address Assert(m_pPosition); return m_pPosition; } //----------------------------------------------------------------------------- // Selects the current vertex //----------------------------------------------------------------------------- inline void CVertexBuilder::SelectVertex(int nIndex) { // NOTE: This index is expected to be relative Assert((nIndex >= 0) && (nIndex < m_nMaxVertexCount)); m_nCurrentVertex = nIndex; m_pCurrPosition = OffsetFloatPointer(m_pPosition, m_nCurrentVertex, m_VertexSize_Position); m_pCurrNormal = OffsetFloatPointer(m_pNormal, m_nCurrentVertex, m_VertexSize_Normal); COMPILE_TIME_ASSERT(VERTEX_MAX_TEXTURE_COORDINATES == 8); m_pCurrTexCoord[0] = OffsetFloatPointer(m_pTexCoord[0], m_nCurrentVertex, m_VertexSize_TexCoord[0]); m_pCurrTexCoord[1] = OffsetFloatPointer(m_pTexCoord[1], m_nCurrentVertex, m_VertexSize_TexCoord[1]); m_pCurrTexCoord[2] = OffsetFloatPointer(m_pTexCoord[2], m_nCurrentVertex, m_VertexSize_TexCoord[2]); m_pCurrTexCoord[3] = OffsetFloatPointer(m_pTexCoord[3], m_nCurrentVertex, m_VertexSize_TexCoord[3]); m_pCurrTexCoord[4] = OffsetFloatPointer(m_pTexCoord[4], m_nCurrentVertex, m_VertexSize_TexCoord[4]); m_pCurrTexCoord[5] = OffsetFloatPointer(m_pTexCoord[5], m_nCurrentVertex, m_VertexSize_TexCoord[5]); m_pCurrTexCoord[6] = OffsetFloatPointer(m_pTexCoord[6], m_nCurrentVertex, m_VertexSize_TexCoord[6]); m_pCurrTexCoord[7] = OffsetFloatPointer(m_pTexCoord[7], m_nCurrentVertex, m_VertexSize_TexCoord[7]); m_pCurrColor = m_pColor + m_nCurrentVertex * m_VertexSize_Color; #if (defined(_DEBUG) && \ (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4)) m_bWrittenNormal = false; m_bWrittenUserData = false; #endif } //----------------------------------------------------------------------------- // Advances vertex after you're done writing to it. //----------------------------------------------------------------------------- template FORCEINLINE void CVertexBuilder::AdvanceVertexF() { if (++m_nCurrentVertex > m_nVertexCount) { m_nVertexCount = m_nCurrentVertex; } if (nFlags & VTX_HAVEPOS) IncrementFloatPointer(m_pCurrPosition, m_VertexSize_Position); if (nFlags & VTX_HAVENORMAL) IncrementFloatPointer(m_pCurrNormal, m_VertexSize_Normal); if (nFlags & VTX_HAVECOLOR) m_pCurrColor += m_VertexSize_Color; COMPILE_TIME_ASSERT(VERTEX_MAX_TEXTURE_COORDINATES == 8); if (nNumTexCoords > 0) IncrementFloatPointer(m_pCurrTexCoord[0], m_VertexSize_TexCoord[0]); if (nNumTexCoords > 1) IncrementFloatPointer(m_pCurrTexCoord[1], m_VertexSize_TexCoord[1]); if (nNumTexCoords > 2) IncrementFloatPointer(m_pCurrTexCoord[2], m_VertexSize_TexCoord[2]); if (nNumTexCoords > 3) IncrementFloatPointer(m_pCurrTexCoord[3], m_VertexSize_TexCoord[3]); if (nNumTexCoords > 4) IncrementFloatPointer(m_pCurrTexCoord[4], m_VertexSize_TexCoord[4]); if (nNumTexCoords > 5) IncrementFloatPointer(m_pCurrTexCoord[5], m_VertexSize_TexCoord[5]); if (nNumTexCoords > 6) IncrementFloatPointer(m_pCurrTexCoord[6], m_VertexSize_TexCoord[6]); if (nNumTexCoords > 7) IncrementFloatPointer(m_pCurrTexCoord[7], m_VertexSize_TexCoord[7]); #if (defined(_DEBUG) && \ (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4)) m_bWrittenNormal = false; m_bWrittenUserData = false; #endif } inline void CVertexBuilder::AdvanceVertex() { AdvanceVertexF(); } inline void CVertexBuilder::AdvanceVertices(int nVerts) { m_nCurrentVertex += nVerts; if (m_nCurrentVertex > m_nVertexCount) { m_nVertexCount = m_nCurrentVertex; } IncrementFloatPointer(m_pCurrPosition, m_VertexSize_Position * nVerts); IncrementFloatPointer(m_pCurrNormal, m_VertexSize_Normal * nVerts); COMPILE_TIME_ASSERT(VERTEX_MAX_TEXTURE_COORDINATES == 8); IncrementFloatPointer(m_pCurrTexCoord[0], m_VertexSize_TexCoord[0] * nVerts); IncrementFloatPointer(m_pCurrTexCoord[1], m_VertexSize_TexCoord[1] * nVerts); IncrementFloatPointer(m_pCurrTexCoord[2], m_VertexSize_TexCoord[2] * nVerts); IncrementFloatPointer(m_pCurrTexCoord[3], m_VertexSize_TexCoord[3] * nVerts); IncrementFloatPointer(m_pCurrTexCoord[4], m_VertexSize_TexCoord[4] * nVerts); IncrementFloatPointer(m_pCurrTexCoord[5], m_VertexSize_TexCoord[5] * nVerts); IncrementFloatPointer(m_pCurrTexCoord[6], m_VertexSize_TexCoord[6] * nVerts); IncrementFloatPointer(m_pCurrTexCoord[7], m_VertexSize_TexCoord[7] * nVerts); m_pCurrColor += m_VertexSize_Color * nVerts; #if (defined(_DEBUG) && \ (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4)) m_bWrittenNormal = false; m_bWrittenUserData = false; #endif } //----------------------------------------------------------------------------- // For use with the FastVertex methods, advances the current vertex by N //----------------------------------------------------------------------------- inline void CVertexBuilder::FastAdvanceNVertices(int n) { m_nCurrentVertex += n; m_nVertexCount = m_nCurrentVertex; } #ifndef COMPILER_MSVC64 // Implement for 64-bit Windows if needed. //----------------------------------------------------------------------------- // Fast Vertex! No need to call advance vertex, and no random access allowed //----------------------------------------------------------------------------- inline void CVertexBuilder::FastVertex(const ModelVertexDX7_t &vertex) { Assert( m_CompressionType == VERTEX_COMPRESSION_NONE); // FIXME: support compressed verts if needed Assert(m_nCurrentVertex < m_nMaxVertexCount); #if defined(_WIN32) && !defined(_X360) const void *pRead = &vertex; void *pCurrPos = m_pCurrPosition; __asm { mov esi, pRead mov edi, pCurrPos movq mm0, [esi + 0] movq mm1, [esi + 8] movq mm2, [esi + 16] movq mm3, [esi + 24] movq mm4, [esi + 32] movq mm5, [esi + 40] movntq [edi + 0], mm0 movntq [edi + 8], mm1 movntq [edi + 16], mm2 movntq [edi + 24], mm3 movntq [edi + 32], mm4 movntq [edi + 40], mm5 emms } #elif defined(GNUC) const void *pRead = &vertex; void *pCurrPos = m_pCurrPosition; __asm__ __volatile__( "movq (%0), %%mm0\n" "movq 8(%0), %%mm1\n" "movq 16(%0), %%mm2\n" "movq 24(%0), %%mm3\n" "movq 32(%0), %%mm4\n" "movq 40(%0), %%mm5\n" "movntq %%mm0, (%1)\n" "movntq %%mm1, 8(%1)\n" "movntq %%mm2, 16(%1)\n" "movntq %%mm3, 24(%1)\n" "movntq %%mm4, 32(%1)\n" "movntq %%mm5, 40(%1)\n" "emms\n" ::"r"(pRead), "r"(pCurrPos) : "memory"); #else Error("Implement CMeshBuilder::FastVertex(dx7) "); #endif IncrementFloatPointer(m_pCurrPosition, m_VertexSize_Position); // m_nVertexCount = ++m_nCurrentVertex; #if (defined(_DEBUG) && \ (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4)) m_bWrittenNormal = false; m_bWrittenUserData = false; #endif } inline void CVertexBuilder::FastVertexSSE(const ModelVertexDX7_t &vertex) { Assert( m_CompressionType == VERTEX_COMPRESSION_NONE); // FIXME: support compressed verts if needed Assert(m_nCurrentVertex < m_nMaxVertexCount); #if defined(_WIN32) && !defined(_X360) const void *pRead = &vertex; void *pCurrPos = m_pCurrPosition; __asm { mov esi, pRead mov edi, pCurrPos movaps xmm0, [esi + 0] movaps xmm1, [esi + 16] movaps xmm2, [esi + 32] movntps [edi + 0], xmm0 movntps [edi + 16], xmm1 movntps [edi + 32], xmm2 } #elif defined(GNUC) const char *pRead = (char *)&vertex; char *pCurrPos = (char *)m_pCurrPosition; __m128 m1 = _mm_load_ps((float *)pRead); __m128 m2 = _mm_load_ps((float *)(pRead + 16)); __m128 m3 = _mm_load_ps((float *)(pRead + 32)); _mm_stream_ps((float *)pCurrPos, m1); _mm_stream_ps((float *)(pCurrPos + 16), m2); _mm_stream_ps((float *)(pCurrPos + 32), m3); #else Error("Implement CMeshBuilder::FastVertexSSE(dx7)"); #endif IncrementFloatPointer(m_pCurrPosition, m_VertexSize_Position); // m_nVertexCount = ++m_nCurrentVertex; #if (defined(_DEBUG) && \ (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4)) m_bWrittenNormal = false; m_bWrittenUserData = false; #endif } inline void CVertexBuilder::Fast4VerticesSSE(ModelVertexDX7_t const *vtx_a, ModelVertexDX7_t const *vtx_b, ModelVertexDX7_t const *vtx_c, ModelVertexDX7_t const *vtx_d) { Assert( m_CompressionType == VERTEX_COMPRESSION_NONE); // FIXME: support compressed verts if needed Assert(m_nCurrentVertex < m_nMaxVertexCount - 3); #if defined(_WIN32) && !defined(_X360) void *pCurrPos = m_pCurrPosition; __asm { mov esi, vtx_a mov ecx, vtx_b mov edi, pCurrPos nop movaps xmm0, [esi + 0] movaps xmm1, [esi + 16] movaps xmm2, [esi + 32] movaps xmm3, [ecx + 0] movaps xmm4, [ecx + 16] movaps xmm5, [ecx + 32] mov esi, vtx_c mov ecx, vtx_d movntps [edi + 0], xmm0 movntps [edi + 16], xmm1 movntps [edi + 32], xmm2 movntps [edi + 48], xmm3 movntps [edi + 64], xmm4 movntps [edi + 80], xmm5 movaps xmm0, [esi + 0] movaps xmm1, [esi + 16] movaps xmm2, [esi + 32] movaps xmm3, [ecx + 0] movaps xmm4, [ecx + 16] movaps xmm5, [ecx + 32] movntps [edi + 0+96], xmm0 movntps [edi + 16+96], xmm1 movntps [edi + 32+96], xmm2 movntps [edi + 48+96], xmm3 movntps [edi + 64+96], xmm4 movntps [edi + 80+96], xmm5 } #else Error("Implement CMeshBuilder::Fast4VerticesSSE\n"); #endif IncrementFloatPointer(m_pCurrPosition, 4 * m_VertexSize_Position); #if (defined(_DEBUG) && \ (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4)) m_bWrittenNormal = false; m_bWrittenUserData = false; #endif } inline void CVertexBuilder::FastVertex(const ModelVertexDX8_t &vertex) { Assert( m_CompressionType == VERTEX_COMPRESSION_NONE); // FIXME: support compressed verts if needed Assert(m_nCurrentVertex < m_nMaxVertexCount); #if defined(_WIN32) && !defined(_X360) const void *pRead = &vertex; void *pCurrPos = m_pCurrPosition; __asm { mov esi, pRead mov edi, pCurrPos movq mm0, [esi + 0] movq mm1, [esi + 8] movq mm2, [esi + 16] movq mm3, [esi + 24] movq mm4, [esi + 32] movq mm5, [esi + 40] movq mm6, [esi + 48] movq mm7, [esi + 56] movntq [edi + 0], mm0 movntq [edi + 8], mm1 movntq [edi + 16], mm2 movntq [edi + 24], mm3 movntq [edi + 32], mm4 movntq [edi + 40], mm5 movntq [edi + 48], mm6 movntq [edi + 56], mm7 emms } #elif defined(GNUC) const void *pRead = &vertex; void *pCurrPos = m_pCurrPosition; __asm__ __volatile__( "movq (%0), %%mm0\n" "movq 8(%0), %%mm1\n" "movq 16(%0), %%mm2\n" "movq 24(%0), %%mm3\n" "movq 32(%0), %%mm4\n" "movq 40(%0), %%mm5\n" "movq 48(%0), %%mm6\n" "movq 56(%0), %%mm7\n" "movntq %%mm0, (%1)\n" "movntq %%mm1, 8(%1)\n" "movntq %%mm2, 16(%1)\n" "movntq %%mm3, 24(%1)\n" "movntq %%mm4, 32(%1)\n" "movntq %%mm5, 40(%1)\n" "movntq %%mm6, 48(%1)\n" "movntq %%mm7, 56(%1)\n" "emms\n" ::"r"(pRead), "r"(pCurrPos) : "memory"); #else Error("Implement CMeshBuilder::FastVertex(dx8)"); #endif IncrementFloatPointer(m_pCurrPosition, m_VertexSize_Position); // m_nVertexCount = ++m_nCurrentVertex; #if (defined(_DEBUG) && \ (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4)) m_bWrittenNormal = false; m_bWrittenUserData = false; #endif } inline void CVertexBuilder::FastVertexSSE(const ModelVertexDX8_t &vertex) { Assert( m_CompressionType == VERTEX_COMPRESSION_NONE); // FIXME: support compressed verts if needed Assert(m_nCurrentVertex < m_nMaxVertexCount); #if defined(_WIN32) && !defined(_X360) const void *pRead = &vertex; void *pCurrPos = m_pCurrPosition; __asm { mov esi, pRead mov edi, pCurrPos movaps xmm0, [esi + 0] movaps xmm1, [esi + 16] movaps xmm2, [esi + 32] movaps xmm3, [esi + 48] movntps [edi + 0], xmm0 movntps [edi + 16], xmm1 movntps [edi + 32], xmm2 movntps [edi + 48], xmm3 } #elif defined(GNUC) const void *pRead = &vertex; void *pCurrPos = m_pCurrPosition; __asm__ __volatile__( "movaps (%0), %%xmm0\n" "movaps 16(%0), %%xmm1\n" "movaps 32(%0), %%xmm2\n" "movaps 48(%0), %%xmm3\n" "movntps %%xmm0, (%1)\n" "movntps %%xmm1, 16(%1)\n" "movntps %%xmm2, 32(%1)\n" "movntps %%xmm3, 48(%1)\n" ::"r"(pRead), "r"(pCurrPos) : "memory"); #else Error("Implement CMeshBuilder::FastVertexSSE((dx8)"); #endif IncrementFloatPointer(m_pCurrPosition, m_VertexSize_Position); // m_nVertexCount = ++m_nCurrentVertex; #if (defined(_DEBUG) && \ (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4)) m_bWrittenNormal = false; m_bWrittenUserData = false; #endif } #endif // COMPILER_MSVC64 //----------------------------------------------------------------------------- // Returns the current vertex //----------------------------------------------------------------------------- inline int CVertexBuilder::GetCurrentVertex() const { return m_nCurrentVertex; } //----------------------------------------------------------------------------- // Copies a vertex into the x360 format //----------------------------------------------------------------------------- #if defined(_X360) inline void CVertexBuilder::VertexDX8ToX360(const ModelVertexDX8_t &vertex) { Assert( m_CompressionType == VERTEX_COMPRESSION_NONE); // FIXME: support compressed verts if needed Assert(m_nCurrentVertex < m_nMaxVertexCount); // get the start of the data unsigned char *pDst = (unsigned char *)m_pCurrPosition; Assert(m_VertexSize_Position > 0); // Assume position is always present Assert(GetVertexElementSize(VERTEX_ELEMENT_POSITION, VERTEX_COMPRESSION_NONE) == sizeof(vertex.m_vecPosition)); memcpy(pDst, vertex.m_vecPosition.Base(), sizeof(vertex.m_vecPosition)); pDst += sizeof(vertex.m_vecPosition); if (m_VertexSize_BoneWeight) { Assert(vertex.m_flBoneWeights[0] >= 0 && vertex.m_flBoneWeights[0] <= 1.0f); Assert(vertex.m_flBoneWeights[1] >= 0 && vertex.m_flBoneWeights[1] <= 1.0f); Assert(GetVertexElementSize(VERTEX_ELEMENT_BONEWEIGHTS2, VERTEX_COMPRESSION_NONE) == sizeof(vertex.m_flBoneWeights)); memcpy(pDst, vertex.m_flBoneWeights.Base(), sizeof(vertex.m_flBoneWeights)); pDst += sizeof(vertex.m_flBoneWeights); if (m_VertexSize_BoneMatrixIndex) { Assert(GetVertexElementSize(VERTEX_ELEMENT_BONEINDEX, VERTEX_COMPRESSION_NONE) == sizeof(vertex.m_nBoneIndices)); *(unsigned int *)pDst = vertex.m_nBoneIndices; pDst += sizeof(vertex.m_nBoneIndices); } } if (m_VertexSize_Normal) { Assert(GetVertexElementSize(VERTEX_ELEMENT_NORMAL, VERTEX_COMPRESSION_NONE) == sizeof(vertex.m_vecNormal)); memcpy(pDst, vertex.m_vecNormal.Base(), sizeof(vertex.m_vecNormal)); pDst += sizeof(vertex.m_vecNormal); } if (m_VertexSize_Color) { Assert(GetVertexElementSize(VERTEX_ELEMENT_COLOR, VERTEX_COMPRESSION_NONE) == sizeof(vertex.m_nColor)); *(unsigned int *)pDst = vertex.m_nColor; pDst += sizeof(vertex.m_nColor); } if (m_VertexSize_TexCoord[0]) { Assert(GetVertexElementSize(VERTEX_ELEMENT_TEXCOORD2D_0, VERTEX_COMPRESSION_NONE) == sizeof(vertex.m_vecTexCoord)); memcpy(pDst, vertex.m_vecTexCoord.Base(), sizeof(vertex.m_vecTexCoord)); pDst += sizeof(vertex.m_vecTexCoord); } if (m_VertexSize_UserData) { Assert(GetVertexElementSize(VERTEX_ELEMENT_USERDATA4, VERTEX_COMPRESSION_NONE) == sizeof(vertex.m_vecUserData)); memcpy(pDst, vertex.m_vecUserData.Base(), sizeof(vertex.m_vecUserData)); pDst += sizeof(vertex.m_vecUserData); } // ensure code is synced with the mesh builder that established the offsets Assert(pDst - (unsigned char *)m_pCurrPosition == m_VertexSize_Position); IncrementFloatPointer(m_pCurrPosition, m_VertexSize_Position); #if (defined(_DEBUG) && \ (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4)) m_bWrittenNormal = false; m_bWrittenUserData = false; #endif } #endif //----------------------------------------------------------------------------- // Data retrieval... //----------------------------------------------------------------------------- inline const float *CVertexBuilder::Position() const { // FIXME: add a templatized accessor (return type varies to ensure calling // code is updated appropriately) // for code that needs to access compressed data (and/or a // return-by-value templatized accessor) Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); Assert(m_nCurrentVertex < m_nMaxVertexCount); return m_pCurrPosition; } inline const float *CVertexBuilder::Normal() const { // FIXME: add a templatized accessor (return type varies to ensure calling // code is updated appropriately) // for code that needs to access compressed data (and/or a // return-by-value templatized accessor) Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); Assert(m_nCurrentVertex < m_nMaxVertexCount); return m_pCurrNormal; } inline unsigned int CVertexBuilder::Color() const { // FIXME: add a templatized accessor (return type varies to ensure calling // code is updated appropriately) // for code that needs to access compressed data (and/or a // return-by-value templatized accessor) Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); // Swizzle it so it returns the same format as accepted by Color4ubv - rgba Assert(m_nCurrentVertex < m_nMaxVertexCount); unsigned int color; if (IsPC() || !IsX360()) { color = (m_pCurrColor[3] << 24) | (m_pCurrColor[0] << 16) | (m_pCurrColor[1] << 8) | (m_pCurrColor[2]); } else { // in memory as argb, back to rgba color = (m_pCurrColor[1] << 24) | (m_pCurrColor[2] << 16) | (m_pCurrColor[3] << 8) | (m_pCurrColor[0]); } return color; } inline unsigned char *CVertexBuilder::Specular() const { // FIXME: add a templatized accessor (return type varies to ensure calling // code is updated appropriately) // for code that needs to access compressed data (and/or a // return-by-value templatized accessor) Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); Assert(m_nCurrentVertex < m_nMaxVertexCount); return m_pSpecular + m_nCurrentVertex * m_VertexSize_Specular; } inline const float *CVertexBuilder::TexCoord(int stage) const { // FIXME: add a templatized accessor (return type varies to ensure calling // code is updated appropriately) // for code that needs to access compressed data (and/or a // return-by-value templatized accessor) Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); Assert(m_nCurrentVertex < m_nMaxVertexCount); return m_pCurrTexCoord[stage]; } inline const float *CVertexBuilder::TangentS() const { // FIXME: add a templatized accessor (return type varies to ensure calling // code is updated appropriately) // for code that needs to access compressed data (and/or a // return-by-value templatized accessor) Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); Assert(m_nCurrentVertex < m_nMaxVertexCount); return OffsetFloatPointer(m_pTangentS, m_nCurrentVertex, m_VertexSize_TangentS); } inline const float *CVertexBuilder::TangentT() const { // FIXME: add a templatized accessor (return type varies to ensure calling // code is updated appropriately) // for code that needs to access compressed data (and/or a // return-by-value templatized accessor) Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); Assert(m_nCurrentVertex < m_nMaxVertexCount); return OffsetFloatPointer(m_pTangentT, m_nCurrentVertex, m_VertexSize_TangentT); } inline float CVertexBuilder::Wrinkle() const { // FIXME: add a templatized accessor (return type varies to ensure calling // code is updated appropriately) // for code that needs to access compressed data (and/or a // return-by-value templatized accessor) Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); Assert(m_nCurrentVertex < m_nMaxVertexCount); return *OffsetFloatPointer(m_pWrinkle, m_nCurrentVertex, m_VertexSize_Wrinkle); } inline const float *CVertexBuilder::BoneWeight() const { // FIXME: add a templatized accessor (return type varies to ensure calling // code is updated appropriately) // for code that needs to access compressed data (and/or a // return-by-value templatized accessor) Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); Assert(m_nCurrentVertex < m_nMaxVertexCount); return OffsetFloatPointer(m_pBoneWeight, m_nCurrentVertex, m_VertexSize_BoneWeight); } inline int CVertexBuilder::NumBoneWeights() const { return m_NumBoneWeights; } #ifndef NEW_SKINNING inline unsigned char *CVertexBuilder::BoneMatrix() const { // FIXME: add a templatized accessor (return type varies to ensure calling // code is updated appropriately) // for code that needs to access compressed data (and/or a // return-by-value templatized accessor) Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); Assert(m_nCurrentVertex < m_nMaxVertexCount); return m_pBoneMatrixIndex + m_nCurrentVertex * m_VertexSize_BoneMatrixIndex; } #else inline float *CVertexBuilder::BoneMatrix() const { // FIXME: add a templatized accessor (return type varies to ensure calling // code is updated appropriately) // for code that needs to access compressed data (and/or a // return-by-value templatized accessor) Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); Assert(m_nCurrentVertex < m_nMaxVertexCount); return m_pBoneMatrixIndex + m_nCurrentVertex * m_VertexSize_BoneMatrixIndex; } #endif //----------------------------------------------------------------------------- // Position setting methods //----------------------------------------------------------------------------- inline void CVertexBuilder::Position3f(float x, float y, float z) { Assert(m_pPosition && m_pCurrPosition); Assert(IsFinite(x) && IsFinite(y) && IsFinite(z)); float *pDst = m_pCurrPosition; *pDst++ = x; *pDst++ = y; *pDst = z; } inline void CVertexBuilder::Position3fv(const float *v) { Assert(v); Assert(m_pPosition && m_pCurrPosition); float *pDst = m_pCurrPosition; *pDst++ = *v++; *pDst++ = *v++; *pDst = *v; } //----------------------------------------------------------------------------- // Normal setting methods //----------------------------------------------------------------------------- inline void CVertexBuilder::Normal3f(float nx, float ny, float nz) { Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); // Use the templatized version if you want // to support compression Assert(m_pNormal); Assert(IsFinite(nx) && IsFinite(ny) && IsFinite(nz)); Assert(nx >= -1.05f && nx <= 1.05f); Assert(ny >= -1.05f && ny <= 1.05f); Assert(nz >= -1.05f && nz <= 1.05f); float *pDst = m_pCurrNormal; *pDst++ = nx; *pDst++ = ny; *pDst = nz; } inline void CVertexBuilder::Normal3fv(const float *n) { Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); // Use the templatized version if you want // to support compression Assert(n); Assert(m_pNormal && m_pCurrNormal); Assert(IsFinite(n[0]) && IsFinite(n[1]) && IsFinite(n[2])); Assert(n[0] >= -1.05f && n[0] <= 1.05f); Assert(n[1] >= -1.05f && n[1] <= 1.05f); Assert(n[2] >= -1.05f && n[2] <= 1.05f); float *pDst = m_pCurrNormal; *pDst++ = *n++; *pDst++ = *n++; *pDst = *n; } inline void CVertexBuilder::NormalDelta3f(float nx, float ny, float nz) { Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); // Use the templatized version if you want // to support compression Assert(m_pNormal); Assert(IsFinite(nx) && IsFinite(ny) && IsFinite(nz)); float *pDst = m_pCurrNormal; *pDst++ = nx; *pDst++ = ny; *pDst = nz; } inline void CVertexBuilder::NormalDelta3fv(const float *n) { Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); // Use the templatized version if you want // to support compression Assert(n); Assert(m_pNormal && m_pCurrNormal); Assert(IsFinite(n[0]) && IsFinite(n[1]) && IsFinite(n[2])); float *pDst = m_pCurrNormal; *pDst++ = *n++; *pDst++ = *n++; *pDst = *n; } //----------------------------------------------------------------------------- // Templatized normal setting methods which support compressed vertices //----------------------------------------------------------------------------- template inline void CVertexBuilder::CompressedNormal3f(float nx, float ny, float nz) { Assert(T == m_CompressionType); Assert(m_pNormal && m_pCurrNormal); Assert(IsFinite(nx) && IsFinite(ny) && IsFinite(nz)); Assert(nx >= -1.05f && nx <= 1.05f); Assert(ny >= -1.05f && ny <= 1.05f); Assert(nz >= -1.05f && nz <= 1.05f); // FIXME: studiorender is passing in non-unit normals // float lengthSqd = nx*nx + ny*ny + nz*nz; // Assert( lengthSqd >= 0.95f && lengthSqd <= 1.05f ); if (T == VERTEX_COMPRESSION_ON) { #if (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_SEPARATETANGENTS_SHORT2) PackNormal_SHORT2(nx, ny, nz, (unsigned int *)m_pCurrNormal); #else //( COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4 //) // NOTE: write the normal into the lower 16 bits of a word, clearing the // top 16 bits - a userdata4 // tangent must be written into the upper 16 bits by // CompressedUserData() *AFTER* this. #ifdef _DEBUG Assert(m_bWrittenUserData == false); m_bWrittenNormal = true; #endif PackNormal_UBYTE4(nx, ny, nz, (unsigned int *)m_pCurrNormal); #endif } else { float *pDst = m_pCurrNormal; *pDst++ = nx; *pDst++ = ny; *pDst = nz; } } template inline void CVertexBuilder::CompressedNormal3fv(const float *n) { Assert(n); CompressedNormal3f(n[0], n[1], n[2]); } //----------------------------------------------------------------------------- // Color setting methods //----------------------------------------------------------------------------- inline void CVertexBuilder::Color3f(float r, float g, float b) { Assert(m_pColor && m_pCurrColor); Assert(IsFinite(r) && IsFinite(g) && IsFinite(b)); Assert((r >= 0.0) && (g >= 0.0) && (b >= 0.0)); Assert((r <= 1.0) && (g <= 1.0) && (b <= 1.0)); #ifdef OPENGL_SWAP_COLORS int col = (FastFToC(r)) | (FastFToC(g) << 8) | (FastFToC(b) << 16) | 0xFF000000; #else int col = (FastFToC(b)) | (FastFToC(g) << 8) | (FastFToC(r) << 16) | 0xFF000000; #endif *(int *)m_pCurrColor = col; } inline void CVertexBuilder::Color3fv(const float *rgb) { Assert(rgb); Assert(m_pColor && m_pCurrColor); Assert(IsFinite(rgb[0]) && IsFinite(rgb[1]) && IsFinite(rgb[2])); Assert((rgb[0] >= 0.0) && (rgb[1] >= 0.0) && (rgb[2] >= 0.0)); Assert((rgb[0] <= 1.0) && (rgb[1] <= 1.0) && (rgb[2] <= 1.0)); #ifdef OPENGL_SWAP_COLORS int col = (FastFToC(rgb[0])) | (FastFToC(rgb[1]) << 8) | (FastFToC(rgb[2]) << 16) | 0xFF000000; #else int col = (FastFToC(rgb[2])) | (FastFToC(rgb[1]) << 8) | (FastFToC(rgb[0]) << 16) | 0xFF000000; #endif *(int *)m_pCurrColor = col; } inline void CVertexBuilder::Color4f(float r, float g, float b, float a) { Assert(m_pColor && m_pCurrColor); Assert(IsFinite(r) && IsFinite(g) && IsFinite(b) && IsFinite(a)); Assert((r >= 0.0) && (g >= 0.0) && (b >= 0.0) && (a >= 0.0)); Assert((r <= 1.0) && (g <= 1.0) && (b <= 1.0) && (a <= 1.0)); #ifdef OPENGL_SWAP_COLORS int col = (FastFToC(r)) | (FastFToC(g) << 8) | (FastFToC(b) << 16) | (FastFToC(a) << 24); #else int col = (FastFToC(b)) | (FastFToC(g) << 8) | (FastFToC(r) << 16) | (FastFToC(a) << 24); #endif *(int *)m_pCurrColor = col; } inline void CVertexBuilder::Color4fv(const float *rgba) { Assert(rgba); Assert(m_pColor && m_pCurrColor); Assert(IsFinite(rgba[0]) && IsFinite(rgba[1]) && IsFinite(rgba[2]) && IsFinite(rgba[3])); Assert((rgba[0] >= 0.0) && (rgba[1] >= 0.0) && (rgba[2] >= 0.0) && (rgba[3] >= 0.0)); Assert((rgba[0] <= 1.0) && (rgba[1] <= 1.0) && (rgba[2] <= 1.0) && (rgba[3] <= 1.0)); #ifdef OPENGL_SWAP_COLORS int col = (FastFToC(rgba[0])) | (FastFToC(rgba[1]) << 8) | (FastFToC(rgba[2]) << 16) | (FastFToC(rgba[3]) << 24); #else int col = (FastFToC(rgba[2])) | (FastFToC(rgba[1]) << 8) | (FastFToC(rgba[0]) << 16) | (FastFToC(rgba[3]) << 24); #endif *(int *)m_pCurrColor = col; } //----------------------------------------------------------------------------- // Faster versions of color //----------------------------------------------------------------------------- // note that on the OSX target (OpenGL) whenever there is vertex data being // written as bytes - they need to be written in R,G,B,A memory order inline void CVertexBuilder::Color3ub(unsigned char r, unsigned char g, unsigned char b) { Assert(m_pColor && m_pCurrColor); #ifdef OPENGL_SWAP_COLORS int col = r | (g << 8) | (b << 16) | 0xFF000000; // r, g, b, a in memory #else int col = b | (g << 8) | (r << 16) | 0xFF000000; #endif *(int *)m_pCurrColor = col; } inline void CVertexBuilder::Color3ubv(unsigned char const *rgb) { Assert(rgb); Assert(m_pColor && m_pCurrColor); #ifdef OPENGL_SWAP_COLORS int col = rgb[0] | (rgb[1] << 8) | (rgb[2] << 16) | 0xFF000000; // r, g, b, a in memory #else int col = rgb[2] | (rgb[1] << 8) | (rgb[0] << 16) | 0xFF000000; #endif *(int *)m_pCurrColor = col; } inline void CVertexBuilder::Color4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { Assert(m_pColor && m_pCurrColor); #ifdef OPENGL_SWAP_COLORS int col = r | (g << 8) | (b << 16) | (a << 24); // r, g, b, a in memory #else int col = b | (g << 8) | (r << 16) | (a << 24); #endif *(int *)m_pCurrColor = col; } inline void CVertexBuilder::Color4ubv(unsigned char const *rgba) { Assert(rgba); Assert(m_pColor && m_pCurrColor); #ifdef OPENGL_SWAP_COLORS int col = rgba[0] | (rgba[1] << 8) | (rgba[2] << 16) | (rgba[3] << 24); // r, g, b, a in memory #else int col = rgba[2] | (rgba[1] << 8) | (rgba[0] << 16) | (rgba[3] << 24); #endif *(int *)m_pCurrColor = col; } inline void CVertexBuilder::Specular3f(float r, float g, float b) { Assert(m_pSpecular); Assert(IsFinite(r) && IsFinite(g) && IsFinite(b)); Assert((r >= 0.0) && (g >= 0.0) && (b >= 0.0)); Assert((r <= 1.0) && (g <= 1.0) && (b <= 1.0)); unsigned char *pSpecular = &m_pSpecular[m_nCurrentVertex * m_VertexSize_Specular]; #ifdef OPENGL_SWAP_COLORS int col = (FastFToC(r)) | (FastFToC(g) << 8) | (FastFToC(b) << 16) | 0xFF000000; #else int col = (FastFToC(b)) | (FastFToC(g) << 8) | (FastFToC(r) << 16) | 0xFF000000; #endif *(int *)pSpecular = col; } inline void CVertexBuilder::Specular3fv(const float *rgb) { Assert(rgb); Assert(m_pSpecular); Assert(IsFinite(rgb[0]) && IsFinite(rgb[1]) && IsFinite(rgb[2])); Assert((rgb[0] >= 0.0) && (rgb[1] >= 0.0) && (rgb[2] >= 0.0)); Assert((rgb[0] <= 1.0) && (rgb[1] <= 1.0) && (rgb[2] <= 1.0)); unsigned char *pSpecular = &m_pSpecular[m_nCurrentVertex * m_VertexSize_Specular]; #ifdef OPENGL_SWAP_COLORS int col = (FastFToC(rgb[0])) | (FastFToC(rgb[1]) << 8) | (FastFToC(rgb[2]) << 16) | 0xFF000000; #else int col = (FastFToC(rgb[2])) | (FastFToC(rgb[1]) << 8) | (FastFToC(rgb[0]) << 16) | 0xFF000000; #endif *(int *)pSpecular = col; } inline void CVertexBuilder::Specular4f(float r, float g, float b, float a) { Assert(m_pSpecular); Assert(IsFinite(r) && IsFinite(g) && IsFinite(b) && IsFinite(a)); Assert((r >= 0.0) && (g >= 0.0) && (b >= 0.0) && (a >= 0.0)); Assert((r <= 1.0) && (g <= 1.0) && (b <= 1.0) && (a <= 1.0f)); unsigned char *pSpecular = &m_pSpecular[m_nCurrentVertex * m_VertexSize_Specular]; #ifdef OPENGL_SWAP_COLORS int col = (FastFToC(r)) | (FastFToC(g) << 8) | (FastFToC(b) << 16) | (FastFToC(a) << 24); #else int col = (FastFToC(b)) | (FastFToC(g) << 8) | (FastFToC(r) << 16) | (FastFToC(a) << 24); #endif *(int *)pSpecular = col; } inline void CVertexBuilder::Specular4fv(const float *rgb) { Assert(rgb); Assert(m_pSpecular); Assert(IsFinite(rgb[0]) && IsFinite(rgb[1]) && IsFinite(rgb[2]) && IsFinite(rgb[3])); Assert((rgb[0] >= 0.0) && (rgb[1] >= 0.0) && (rgb[2] >= 0.0) && (rgb[3] >= 0.0)); Assert((rgb[0] <= 1.0) && (rgb[1] <= 1.0) && (rgb[2] <= 1.0) && (rgb[3] <= 1.0)); unsigned char *pSpecular = &m_pSpecular[m_nCurrentVertex * m_VertexSize_Specular]; #ifdef OPENGL_SWAP_COLORS int col = (FastFToC(rgb[0])) | (FastFToC(rgb[1]) << 8) | (FastFToC(rgb[2]) << 16) | (FastFToC(rgb[3]) << 24); #else int col = (FastFToC(rgb[2])) | (FastFToC(rgb[1]) << 8) | (FastFToC(rgb[0]) << 16) | (FastFToC(rgb[3]) << 24); #endif *(int *)pSpecular = col; } inline void CVertexBuilder::Specular3ub(unsigned char r, unsigned char g, unsigned char b) { Assert(m_pSpecular); unsigned char *pSpecular = &m_pSpecular[m_nCurrentVertex * m_VertexSize_Specular]; #ifdef OPENGL_SWAP_COLORS int col = r | (g << 8) | (b << 16) | 0xFF000000; // r, g, b, a in memory #else int col = b | (g << 8) | (r << 16) | 0xFF000000; #endif *(int *)pSpecular = col; } inline void CVertexBuilder::Specular3ubv(unsigned char const *c) { Assert(m_pSpecular); unsigned char *pSpecular = &m_pSpecular[m_nCurrentVertex * m_VertexSize_Specular]; #ifdef OPENGL_SWAP_COLORS int col = c[0] | (c[1] << 8) | (c[2] << 16) | 0xFF000000; // r, g, b, a in memory #else int col = c[2] | (c[1] << 8) | (c[0] << 16) | 0xFF000000; #endif *(int *)pSpecular = col; } inline void CVertexBuilder::Specular4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { Assert(m_pSpecular); unsigned char *pSpecular = &m_pSpecular[m_nCurrentVertex * m_VertexSize_Specular]; #ifdef OPENGL_SWAP_COLORS int col = r | (g << 8) | (b << 16) | (a << 24); // r, g, b, a in memory #else int col = b | (g << 8) | (r << 16) | (a << 24); #endif *(int *)pSpecular = col; } inline void CVertexBuilder::Specular4ubv(unsigned char const *c) { Assert(m_pSpecular); unsigned char *pSpecular = &m_pSpecular[m_nCurrentVertex * m_VertexSize_Specular]; #ifdef OPENGL_SWAP_COLORS int col = c[0] | (c[1] << 8) | (c[2] << 16) | (c[3] << 24); #else int col = c[2] | (c[1] << 8) | (c[0] << 16) | (c[3] << 24); #endif *(int *)pSpecular = col; } //----------------------------------------------------------------------------- // Texture coordinate setting methods //----------------------------------------------------------------------------- inline void CVertexBuilder::TexCoord1f(int nStage, float s) { Assert(m_pTexCoord[nStage] && m_pCurrTexCoord[nStage]); Assert(IsFinite(s)); float *pDst = m_pCurrTexCoord[nStage]; *pDst = s; } inline void CVertexBuilder::TexCoord2f(int nStage, float s, float t) { Assert(m_pTexCoord[nStage] && m_pCurrTexCoord[nStage]); Assert(IsFinite(s) && IsFinite(t)); float *pDst = m_pCurrTexCoord[nStage]; *pDst++ = s; *pDst = t; } inline void CVertexBuilder::TexCoord2fv(int nStage, const float *st) { Assert(st); Assert(m_pTexCoord[nStage] && m_pCurrTexCoord[nStage]); Assert(IsFinite(st[0]) && IsFinite(st[1])); float *pDst = m_pCurrTexCoord[nStage]; *pDst++ = *st++; *pDst = *st; } inline void CVertexBuilder::TexCoord3f(int stage, float s, float t, float u) { // Tried to add too much! Assert(m_pTexCoord[stage] && m_pCurrTexCoord[stage]); Assert(IsFinite(s) && IsFinite(t) && IsFinite(u)); float *pDst = m_pCurrTexCoord[stage]; *pDst++ = s; *pDst++ = t; *pDst = u; } inline void CVertexBuilder::TexCoord3fv(int stage, const float *stu) { Assert(stu); Assert(m_pTexCoord[stage] && m_pCurrTexCoord[stage]); Assert(IsFinite(stu[0]) && IsFinite(stu[1]) && IsFinite(stu[2])); float *pDst = m_pCurrTexCoord[stage]; *pDst++ = *stu++; *pDst++ = *stu++; *pDst = *stu; } inline void CVertexBuilder::TexCoord4f(int stage, float s, float t, float u, float v) { // Tried to add too much! Assert(m_pTexCoord[stage] && m_pCurrTexCoord[stage]); Assert(IsFinite(s) && IsFinite(t) && IsFinite(u)); float *pDst = m_pCurrTexCoord[stage]; *pDst++ = s; *pDst++ = t; *pDst++ = u; *pDst = v; } inline void CVertexBuilder::TexCoord4fv(int stage, const float *stuv) { Assert(stuv); Assert(m_pTexCoord[stage] && m_pCurrTexCoord[stage]); Assert(IsFinite(stuv[0]) && IsFinite(stuv[1]) && IsFinite(stuv[2])); float *pDst = m_pCurrTexCoord[stage]; *pDst++ = *stuv++; *pDst++ = *stuv++; *pDst++ = *stuv++; *pDst = *stuv; } inline void CVertexBuilder::TexCoordSubRect2f(int stage, float s, float t, float offsetS, float offsetT, float scaleS, float scaleT) { Assert(m_pTexCoord[stage] && m_pCurrTexCoord[stage]); Assert(IsFinite(s) && IsFinite(t)); float *pDst = m_pCurrTexCoord[stage]; *pDst++ = (s * scaleS) + offsetS; *pDst = (t * scaleT) + offsetT; } inline void CVertexBuilder::TexCoordSubRect2fv(int stage, const float *st, const float *offset, const float *scale) { Assert(st); Assert(m_pTexCoord[stage] && m_pCurrTexCoord[stage]); Assert(IsFinite(st[0]) && IsFinite(st[1])); float *pDst = m_pCurrTexCoord[stage]; *pDst++ = (*st++ * *scale++) + *offset++; *pDst = (*st * *scale) + *offset; } //----------------------------------------------------------------------------- // Tangent space setting methods //----------------------------------------------------------------------------- inline void CVertexBuilder::TangentS3f(float sx, float sy, float sz) { Assert(m_pTangentS); Assert(IsFinite(sx) && IsFinite(sy) && IsFinite(sz)); float *pTangentS = OffsetFloatPointer(m_pTangentS, m_nCurrentVertex, m_VertexSize_TangentS); *pTangentS++ = sx; *pTangentS++ = sy; *pTangentS = sz; } inline void CVertexBuilder::TangentS3fv(const float *s) { Assert(s); Assert(m_pTangentS); Assert(IsFinite(s[0]) && IsFinite(s[1]) && IsFinite(s[2])); float *pTangentS = OffsetFloatPointer(m_pTangentS, m_nCurrentVertex, m_VertexSize_TangentS); *pTangentS++ = *s++; *pTangentS++ = *s++; *pTangentS = *s; } inline void CVertexBuilder::TangentT3f(float tx, float ty, float tz) { Assert(m_pTangentT); Assert(IsFinite(tx) && IsFinite(ty) && IsFinite(tz)); float *pTangentT = OffsetFloatPointer(m_pTangentT, m_nCurrentVertex, m_VertexSize_TangentT); *pTangentT++ = tx; *pTangentT++ = ty; *pTangentT = tz; } inline void CVertexBuilder::TangentT3fv(const float *t) { Assert(t); Assert(m_pTangentT); Assert(IsFinite(t[0]) && IsFinite(t[1]) && IsFinite(t[2])); float *pTangentT = OffsetFloatPointer(m_pTangentT, m_nCurrentVertex, m_VertexSize_TangentT); *pTangentT++ = *t++; *pTangentT++ = *t++; *pTangentT = *t; } //----------------------------------------------------------------------------- // Wrinkle setting methods //----------------------------------------------------------------------------- inline void CVertexBuilder::Wrinkle1f(float flWrinkle) { Assert(m_pWrinkle); Assert(IsFinite(flWrinkle)); float *pWrinkle = OffsetFloatPointer(m_pWrinkle, m_nCurrentVertex, m_VertexSize_Wrinkle); *pWrinkle = flWrinkle; } //----------------------------------------------------------------------------- // Bone weight setting methods //----------------------------------------------------------------------------- inline void CVertexBuilder::BoneWeight(int idx, float weight) { Assert(m_pBoneWeight); Assert(IsFinite(weight)); Assert(idx >= 0); AssertOnce(m_NumBoneWeights == 2); // This test is here because we store N-1 bone weights (the Nth is computed // in the vertex shader as "1 - C", where C is the sum of the (N-1) other // weights) if (idx < m_NumBoneWeights) { float *pBoneWeight = OffsetFloatPointer(m_pBoneWeight, m_nCurrentVertex, m_VertexSize_BoneWeight); pBoneWeight[idx] = weight; } } static int sg_IndexSwap[4] = {2, 1, 0, 3}; inline void CVertexBuilder::BoneMatrix(int idx, int matrixIdx) { Assert(m_pBoneMatrixIndex); Assert(idx >= 0); Assert(idx < 4); // garymcthack if (matrixIdx == BONE_MATRIX_INDEX_INVALID) { matrixIdx = 0; } Assert((matrixIdx >= 0) && (matrixIdx < 53)); #ifdef OPENGL_SWAP_COLORS idx = sg_IndexSwap[idx]; #endif #ifndef NEW_SKINNING unsigned char *pBoneMatrix = &m_pBoneMatrixIndex[m_nCurrentVertex * m_VertexSize_BoneMatrixIndex]; if (IsX360()) { // store sequentially as wzyx order, gpu delivers as xyzw idx = 3 - idx; } pBoneMatrix[idx] = (unsigned char)matrixIdx; #else float *pBoneMatrix = &m_pBoneMatrixIndex[m_nCurrentVertex * m_VertexSize_BoneMatrixIndex]; pBoneMatrix[idx] = matrixIdx; #endif } //----------------------------------------------------------------------------- // Templatized bone weight setting methods which support compressed vertices //----------------------------------------------------------------------------- template inline void CVertexBuilder::CompressedBoneWeight3fv(const float *pWeights) { Assert(T == m_CompressionType); Assert(m_pBoneWeight); Assert(pWeights); float *pDestWeights = OffsetFloatPointer(m_pBoneWeight, m_nCurrentVertex, m_VertexSize_BoneWeight); if (T == VERTEX_COMPRESSION_ON) { // Quantize to 15 bits per weight (we use D3DDECLTYPE_SHORT2) // NOTE: we perform careful normalization (weights sum to 1.0f in the // vertex shader), so as to avoid cracking at boundaries between meshes // with different numbers of weights per vertex. For example, (1) needs // to yield the same normalized weights as (1,0), and (0.5,0.49) needs // to normalize the same normalized weights as (0.5,0.49,0). The key is // that values which are *computed* in the shader (e.g. the second // weight in a 2-weight mesh) must exactly equal values which are *read* // from the vertex stream (e.g. the second weight in a 3-weight mesh). // Only 1 or 2 weights (SHORT2N) supported for compressed verts so far Assert(m_NumBoneWeights <= 2); const int WEIGHT0_SHIFT = IsX360() ? 16 : 0; const int WEIGHT1_SHIFT = IsX360() ? 0 : 16; unsigned int *weights = (unsigned int *)pDestWeights; // We scale our weights so that they sum to 32768, then subtract 1 // (which gets added back in the shader), because dividing by 32767 // introduces nasty rounding issues. Assert(IsFinite(pWeights[0]) && (pWeights[0] >= 0.0f) && (pWeights[0] <= 1.0f)); unsigned int weight0 = Float2Int(pWeights[0] * 32768.0f); *weights = (0x0000FFFF & (weight0 - 1)) << WEIGHT0_SHIFT; #ifdef DEBUG if (m_NumBoneWeights == 1) { // Double-check the validity of the values that were passed in Assert(IsFinite(pWeights[1]) && (pWeights[1] >= 0.0f) && (pWeights[1] <= 1.0f)); unsigned int weight1 = Float2Int(pWeights[1] * 32768.0f); Assert((weight0 + weight1) <= 32768); } #endif if (m_NumBoneWeights > 1) { // This path for 3 weights per vert (2 are stored and the 3rd is // computed in the shader - we do post-quantization normalization // here in such a way as to avoid mesh-boundary cracking) Assert(m_NumBoneWeights == 2); Assert(IsFinite(pWeights[1]) && (pWeights[1] >= 0.0f) && (pWeights[1] <= 1.0f)); Assert(IsFinite(pWeights[2]) && (pWeights[2] >= 0.0f) && (pWeights[2] <= 1.0f)); unsigned int weight1 = Float2Int(pWeights[1] * 32768.0f); unsigned int weight2 = Float2Int(pWeights[2] * 32768.0f); Assert((weight0 + weight1 + weight2) <= 32768); unsigned int residual = 32768 - (weight0 + weight1 + weight2); weight1 += residual; // Normalize *weights |= (0x0000FFFF & (weight1 - 1)) << WEIGHT1_SHIFT; } } else // Uncompressed path { pDestWeights[0] = pWeights[0]; pDestWeights[1] = pWeights[1]; } } //----------------------------------------------------------------------------- // Generic per-vertex data setting method //----------------------------------------------------------------------------- inline void CVertexBuilder::UserData(const float *pData) { Assert(m_CompressionType == VERTEX_COMPRESSION_NONE); // Use the templatized version if you want // to support compression Assert(pData); int userDataSize = 4; // garymcthack float *pUserData = OffsetFloatPointer(m_pUserData, m_nCurrentVertex, m_VertexSize_UserData); memcpy(pUserData, pData, sizeof(float) * userDataSize); } //----------------------------------------------------------------------------- // Templatized generic per-vertex data setting method which supports compressed // vertices //----------------------------------------------------------------------------- template inline void CVertexBuilder::CompressedUserData(const float *pData) { Assert(T == m_CompressionType); Assert(pData); // This is always in fact a tangent vector, not generic 'userdata' Assert(IsFinite(pData[0]) && IsFinite(pData[1]) && IsFinite(pData[2])); Assert(pData[0] >= -1.05f && pData[0] <= 1.05f); Assert(pData[1] >= -1.05f && pData[1] <= 1.05f); Assert(pData[2] >= -1.05f && pData[2] <= 1.05f); Assert(pData[3] == +1.0f || pData[3] == -1.0f); // FIXME: studiorender is passing in non-unit normals // float lengthSqd = pData[0]*pData[0] + pData[1]*pData[1] + // pData[2]*pData[2]; Assert( lengthSqd >= 0.95f && lengthSqd <= 1.05f ); if (T == VERTEX_COMPRESSION_ON) { float binormalSign = pData[3]; #if (COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_SEPARATETANGENTS_SHORT2) float *pUserData = OffsetFloatPointer(m_pUserData, m_nCurrentVertex, m_VertexSize_UserData); PackNormal_SHORT2(pData, (unsigned int *)pUserData, binormalSign); #else //( COMPRESSED_NORMALS_TYPE == COMPRESSED_NORMALS_COMBINEDTANGENTS_UBYTE4 //) // FIXME: add a combined CompressedNormalAndTangent() accessor, to avoid // reading back from write-combined memory here The normal should have // already been written into the lower 16 bits - here, we OR in the // tangent into the upper 16 bits unsigned int existingNormalData = *(unsigned int *)m_pCurrNormal; Assert((existingNormalData & 0xFFFF0000) == 0); #ifdef _DEBUG Assert(m_bWrittenNormal == true); m_bWrittenUserData = true; #endif bool bIsTangent = true; unsigned int tangentData = 0; PackNormal_UBYTE4(pData, &tangentData, bIsTangent, binormalSign); *(unsigned int *)m_pCurrNormal = existingNormalData | tangentData; #endif } else { int userDataSize = 4; // garymcthack float *pUserData = OffsetFloatPointer(m_pUserData, m_nCurrentVertex, m_VertexSize_UserData); memcpy(pUserData, pData, sizeof(float) * userDataSize); } } //----------------------------------------------------------------------------- // // Helper class used to define index buffers // //----------------------------------------------------------------------------- class CIndexBuilder : private IndexDesc_t { public: CIndexBuilder(); CIndexBuilder(IIndexBuffer *pIndexBuffer, MaterialIndexFormat_t fmt = MATERIAL_INDEX_FORMAT_UNKNOWN); ~CIndexBuilder(); // Begins, ends modification of the index buffer (returns true if the lock // succeeded) A lock may not succeed if append is set to true and there // isn't enough room NOTE: Append is only used with dynamic index buffers; // it's ignored for static buffers bool Lock(int nMaxIndexCount, int nIndexOffset, bool bAppend = false); void Unlock(); // Spews the current data // NOTE: Can only be called during a lock/unlock block void SpewData(); // Returns the number of indices we can fit into the buffer without needing // to discard int GetRoomRemaining() const; // Binds this index buffer void Bind(IMatRenderContext *pContext); // Returns the byte offset int Offset() const; // Begins, ends modification of the index buffer // NOTE: IndexOffset is the number to add to all indices written into the // buffer; useful when using dynamic vertex buffers. void Begin(IIndexBuffer *pIndexBuffer, int nMaxIndexCount, int nIndexOffset = 0); void End(bool bSpewData = false); // Locks the index buffer to modify existing data // Passing nVertexCount == -1 says to lock all the vertices for // modification. Pass 0 for nIndexCount to not lock the index buffer. void BeginModify(IIndexBuffer *pIndexBuffer, int nFirstIndex = 0, int nIndexCount = 0, int nIndexOffset = 0); void EndModify(bool bSpewData = false); // returns the number of indices int IndexCount() const; // Returns the total number of indices across all Locks() int TotalIndexCount() const; // Resets the mesh builder so it points to the start of everything again void Reset(); // Selects the nth Index void SelectIndex(int nBufferIndex); // Advances the current index by one void AdvanceIndex(); void AdvanceIndices(int nIndexCount); int GetCurrentIndex(); int GetFirstIndex() const; unsigned short const *Index() const; // Used to define the indices (only used if you aren't using primitives) void Index(unsigned short nIndex); // Fast Index! No need to call advance index, and no random access allowed void FastIndex(unsigned short nIndex); // NOTE: This version is the one you really want to achieve write-combining; // Write combining only works if you write in 4 bytes chunks. void FastIndex2(unsigned short nIndex1, unsigned short nIndex2); // Generates indices for a particular primitive type void GenerateIndices(MaterialPrimitiveType_t primitiveType, int nIndexCount); // FIXME: Remove! Backward compat so we can use this from a CMeshBuilder. void AttachBegin(IMesh *pMesh, int nMaxIndexCount, const MeshDesc_t &desc); void AttachEnd(); void AttachBeginModify(IMesh *pMesh, int nFirstIndex, int nIndexCount, const MeshDesc_t &desc); void AttachEndModify(); void FastTriangle(int startVert); void FastQuad(int startVert); void FastPolygon(int startVert, int numTriangles); void FastPolygonList(int startVert, int *pVertexCount, int polygonCount); void FastIndexList(const unsigned short *pIndexList, int startVert, int indexCount); private: // The mesh we're modifying IIndexBuffer *m_pIndexBuffer; // Max number of indices int m_nMaxIndexCount; // Number of indices int m_nIndexCount; // Offset to add to each index as it's written into the buffer int m_nIndexOffset; // The current index mutable int m_nCurrentIndex; // Total number of indices appended int m_nTotalIndexCount; // First index buffer offset + first index unsigned int m_nBufferOffset; unsigned int m_nBufferFirstIndex; // Used to make sure Begin/End calls and BeginModify/EndModify calls match. bool m_bModify; }; //----------------------------------------------------------------------------- // // Inline methods related to CIndexBuilder // //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // Constructor //----------------------------------------------------------------------------- inline CIndexBuilder::CIndexBuilder() : m_pIndexBuffer(0), m_nIndexCount(0), m_nCurrentIndex(0), m_nMaxIndexCount(0) { m_nTotalIndexCount = 0; m_nBufferOffset = INVALID_BUFFER_OFFSET; m_nBufferFirstIndex = 0; #ifdef _DEBUG m_bModify = false; #endif } inline CIndexBuilder::CIndexBuilder(IIndexBuffer *pIndexBuffer, MaterialIndexFormat_t fmt) { m_pIndexBuffer = pIndexBuffer; m_nBufferOffset = INVALID_BUFFER_OFFSET; m_nBufferFirstIndex = 0; m_nIndexCount = 0; m_nCurrentIndex = 0; m_nMaxIndexCount = 0; m_nTotalIndexCount = 0; if (m_pIndexBuffer->IsDynamic()) { m_pIndexBuffer->BeginCastBuffer(fmt); } else { Assert(m_pIndexBuffer->IndexFormat() == fmt); } #ifdef _DEBUG m_bModify = false; #endif } inline CIndexBuilder::~CIndexBuilder() { if (m_pIndexBuffer && m_pIndexBuffer->IsDynamic()) { m_pIndexBuffer->EndCastBuffer(); } } //----------------------------------------------------------------------------- // Begins, ends modification of the index buffer //----------------------------------------------------------------------------- inline bool CIndexBuilder::Lock(int nMaxIndexCount, int nIndexOffset, bool bAppend) { Assert(m_pIndexBuffer); m_bModify = false; m_nIndexOffset = nIndexOffset; m_nMaxIndexCount = nMaxIndexCount; bool bFirstLock = (m_nBufferOffset == INVALID_BUFFER_OFFSET); if (bFirstLock) { bAppend = false; } if (!bAppend) { m_nTotalIndexCount = 0; } Reset(); // Lock the index buffer if (!m_pIndexBuffer->Lock(m_nMaxIndexCount, bAppend, *this)) { m_nMaxIndexCount = 0; return false; } if (bFirstLock) { m_nBufferOffset = m_nOffset; m_nBufferFirstIndex = m_nFirstIndex; } return true; } inline void CIndexBuilder::Unlock() { Assert(!m_bModify && m_pIndexBuffer); m_pIndexBuffer->Unlock(m_nIndexCount, *this); m_nTotalIndexCount += m_nIndexCount; m_nMaxIndexCount = 0; #ifdef _DEBUG // Null out our data... memset((IndexDesc_t *)this, 0, sizeof(IndexDesc_t)); #endif } inline void CIndexBuilder::SpewData() { m_pIndexBuffer->Spew(m_nIndexCount, *this); } //----------------------------------------------------------------------------- // Binds this index buffer //----------------------------------------------------------------------------- inline void CIndexBuilder::Bind(IMatRenderContext *pContext) { if (m_pIndexBuffer && (m_nBufferOffset != INVALID_BUFFER_OFFSET)) { pContext->BindIndexBuffer(m_pIndexBuffer, m_nBufferOffset); } else { pContext->BindIndexBuffer(NULL, 0); } } //----------------------------------------------------------------------------- // Returns the byte offset //----------------------------------------------------------------------------- inline int CIndexBuilder::Offset() const { return m_nBufferOffset; } inline int CIndexBuilder::GetFirstIndex() const { return m_nBufferFirstIndex; } //----------------------------------------------------------------------------- // Begins, ends modification of the index buffer //----------------------------------------------------------------------------- inline void CIndexBuilder::Begin(IIndexBuffer *pIndexBuffer, int nMaxIndexCount, int nIndexOffset) { Assert(pIndexBuffer && (!m_pIndexBuffer)); m_pIndexBuffer = pIndexBuffer; m_nIndexCount = 0; m_nMaxIndexCount = nMaxIndexCount; m_nIndexOffset = nIndexOffset; m_bModify = false; // Lock the index buffer m_pIndexBuffer->Lock(m_nMaxIndexCount, false, *this); // Point to the start of the buffers.. Reset(); } inline void CIndexBuilder::End(bool bSpewData) { // Make sure they called Begin() Assert(!m_bModify); if (bSpewData) { m_pIndexBuffer->Spew(m_nIndexCount, *this); } // Unlock our buffers m_pIndexBuffer->Unlock(m_nIndexCount, *this); m_pIndexBuffer = 0; m_nMaxIndexCount = 0; #ifdef _DEBUG // Null out our data... memset((IndexDesc_t *)this, 0, sizeof(IndexDesc_t)); #endif } //----------------------------------------------------------------------------- // Begins, ends modification of an existing index buffer which has already been // filled out //----------------------------------------------------------------------------- inline void CIndexBuilder::BeginModify(IIndexBuffer *pIndexBuffer, int nFirstIndex, int nIndexCount, int nIndexOffset) { m_pIndexBuffer = pIndexBuffer; m_nIndexCount = nIndexCount; m_nMaxIndexCount = nIndexCount; m_nIndexOffset = nIndexOffset; m_bModify = true; // Lock the vertex and index buffer m_pIndexBuffer->ModifyBegin(false, nFirstIndex, nIndexCount, *this); // Point to the start of the buffers.. Reset(); } inline void CIndexBuilder::EndModify(bool bSpewData) { Assert(m_pIndexBuffer); Assert(m_bModify); // Make sure they called BeginModify. if (bSpewData) { m_pIndexBuffer->Spew(m_nIndexCount, *this); } // Unlock our buffers m_pIndexBuffer->ModifyEnd(*this); m_pIndexBuffer = 0; m_nMaxIndexCount = 0; #ifdef _DEBUG // Null out our data... memset((IndexDesc_t *)this, 0, sizeof(IndexDesc_t)); #endif } //----------------------------------------------------------------------------- // FIXME: Remove! Backward compat so we can use this from a CMeshBuilder. //----------------------------------------------------------------------------- inline void CIndexBuilder::AttachBegin(IMesh *pMesh, int nMaxIndexCount, const MeshDesc_t &desc) { m_pIndexBuffer = pMesh; m_nIndexCount = 0; m_nMaxIndexCount = nMaxIndexCount; m_bModify = false; // Copy relevant data from the mesh desc m_nIndexOffset = desc.m_nFirstVertex; m_pIndices = desc.m_pIndices; m_nIndexSize = desc.m_nIndexSize; // Point to the start of the buffers.. Reset(); } inline void CIndexBuilder::AttachEnd() { Assert(m_pIndexBuffer); Assert(!m_bModify); // Make sure they called AttachBegin. m_pIndexBuffer = 0; m_nMaxIndexCount = 0; #ifdef _DEBUG // Null out our data... memset((IndexDesc_t *)this, 0, sizeof(IndexDesc_t)); #endif } inline void CIndexBuilder::AttachBeginModify(IMesh *pMesh, int nFirstIndex, int nIndexCount, const MeshDesc_t &desc) { m_pIndexBuffer = pMesh; m_nIndexCount = nIndexCount; m_nMaxIndexCount = nIndexCount; m_bModify = true; // Copy relevant data from the mesh desc m_nIndexOffset = desc.m_nFirstVertex; m_pIndices = desc.m_pIndices; m_nIndexSize = desc.m_nIndexSize; // Point to the start of the buffers.. Reset(); } inline void CIndexBuilder::AttachEndModify() { Assert(m_pIndexBuffer); Assert(m_bModify); // Make sure they called AttachBeginModify. m_pIndexBuffer = 0; m_nMaxIndexCount = 0; #ifdef _DEBUG // Null out our data... memset((IndexDesc_t *)this, 0, sizeof(IndexDesc_t)); #endif } //----------------------------------------------------------------------------- // Resets the index buffer builder so it points to the start of everything again //----------------------------------------------------------------------------- inline void CIndexBuilder::Reset() { m_nCurrentIndex = 0; } //----------------------------------------------------------------------------- // returns the number of indices //----------------------------------------------------------------------------- inline int CIndexBuilder::IndexCount() const { return m_nIndexCount; } //----------------------------------------------------------------------------- // Returns the total number of indices across all Locks() //----------------------------------------------------------------------------- inline int CIndexBuilder::TotalIndexCount() const { return m_nTotalIndexCount; } //----------------------------------------------------------------------------- // Advances the current index //----------------------------------------------------------------------------- inline void CIndexBuilder::AdvanceIndex() { m_nCurrentIndex += m_nIndexSize; if (m_nCurrentIndex > m_nIndexCount) { m_nIndexCount = m_nCurrentIndex; } } inline void CIndexBuilder::AdvanceIndices(int nIndices) { m_nCurrentIndex += nIndices * m_nIndexSize; if (m_nCurrentIndex > m_nIndexCount) { m_nIndexCount = m_nCurrentIndex; } } //----------------------------------------------------------------------------- // Returns the current index //----------------------------------------------------------------------------- inline int CIndexBuilder::GetCurrentIndex() { return m_nCurrentIndex; } inline unsigned short const *CIndexBuilder::Index() const { Assert(m_nCurrentIndex < m_nMaxIndexCount); return &m_pIndices[m_nCurrentIndex]; } inline void CIndexBuilder::SelectIndex(int nIndex) { Assert((nIndex >= 0) && (nIndex < m_nIndexCount)); m_nCurrentIndex = nIndex * m_nIndexSize; } //----------------------------------------------------------------------------- // Used to write data into the index buffer //----------------------------------------------------------------------------- inline void CIndexBuilder::Index(unsigned short nIndex) { Assert(m_pIndices); Assert(m_nCurrentIndex < m_nMaxIndexCount); m_pIndices[m_nCurrentIndex] = (unsigned short)(m_nIndexOffset + nIndex); } // Fast Index! No need to call advance index inline void CIndexBuilder::FastIndex(unsigned short nIndex) { Assert(m_pIndices); Assert(m_nCurrentIndex < m_nMaxIndexCount); m_pIndices[m_nCurrentIndex] = (unsigned short)(m_nIndexOffset + nIndex); m_nCurrentIndex += m_nIndexSize; m_nIndexCount = m_nCurrentIndex; } inline void CIndexBuilder::FastTriangle(int startVert) { startVert += m_nIndexOffset; m_pIndices[m_nCurrentIndex + 0] = startVert; m_pIndices[m_nCurrentIndex + 1] = startVert + 1; m_pIndices[m_nCurrentIndex + 2] = startVert + 2; AdvanceIndices(3); } inline void CIndexBuilder::FastQuad(int startVert) { startVert += m_nIndexOffset; m_pIndices[m_nCurrentIndex + 0] = startVert; m_pIndices[m_nCurrentIndex + 1] = startVert + 1; m_pIndices[m_nCurrentIndex + 2] = startVert + 2; m_pIndices[m_nCurrentIndex + 3] = startVert; m_pIndices[m_nCurrentIndex + 4] = startVert + 2; m_pIndices[m_nCurrentIndex + 5] = startVert + 3; AdvanceIndices(6); } inline void CIndexBuilder::FastPolygon(int startVert, int triangleCount) { unsigned short *pIndex = &m_pIndices[m_nCurrentIndex]; startVert += m_nIndexOffset; if (!IsX360()) { // NOTE: IndexSize is 1 or 0 (0 for alt-tab) // This prevents us from writing into bogus memory Assert(m_nIndexSize == 0 || m_nIndexSize == 1); triangleCount *= m_nIndexSize; } for (int v = 0; v < triangleCount; ++v) { *pIndex++ = startVert; *pIndex++ = startVert + v + 1; *pIndex++ = startVert + v + 2; } AdvanceIndices(triangleCount * 3); } inline void CIndexBuilder::FastPolygonList(int startVert, int *pVertexCount, int polygonCount) { unsigned short *pIndex = &m_pIndices[m_nCurrentIndex]; startVert += m_nIndexOffset; int indexOut = 0; if (!IsX360()) { // NOTE: IndexSize is 1 or 0 (0 for alt-tab) // This prevents us from writing into bogus memory Assert(m_nIndexSize == 0 || m_nIndexSize == 1); polygonCount *= m_nIndexSize; } for (int i = 0; i < polygonCount; i++) { int vertexCount = pVertexCount[i]; int triangleCount = vertexCount - 2; for (int v = 0; v < triangleCount; ++v) { *pIndex++ = startVert; *pIndex++ = startVert + v + 1; *pIndex++ = startVert + v + 2; } startVert += vertexCount; indexOut += triangleCount * 3; } AdvanceIndices(indexOut); } inline void CIndexBuilder::FastIndexList(const unsigned short *pIndexList, int startVert, int indexCount) { unsigned short *pIndexOut = &m_pIndices[m_nCurrentIndex]; startVert += m_nIndexOffset; if (!IsX360()) { // NOTE: IndexSize is 1 or 0 (0 for alt-tab) // This prevents us from writing into bogus memory Assert(m_nIndexSize == 0 || m_nIndexSize == 1); indexCount *= m_nIndexSize; } for (int i = 0; i < indexCount; ++i) { pIndexOut[i] = startVert + pIndexList[i]; } AdvanceIndices(indexCount); } //----------------------------------------------------------------------------- // NOTE: This version is the one you really want to achieve write-combining; // Write combining only works if you write in 4 bytes chunks. //----------------------------------------------------------------------------- inline void CIndexBuilder::FastIndex2(unsigned short nIndex1, unsigned short nIndex2) { Assert(m_pIndices); Assert(m_nCurrentIndex < m_nMaxIndexCount - 1); // Assert( ( (int)( &m_pIndices[m_nCurrentIndex] ) & 0x3 ) == 0 ); #ifndef _X360 unsigned int nIndices = ((unsigned int)nIndex1 + m_nIndexOffset) | (((unsigned int)nIndex2 + m_nIndexOffset) << 16); #else unsigned int nIndices = ((unsigned int)nIndex2 + m_nIndexOffset) | (((unsigned int)nIndex1 + m_nIndexOffset) << 16); #endif *(int *)(&m_pIndices[m_nCurrentIndex]) = nIndices; m_nCurrentIndex += m_nIndexSize + m_nIndexSize; m_nIndexCount = m_nCurrentIndex; } //----------------------------------------------------------------------------- // Generates indices for a particular primitive type //----------------------------------------------------------------------------- inline void CIndexBuilder::GenerateIndices( MaterialPrimitiveType_t primitiveType, int nIndexCount) { // FIXME: How to make this work with short vs int sized indices? // Don't generate indices if we've got an empty buffer if (m_nIndexSize == 0) return; int nMaxIndices = m_nMaxIndexCount - m_nCurrentIndex; nIndexCount = Min(nMaxIndices, nIndexCount); if (nIndexCount == 0) return; unsigned short *pIndices = &m_pIndices[m_nCurrentIndex]; switch (primitiveType) { case MATERIAL_INSTANCED_QUADS: Assert(0); // Shouldn't get here (this primtype is unindexed) break; case MATERIAL_QUADS: GenerateQuadIndexBuffer(pIndices, nIndexCount, m_nIndexOffset); break; case MATERIAL_POLYGON: GeneratePolygonIndexBuffer(pIndices, nIndexCount, m_nIndexOffset); break; case MATERIAL_LINE_STRIP: GenerateLineStripIndexBuffer(pIndices, nIndexCount, m_nIndexOffset); break; case MATERIAL_LINE_LOOP: GenerateLineLoopIndexBuffer(pIndices, nIndexCount, m_nIndexOffset); break; case MATERIAL_POINTS: Assert(0); // Shouldn't get here (this primtype is unindexed) break; default: GenerateSequentialIndexBuffer(pIndices, nIndexCount, m_nIndexOffset); break; } AdvanceIndices(nIndexCount); } //----------------------------------------------------------------------------- // // Helper class used to define meshes // //----------------------------------------------------------------------------- // class CMeshBuilder : private MeshDesc_t // hack fixme class CMeshBuilder : public MeshDesc_t { public: CMeshBuilder(); ~CMeshBuilder() { Assert(!m_pMesh); } // if this fires you did a Begin() without an End() operator CIndexBuilder &() { return m_IndexBuilder; } // This must be called before Begin, if a vertex buffer with a compressed // format is to be used void SetCompressionType(VertexCompressionType_t compressionType); // Locks the vertex buffer // (*cannot* use the Index() call below) void Begin(IMesh *pMesh, MaterialPrimitiveType_t type, int numPrimitives); // Locks the vertex buffer, can specify arbitrary index lists // (must use the Index() call below) void Begin(IMesh *pMesh, MaterialPrimitiveType_t type, int nVertexCount, int nIndexCount, int *nFirstVertex); void Begin(IMesh *pMesh, MaterialPrimitiveType_t type, int nVertexCount, int nIndexCount); // forward compat void Begin(IVertexBuffer *pVertexBuffer, MaterialPrimitiveType_t type, int numPrimitives); void Begin(IVertexBuffer *pVertexBuffer, IIndexBuffer *pIndexBuffer, MaterialPrimitiveType_t type, int nVertexCount, int nIndexCount, int *nFirstVertex); void Begin(IVertexBuffer *pVertexBuffer, IIndexBuffer *pIndexBuffer, MaterialPrimitiveType_t type, int nVertexCount, int nIndexCount); // Use this when you're done writing // Set bDraw to true to call m_pMesh->Draw automatically. void End(bool bSpewData = false, bool bDraw = false); // Locks the vertex buffer to modify existing data // Passing nVertexCount == -1 says to lock all the vertices for // modification. Pass 0 for nIndexCount to not lock the index buffer. void BeginModify(IMesh *pMesh, int nFirstVertex = 0, int nVertexCount = -1, int nFirstIndex = 0, int nIndexCount = 0); void EndModify(bool bSpewData = false); // A helper method since this seems to be done a whole bunch. void DrawQuad(IMesh *pMesh, const float *v1, const float *v2, const float *v3, const float *v4, unsigned char const *pColor, bool wireframe = false); // returns the number of indices and vertices int VertexCount() const; int IndexCount() const; // Resets the mesh builder so it points to the start of everything again void Reset(); // Returns the size of the vertex int VertexSize() { return m_ActualVertexSize; } // returns the data size of a given texture coordinate int TextureCoordinateSize(int nTexCoordNumber) { return m_VertexSize_TexCoord[nTexCoordNumber]; } // Returns the base vertex memory pointer void *BaseVertexData(); // Selects the nth Vertex and Index void SelectVertex(int idx); void SelectIndex(int idx); // Given an index, point to the associated vertex void SelectVertexFromIndex(int idx); // Advances the current vertex and index by one void AdvanceVertex(); template void AdvanceVertexF(); void AdvanceVertices(int nVerts); void AdvanceIndex(); void AdvanceIndices(int nIndices); int GetCurrentVertex(); int GetCurrentIndex(); // Data retrieval... const float *Position() const; const float *Normal() const; unsigned int Color() const; unsigned char *Specular() const; const float *TexCoord(int stage) const; const float *TangentS() const; const float *TangentT() const; const float *BoneWeight() const; float Wrinkle() const; int NumBoneWeights() const; #ifndef NEW_SKINNING unsigned char *BoneMatrix() const; #else float *BoneMatrix() const; #endif unsigned short const *Index() const; // position setting void Position3f(float x, float y, float z); void Position3fv(const float *v); // normal setting void Normal3f(float nx, float ny, float nz); void Normal3fv(const float *n); void NormalDelta3fv(const float *n); void NormalDelta3f(float nx, float ny, float nz); // normal setting (templatized for code which needs to support compressed // vertices) template void CompressedNormal3f(float nx, float ny, float nz); template void CompressedNormal3fv(const float *n); // color setting void Color3f(float r, float g, float b); void Color3fv(const float *rgb); void Color4f(float r, float g, float b, float a); void Color4fv(const float *rgba); // Faster versions of color void Color3ub(unsigned char r, unsigned char g, unsigned char b); void Color3ubv(unsigned char const *rgb); void Color4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a); void Color4ubv(unsigned char const *rgba); // specular color setting void Specular3f(float r, float g, float b); void Specular3fv(const float *rgb); void Specular4f(float r, float g, float b, float a); void Specular4fv(const float *rgba); // Faster version of specular void Specular3ub(unsigned char r, unsigned char g, unsigned char b); void Specular3ubv(unsigned char const *c); void Specular4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a); void Specular4ubv(unsigned char const *c); // texture coordinate setting void TexCoord1f(int stage, float s); void TexCoord2f(int stage, float s, float t); void TexCoord2fv(int stage, const float *st); void TexCoord3f(int stage, float s, float t, float u); void TexCoord3fv(int stage, const float *stu); void TexCoord4f(int stage, float s, float t, float u, float w); void TexCoord4fv(int stage, const float *stuv); void TexCoordSubRect2f(int stage, float s, float t, float offsetS, float offsetT, float scaleS, float scaleT); void TexCoordSubRect2fv(int stage, const float *st, const float *offset, const float *scale); // tangent space void TangentS3f(float sx, float sy, float sz); void TangentS3fv(const float *s); void TangentT3f(float tx, float ty, float tz); void TangentT3fv(const float *t); // Wrinkle void Wrinkle1f(float flWrinkle); // bone weights void BoneWeight(int idx, float weight); // bone weights (templatized for code which needs to support compressed // vertices) template void CompressedBoneWeight3fv(const float *pWeights); // bone matrix index void BoneMatrix(int idx, int matrixIndex); // Generic per-vertex data void UserData(const float *pData); // Generic per-vertex data (templatized for code which needs to support // compressed vertices) template void CompressedUserData(const float *pData); // Used to define the indices (only used if you aren't using primitives) void Index(unsigned short index); // NOTE: Use this one to get write combining! Much faster than the other // version of FastIndex Fast Index! No need to call advance index, and no // random access allowed void FastIndex2(unsigned short nIndex1, unsigned short nIndex2); // Fast Index! No need to call advance index, and no random access allowed void FastIndex(unsigned short index); // Fast Vertex! No need to call advance vertex, and no random access // allowed. WARNING - these are low level functions that are intended only // for use in the software vertex skinner. void FastVertex(const ModelVertexDX7_t &vertex); void FastVertexSSE(const ModelVertexDX7_t &vertex); // store 4 dx7 vertices fast. for special sse dx7 pipeline void Fast4VerticesSSE(ModelVertexDX7_t const *vtx_a, ModelVertexDX7_t const *vtx_b, ModelVertexDX7_t const *vtx_c, ModelVertexDX7_t const *vtx_d); void FastVertex(const ModelVertexDX8_t &vertex); void FastVertexSSE(const ModelVertexDX8_t &vertex); // Add number of verts and current vert since FastVertexxx routines do not // update. void FastAdvanceNVertices(int n); #if defined(_X360) void VertexDX8ToX360(const ModelVertexDX8_t &vertex); #endif private: // Computes number of verts and indices void ComputeNumVertsAndIndices(int *pMaxVertices, int *pMaxIndices, MaterialPrimitiveType_t type, int nPrimitiveCount); int IndicesFromVertices(MaterialPrimitiveType_t type, int nVertexCount); // The mesh we're modifying IMesh *m_pMesh; MaterialPrimitiveType_t m_Type; // Generate indices? bool m_bGenerateIndices; CIndexBuilder m_IndexBuilder; CVertexBuilder m_VertexBuilder; }; //----------------------------------------------------------------------------- // Forward compat //----------------------------------------------------------------------------- inline void CMeshBuilder::Begin(IVertexBuffer *pVertexBuffer, MaterialPrimitiveType_t type, int numPrimitives) { Assert(0); // Begin( pVertexBuffer->GetMesh(), type, numPrimitives ); } inline void CMeshBuilder::Begin(IVertexBuffer *pVertexBuffer, IIndexBuffer *pIndexBuffer, MaterialPrimitiveType_t type, int nVertexCount, int nIndexCount, int *nFirstVertex) { Assert(0); // Begin( pVertexBuffer->GetMesh(), type, nVertexCount, nIndexCount, //nFirstVertex ); } inline void CMeshBuilder::Begin(IVertexBuffer *pVertexBuffer, IIndexBuffer *pIndexBuffer, MaterialPrimitiveType_t type, int nVertexCount, int nIndexCount) { Assert(0); // Begin( pVertexBuffer->GetMesh(), type, nVertexCount, nIndexCount ); } //----------------------------------------------------------------------------- // Constructor //----------------------------------------------------------------------------- inline CMeshBuilder::CMeshBuilder() : m_pMesh(0), m_bGenerateIndices(false) {} //----------------------------------------------------------------------------- // Computes the number of verts and indices based on primitive type and count //----------------------------------------------------------------------------- inline void CMeshBuilder::ComputeNumVertsAndIndices( int *pMaxVertices, int *pMaxIndices, MaterialPrimitiveType_t type, int nPrimitiveCount) { switch (type) { case MATERIAL_POINTS: *pMaxVertices = *pMaxIndices = nPrimitiveCount; break; case MATERIAL_LINES: *pMaxVertices = *pMaxIndices = nPrimitiveCount * 2; break; case MATERIAL_LINE_STRIP: *pMaxVertices = nPrimitiveCount + 1; *pMaxIndices = nPrimitiveCount * 2; break; case MATERIAL_LINE_LOOP: *pMaxVertices = nPrimitiveCount; *pMaxIndices = nPrimitiveCount * 2; break; case MATERIAL_TRIANGLES: *pMaxVertices = *pMaxIndices = nPrimitiveCount * 3; break; case MATERIAL_TRIANGLE_STRIP: *pMaxVertices = *pMaxIndices = nPrimitiveCount + 2; break; case MATERIAL_QUADS: *pMaxVertices = nPrimitiveCount * 4; *pMaxIndices = nPrimitiveCount * 6; break; case MATERIAL_INSTANCED_QUADS: *pMaxVertices = nPrimitiveCount; *pMaxIndices = 0; // This primtype is unindexed break; case MATERIAL_POLYGON: *pMaxVertices = nPrimitiveCount; *pMaxIndices = (nPrimitiveCount - 2) * 3; break; default: *pMaxVertices = 0; *pMaxIndices = 0; Assert(0); } // FIXME: need to get this from meshdx8.cpp, or move it to somewhere common Assert(*pMaxVertices <= 32768); Assert(*pMaxIndices <= 32768); } inline int CMeshBuilder::IndicesFromVertices(MaterialPrimitiveType_t type, int nVertexCount) { switch (type) { case MATERIAL_QUADS: Assert((nVertexCount & 0x3) == 0); return (nVertexCount * 6) / 4; case MATERIAL_INSTANCED_QUADS: // This primtype is unindexed return 0; case MATERIAL_POLYGON: Assert(nVertexCount >= 3); return (nVertexCount - 2) * 3; case MATERIAL_LINE_STRIP: Assert(nVertexCount >= 2); return (nVertexCount - 1) * 2; case MATERIAL_LINE_LOOP: Assert(nVertexCount >= 3); return nVertexCount * 2; default: return nVertexCount; } } //----------------------------------------------------------------------------- // Specify the type of vertex compression that this CMeshBuilder will perform //----------------------------------------------------------------------------- inline void CMeshBuilder::SetCompressionType( VertexCompressionType_t vertexCompressionType) { m_VertexBuilder.SetCompressionType(vertexCompressionType); } //----------------------------------------------------------------------------- // Begins modifying the mesh //----------------------------------------------------------------------------- inline void CMeshBuilder::Begin(IMesh *pMesh, MaterialPrimitiveType_t type, int numPrimitives) { Assert(pMesh && (!m_pMesh)); Assert(type != MATERIAL_HETEROGENOUS); m_pMesh = pMesh; m_bGenerateIndices = true; m_Type = type; int nMaxVertexCount, nMaxIndexCount; ComputeNumVertsAndIndices(&nMaxVertexCount, &nMaxIndexCount, type, numPrimitives); switch (type) { case MATERIAL_INSTANCED_QUADS: m_pMesh->SetPrimitiveType(MATERIAL_INSTANCED_QUADS); break; case MATERIAL_QUADS: case MATERIAL_POLYGON: m_pMesh->SetPrimitiveType(MATERIAL_TRIANGLES); break; case MATERIAL_LINE_STRIP: case MATERIAL_LINE_LOOP: m_pMesh->SetPrimitiveType(MATERIAL_LINES); break; default: m_pMesh->SetPrimitiveType(type); } // Lock the mesh m_pMesh->LockMesh(nMaxVertexCount, nMaxIndexCount, *this); m_IndexBuilder.AttachBegin(pMesh, nMaxIndexCount, *this); m_VertexBuilder.AttachBegin(pMesh, nMaxVertexCount, *this); // Point to the start of the index and vertex buffers Reset(); } inline void CMeshBuilder::Begin(IMesh *pMesh, MaterialPrimitiveType_t type, int nVertexCount, int nIndexCount, int *nFirstVertex) { Begin(pMesh, type, nVertexCount, nIndexCount); *nFirstVertex = m_VertexBuilder.m_nFirstVertex * m_VertexBuilder.VertexSize(); } inline void CMeshBuilder::Begin(IMesh *pMesh, MaterialPrimitiveType_t type, int nVertexCount, int nIndexCount) { Assert(pMesh && (!m_pMesh)); // NOTE: We can't specify the indices when we use quads, polygons, or // linestrips; they aren't actually directly supported by // the material system Assert((type != MATERIAL_QUADS) && (type != MATERIAL_INSTANCED_QUADS) && (type != MATERIAL_POLYGON) && (type != MATERIAL_LINE_STRIP) && (type != MATERIAL_LINE_LOOP)); // Dx8 doesn't support indexed points... Assert(type != MATERIAL_POINTS); m_pMesh = pMesh; m_bGenerateIndices = false; m_Type = type; // Set the primitive type m_pMesh->SetPrimitiveType(type); // Lock the vertex and index buffer m_pMesh->LockMesh(nVertexCount, nIndexCount, *this); m_IndexBuilder.AttachBegin(pMesh, nIndexCount, *this); m_VertexBuilder.AttachBegin(pMesh, nVertexCount, *this); // Point to the start of the buffers.. Reset(); } //----------------------------------------------------------------------------- // Use this when you're done modifying the mesh //----------------------------------------------------------------------------- inline void CMeshBuilder::End(bool bSpewData, bool bDraw) { if (m_bGenerateIndices) { int nIndexCount = IndicesFromVertices(m_Type, m_VertexBuilder.VertexCount()); m_IndexBuilder.GenerateIndices(m_Type, nIndexCount); } if (bSpewData) { m_pMesh->Spew(m_VertexBuilder.VertexCount(), m_IndexBuilder.IndexCount(), *this); } #ifdef _DEBUG m_pMesh->ValidateData(m_VertexBuilder.VertexCount(), m_IndexBuilder.IndexCount(), *this); #endif // Unlock our buffers m_pMesh->UnlockMesh(m_VertexBuilder.VertexCount(), m_IndexBuilder.IndexCount(), *this); m_IndexBuilder.AttachEnd(); m_VertexBuilder.AttachEnd(); if (bDraw) { m_pMesh->Draw(); } m_pMesh = 0; #ifdef _DEBUG memset((MeshDesc_t *)this, 0, sizeof(MeshDesc_t)); #endif } //----------------------------------------------------------------------------- // Locks the vertex buffer to modify existing data //----------------------------------------------------------------------------- inline void CMeshBuilder::BeginModify(IMesh *pMesh, int nFirstVertex, int nVertexCount, int nFirstIndex, int nIndexCount) { Assert(pMesh && (!m_pMesh)); if (nVertexCount < 0) { nVertexCount = pMesh->VertexCount(); } m_pMesh = pMesh; m_bGenerateIndices = false; // Locks mesh for modifying pMesh->ModifyBeginEx(false, nFirstVertex, nVertexCount, nFirstIndex, nIndexCount, *this); m_IndexBuilder.AttachBeginModify(pMesh, nFirstIndex, nIndexCount, *this); m_VertexBuilder.AttachBeginModify(pMesh, nFirstVertex, nVertexCount, *this); // Point to the start of the buffers.. Reset(); } inline void CMeshBuilder::EndModify(bool bSpewData) { Assert(m_pMesh); if (bSpewData) { m_pMesh->Spew(m_VertexBuilder.VertexCount(), m_IndexBuilder.IndexCount(), *this); } #ifdef _DEBUG m_pMesh->ValidateData(m_VertexBuilder.VertexCount(), m_IndexBuilder.IndexCount(), *this); #endif // Unlocks mesh m_pMesh->ModifyEnd(*this); m_pMesh = 0; m_IndexBuilder.AttachEndModify(); m_VertexBuilder.AttachEndModify(); #ifdef _DEBUG // Null out our pointers... memset((MeshDesc_t *)this, 0, sizeof(MeshDesc_t)); #endif } //----------------------------------------------------------------------------- // Resets the mesh builder so it points to the start of everything again //----------------------------------------------------------------------------- inline void CMeshBuilder::Reset() { m_IndexBuilder.Reset(); m_VertexBuilder.Reset(); } //----------------------------------------------------------------------------- // Selects the current Vertex and Index //----------------------------------------------------------------------------- FORCEINLINE void CMeshBuilder::SelectVertex(int nIndex) { m_VertexBuilder.SelectVertex(nIndex); } inline void CMeshBuilder::SelectVertexFromIndex(int idx) { // NOTE: This index is expected to be relative int vertIdx = idx - m_nFirstVertex; SelectVertex(vertIdx); } FORCEINLINE void CMeshBuilder::SelectIndex(int idx) { m_IndexBuilder.SelectIndex(idx); } //----------------------------------------------------------------------------- // Advances the current vertex and index by one //----------------------------------------------------------------------------- template FORCEINLINE void CMeshBuilder::AdvanceVertexF() { m_VertexBuilder.AdvanceVertexF(); } FORCEINLINE void CMeshBuilder::AdvanceVertex() { m_VertexBuilder.AdvanceVertex(); } FORCEINLINE void CMeshBuilder::AdvanceVertices(int nVertexCount) { m_VertexBuilder.AdvanceVertices(nVertexCount); } FORCEINLINE void CMeshBuilder::AdvanceIndex() { m_IndexBuilder.AdvanceIndex(); } FORCEINLINE void CMeshBuilder::AdvanceIndices(int nIndices) { m_IndexBuilder.AdvanceIndices(nIndices); } FORCEINLINE int CMeshBuilder::GetCurrentVertex() { return m_VertexBuilder.GetCurrentVertex(); } FORCEINLINE int CMeshBuilder::GetCurrentIndex() { return m_IndexBuilder.GetCurrentIndex(); } //----------------------------------------------------------------------------- // A helper method since this seems to be done a whole bunch. //----------------------------------------------------------------------------- inline void CMeshBuilder::DrawQuad(IMesh *pMesh, const float *v1, const float *v2, const float *v3, const float *v4, unsigned char const *pColor, bool wireframe) { if (!wireframe) { Begin(pMesh, MATERIAL_TRIANGLE_STRIP, 2); Position3fv(v1); Color4ubv(pColor); AdvanceVertexF(); Position3fv(v2); Color4ubv(pColor); AdvanceVertexF(); Position3fv(v4); Color4ubv(pColor); AdvanceVertexF(); Position3fv(v3); Color4ubv(pColor); AdvanceVertexF(); } else { Begin(pMesh, MATERIAL_LINE_LOOP, 4); Position3fv(v1); Color4ubv(pColor); AdvanceVertexF(); Position3fv(v2); Color4ubv(pColor); AdvanceVertexF(); Position3fv(v3); Color4ubv(pColor); AdvanceVertexF(); Position3fv(v4); Color4ubv(pColor); AdvanceVertexF(); } End(); pMesh->Draw(); } //----------------------------------------------------------------------------- // returns the number of indices and vertices //----------------------------------------------------------------------------- FORCEINLINE int CMeshBuilder::VertexCount() const { return m_VertexBuilder.VertexCount(); } FORCEINLINE int CMeshBuilder::IndexCount() const { return m_IndexBuilder.IndexCount(); } //----------------------------------------------------------------------------- // Returns the base vertex memory pointer //----------------------------------------------------------------------------- FORCEINLINE void *CMeshBuilder::BaseVertexData() { return m_VertexBuilder.BaseVertexData(); } //----------------------------------------------------------------------------- // Data retrieval... //----------------------------------------------------------------------------- FORCEINLINE const float *CMeshBuilder::Position() const { return m_VertexBuilder.Position(); } FORCEINLINE const float *CMeshBuilder::Normal() const { return m_VertexBuilder.Normal(); } FORCEINLINE unsigned int CMeshBuilder::Color() const { return m_VertexBuilder.Color(); } FORCEINLINE unsigned char *CMeshBuilder::Specular() const { return m_VertexBuilder.Specular(); } FORCEINLINE const float *CMeshBuilder::TexCoord(int nStage) const { return m_VertexBuilder.TexCoord(nStage); } FORCEINLINE const float *CMeshBuilder::TangentS() const { return m_VertexBuilder.TangentS(); } FORCEINLINE const float *CMeshBuilder::TangentT() const { return m_VertexBuilder.TangentT(); } FORCEINLINE float CMeshBuilder::Wrinkle() const { return m_VertexBuilder.Wrinkle(); } FORCEINLINE const float *CMeshBuilder::BoneWeight() const { return m_VertexBuilder.BoneWeight(); } FORCEINLINE int CMeshBuilder::NumBoneWeights() const { return m_VertexBuilder.NumBoneWeights(); } FORCEINLINE unsigned short const *CMeshBuilder::Index() const { return m_IndexBuilder.Index(); } //----------------------------------------------------------------------------- // Index //----------------------------------------------------------------------------- FORCEINLINE void CMeshBuilder::Index(unsigned short idx) { m_IndexBuilder.Index(idx); } //----------------------------------------------------------------------------- // Fast Index! No need to call advance index //----------------------------------------------------------------------------- FORCEINLINE void CMeshBuilder::FastIndex(unsigned short idx) { m_IndexBuilder.FastIndex(idx); } // NOTE: Use this one to get write combining! Much faster than the other version // of FastIndex Fast Index! No need to call advance index, and no random access // allowed FORCEINLINE void CMeshBuilder::FastIndex2(unsigned short nIndex1, unsigned short nIndex2) { m_IndexBuilder.FastIndex2(nIndex1, nIndex2); } //----------------------------------------------------------------------------- // For use with the FastVertex methods, advances the current vertex by N //----------------------------------------------------------------------------- FORCEINLINE void CMeshBuilder::FastAdvanceNVertices(int nVertexCount) { m_VertexBuilder.FastAdvanceNVertices(nVertexCount); } //----------------------------------------------------------------------------- // Fast Vertex! No need to call advance vertex, and no random access allowed //----------------------------------------------------------------------------- FORCEINLINE void CMeshBuilder::FastVertex(const ModelVertexDX7_t &vertex) { m_VertexBuilder.FastVertex(vertex); } FORCEINLINE void CMeshBuilder::FastVertexSSE(const ModelVertexDX7_t &vertex) { m_VertexBuilder.FastVertexSSE(vertex); } FORCEINLINE void CMeshBuilder::Fast4VerticesSSE(const ModelVertexDX7_t *vtx_a, const ModelVertexDX7_t *vtx_b, const ModelVertexDX7_t *vtx_c, const ModelVertexDX7_t *vtx_d) { m_VertexBuilder.Fast4VerticesSSE(vtx_a, vtx_b, vtx_c, vtx_d); } FORCEINLINE void CMeshBuilder::FastVertex(const ModelVertexDX8_t &vertex) { m_VertexBuilder.FastVertex(vertex); } FORCEINLINE void CMeshBuilder::FastVertexSSE(const ModelVertexDX8_t &vertex) { m_VertexBuilder.FastVertexSSE(vertex); } //----------------------------------------------------------------------------- // Copies a vertex into the x360 format //----------------------------------------------------------------------------- #if defined(_X360) inline void CMeshBuilder::VertexDX8ToX360(const ModelVertexDX8_t &vertex) { m_VertexBuilder.VertexDX8ToX360(vertex); } #endif //----------------------------------------------------------------------------- // Vertex field setting methods //----------------------------------------------------------------------------- FORCEINLINE void CMeshBuilder::Position3f(float x, float y, float z) { m_VertexBuilder.Position3f(x, y, z); } FORCEINLINE void CMeshBuilder::Position3fv(const float *v) { m_VertexBuilder.Position3fv(v); } FORCEINLINE void CMeshBuilder::Normal3f(float nx, float ny, float nz) { m_VertexBuilder.Normal3f(nx, ny, nz); } FORCEINLINE void CMeshBuilder::Normal3fv(const float *n) { m_VertexBuilder.Normal3fv(n); } FORCEINLINE void CMeshBuilder::NormalDelta3f(float nx, float ny, float nz) { m_VertexBuilder.NormalDelta3f(nx, ny, nz); } FORCEINLINE void CMeshBuilder::NormalDelta3fv(const float *n) { m_VertexBuilder.NormalDelta3fv(n); } FORCEINLINE void CMeshBuilder::Color3f(float r, float g, float b) { m_VertexBuilder.Color3f(r, g, b); } FORCEINLINE void CMeshBuilder::Color3fv(const float *rgb) { m_VertexBuilder.Color3fv(rgb); } FORCEINLINE void CMeshBuilder::Color4f(float r, float g, float b, float a) { m_VertexBuilder.Color4f(r, g, b, a); } FORCEINLINE void CMeshBuilder::Color4fv(const float *rgba) { m_VertexBuilder.Color4fv(rgba); } FORCEINLINE void CMeshBuilder::Color3ub(unsigned char r, unsigned char g, unsigned char b) { m_VertexBuilder.Color3ub(r, g, b); } FORCEINLINE void CMeshBuilder::Color3ubv(unsigned char const *rgb) { m_VertexBuilder.Color3ubv(rgb); } FORCEINLINE void CMeshBuilder::Color4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { m_VertexBuilder.Color4ub(r, g, b, a); } FORCEINLINE void CMeshBuilder::Color4ubv(unsigned char const *rgba) { m_VertexBuilder.Color4ubv(rgba); } FORCEINLINE void CMeshBuilder::Specular3f(float r, float g, float b) { m_VertexBuilder.Specular3f(r, g, b); } FORCEINLINE void CMeshBuilder::Specular3fv(const float *rgb) { m_VertexBuilder.Specular3fv(rgb); } FORCEINLINE void CMeshBuilder::Specular4f(float r, float g, float b, float a) { m_VertexBuilder.Specular4f(r, g, b, a); } FORCEINLINE void CMeshBuilder::Specular4fv(const float *rgba) { m_VertexBuilder.Specular4fv(rgba); } FORCEINLINE void CMeshBuilder::Specular3ub(unsigned char r, unsigned char g, unsigned char b) { m_VertexBuilder.Specular3ub(r, g, b); } FORCEINLINE void CMeshBuilder::Specular3ubv(unsigned char const *c) { m_VertexBuilder.Specular3ubv(c); } FORCEINLINE void CMeshBuilder::Specular4ub(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { m_VertexBuilder.Specular4ub(r, g, b, a); } FORCEINLINE void CMeshBuilder::Specular4ubv(unsigned char const *c) { m_VertexBuilder.Specular4ubv(c); } FORCEINLINE void CMeshBuilder::TexCoord1f(int nStage, float s) { m_VertexBuilder.TexCoord1f(nStage, s); } FORCEINLINE void CMeshBuilder::TexCoord2f(int nStage, float s, float t) { m_VertexBuilder.TexCoord2f(nStage, s, t); } FORCEINLINE void CMeshBuilder::TexCoord2fv(int nStage, const float *st) { m_VertexBuilder.TexCoord2fv(nStage, st); } FORCEINLINE void CMeshBuilder::TexCoord3f(int nStage, float s, float t, float u) { m_VertexBuilder.TexCoord3f(nStage, s, t, u); } FORCEINLINE void CMeshBuilder::TexCoord3fv(int nStage, const float *stu) { m_VertexBuilder.TexCoord3fv(nStage, stu); } FORCEINLINE void CMeshBuilder::TexCoord4f(int nStage, float s, float t, float u, float v) { m_VertexBuilder.TexCoord4f(nStage, s, t, u, v); } FORCEINLINE void CMeshBuilder::TexCoord4fv(int nStage, const float *stuv) { m_VertexBuilder.TexCoord4fv(nStage, stuv); } FORCEINLINE void CMeshBuilder::TexCoordSubRect2f(int nStage, float s, float t, float offsetS, float offsetT, float scaleS, float scaleT) { m_VertexBuilder.TexCoordSubRect2f(nStage, s, t, offsetS, offsetT, scaleS, scaleT); } FORCEINLINE void CMeshBuilder::TexCoordSubRect2fv(int nStage, const float *st, const float *offset, const float *scale) { m_VertexBuilder.TexCoordSubRect2fv(nStage, st, offset, scale); } FORCEINLINE void CMeshBuilder::TangentS3f(float sx, float sy, float sz) { m_VertexBuilder.TangentS3f(sx, sy, sz); } FORCEINLINE void CMeshBuilder::TangentS3fv(const float *s) { m_VertexBuilder.TangentS3fv(s); } FORCEINLINE void CMeshBuilder::TangentT3f(float tx, float ty, float tz) { m_VertexBuilder.TangentT3f(tx, ty, tz); } FORCEINLINE void CMeshBuilder::TangentT3fv(const float *t) { m_VertexBuilder.TangentT3fv(t); } FORCEINLINE void CMeshBuilder::Wrinkle1f(float flWrinkle) { m_VertexBuilder.Wrinkle1f(flWrinkle); } FORCEINLINE void CMeshBuilder::BoneWeight(int nIndex, float flWeight) { m_VertexBuilder.BoneWeight(nIndex, flWeight); } template FORCEINLINE void CMeshBuilder::CompressedBoneWeight3fv(const float *pWeights) { m_VertexBuilder.CompressedBoneWeight3fv(pWeights); } FORCEINLINE void CMeshBuilder::BoneMatrix(int nIndex, int nMatrixIdx) { m_VertexBuilder.BoneMatrix(nIndex, nMatrixIdx); } FORCEINLINE void CMeshBuilder::UserData(const float *pData) { m_VertexBuilder.UserData(pData); } template FORCEINLINE void CMeshBuilder::CompressedUserData(const float *pData) { m_VertexBuilder.CompressedUserData(pData); } //----------------------------------------------------------------------------- // Templatized vertex field setting methods which support compression //----------------------------------------------------------------------------- template FORCEINLINE void CMeshBuilder::CompressedNormal3f(float nx, float ny, float nz) { m_VertexBuilder.CompressedNormal3f(nx, ny, nz); } template FORCEINLINE void CMeshBuilder::CompressedNormal3fv(const float *n) { m_VertexBuilder.CompressedNormal3fv(n); } #endif // IMESH_H