//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $NoKeywords: $ // //===========================================================================// #ifndef STUDIO_H #define STUDIO_H #ifdef _WIN32 #pragma once #endif #include "datamap.h" #include "localflexcontroller.h" #include "mathlib/compressed_vector.h" #include "mathlib/mathlib.h" #include "mathlib/vector.h" #include "mathlib/vector2d.h" #include "mathlib/vector4d.h" #include "tier0/basetypes.h" #include "tier0/dbg.h" #include "tier0/threadtools.h" #include "tier1/generichash.h" #include "tier1/utlhash.h" #include "tier1/utlsymbol.h" #include "tier1/utlvector.h" #define STUDIO_ENABLE_PERF_COUNTERS #define STUDIO_SEQUENCE_ACTIVITY_LOOKUPS_ARE_SLOW 0 // If this is set to 1, then the activity->sequence mapping inside // the CStudioHdr will not be initialized until the first call to // SelectWeightedSequence() or HaveSequenceForActivity(). If set // to zero, the mapping will be initialized from CStudioHdr::Init() // (itself called from the constructor). // As of June 4 2007, this was set to 1 because physics, among other // systems, extemporaneously declares CStudioHdrs inside local function // scopes without querying their activity/sequence mapping at all. #define STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE 1 //----------------------------------------------------------------------------- // forward declarations //----------------------------------------------------------------------------- class IMaterial; class IMesh; class IMorph; struct virtualmodel_t; struct vertexFileHeader_t; struct thinModelVertices_t; namespace OptimizedModel { struct StripHeader_t; } /* ============================================================================== STUDIO MODELS Studio models are position independent, so the cache manager can move them. ============================================================================== */ #define STUDIO_VERSION 48 #ifndef _XBOX #define MAXSTUDIOTRIANGLES 65536 // TODO: tune this #define MAXSTUDIOVERTS 65536 // TODO: tune this #define MAXSTUDIOFLEXVERTS \ 10000 // max number of verts that can be flexed per mesh. TODO: tune this #else #define MAXSTUDIOTRIANGLES 25000 #define MAXSTUDIOVERTS 10000 #define MAXSTUDIOFLEXVERTS 1000 #endif #define MAXSTUDIOSKINS 32 // total textures #define MAXSTUDIOBONES 128 // total bones actually used #define MAXSTUDIOFLEXDESC \ 1024 // maximum number of low level flexes (actual morph targets) #define MAXSTUDIOFLEXCTRL \ 96 // maximum number of flexcontrollers (input sliders) #define MAXSTUDIOPOSEPARAM 24 #define MAXSTUDIOBONECTRLS 4 #define MAXSTUDIOANIMBLOCKS 256 #define MAXSTUDIOBONEBITS 7 // NOTE: MUST MATCH MAXSTUDIOBONES // NOTE!!! : Changing this number also changes the vtx file format!!!!! #define MAX_NUM_BONES_PER_VERT 3 // Adrian - Remove this when we completely phase out the old event system. #define NEW_EVENT_STYLE (1 << 10) struct mstudiodata_t { int count; int offset; }; #define STUDIO_PROC_AXISINTERP 1 #define STUDIO_PROC_QUATINTERP 2 #define STUDIO_PROC_AIMATBONE 3 #define STUDIO_PROC_AIMATATTACH 4 #define STUDIO_PROC_JIGGLE 5 struct mstudioaxisinterpbone_t { DECLARE_BYTESWAP_DATADESC(); int control; // local transformation of this bone used to calc 3 point // blend int axis; // axis to check Vector pos[6]; // X+, X-, Y+, Y-, Z+, Z- Quaternion quat[6]; // X+, X-, Y+, Y-, Z+, Z- mstudioaxisinterpbone_t() {} private: // No copy constructors allowed mstudioaxisinterpbone_t(const mstudioaxisinterpbone_t &vOther); }; struct mstudioquatinterpinfo_t { DECLARE_BYTESWAP_DATADESC(); float inv_tolerance; // 1 / radian angle of trigger influence Quaternion trigger; // angle to match Vector pos; // new position Quaternion quat; // new angle mstudioquatinterpinfo_t() {} private: // No copy constructors allowed mstudioquatinterpinfo_t(const mstudioquatinterpinfo_t &vOther); }; struct mstudioquatinterpbone_t { DECLARE_BYTESWAP_DATADESC(); int control; // local transformation to check int numtriggers; int triggerindex; inline mstudioquatinterpinfo_t *pTrigger(int i) const { return (mstudioquatinterpinfo_t *)(((byte *)this) + triggerindex) + i; }; mstudioquatinterpbone_t() {} private: // No copy constructors allowed mstudioquatinterpbone_t(const mstudioquatinterpbone_t &vOther); }; #define JIGGLE_IS_FLEXIBLE 0x01 #define JIGGLE_IS_RIGID 0x02 #define JIGGLE_HAS_YAW_CONSTRAINT 0x04 #define JIGGLE_HAS_PITCH_CONSTRAINT 0x08 #define JIGGLE_HAS_ANGLE_CONSTRAINT 0x10 #define JIGGLE_HAS_LENGTH_CONSTRAINT 0x20 #define JIGGLE_HAS_BASE_SPRING 0x40 #define JIGGLE_IS_BOING 0x80 // simple squash and stretch sinusoid "boing" struct mstudiojigglebone_t { DECLARE_BYTESWAP_DATADESC(); int flags; // general params float length; // how from from bone base, along bone, is tip float tipMass; // flexible params float yawStiffness; float yawDamping; float pitchStiffness; float pitchDamping; float alongStiffness; float alongDamping; // angle constraint float angleLimit; // maximum deflection of tip in radians // yaw constraint float minYaw; // in radians float maxYaw; // in radians float yawFriction; float yawBounce; // pitch constraint float minPitch; // in radians float maxPitch; // in radians float pitchFriction; float pitchBounce; // base spring float baseMass; float baseStiffness; float baseDamping; float baseMinLeft; float baseMaxLeft; float baseLeftFriction; float baseMinUp; float baseMaxUp; float baseUpFriction; float baseMinForward; float baseMaxForward; float baseForwardFriction; // boing float boingImpactSpeed; float boingImpactAngle; float boingDampingRate; float boingFrequency; float boingAmplitude; private: // No copy constructors allowed // mstudiojigglebone_t(const mstudiojigglebone_t& vOther); }; struct mstudioaimatbone_t { DECLARE_BYTESWAP_DATADESC(); int parent; int aim; // Might be bone or attach Vector aimvector; Vector upvector; Vector basepos; mstudioaimatbone_t() {} private: // No copy constructors allowed mstudioaimatbone_t(const mstudioaimatbone_t &vOther); }; // bones struct mstudiobone_t { DECLARE_BYTESWAP_DATADESC(); int sznameindex; inline char *const pszName(void) const { return ((char *)this) + sznameindex; } int parent; // parent bone int bonecontroller[6]; // bone controller index, -1 == none // default values Vector pos; Quaternion quat; RadianEuler rot; // compression scale Vector posscale; Vector rotscale; matrix3x4_t poseToBone; Quaternion qAlignment; int flags; int proctype; int procindex; // procedural rule mutable int physicsbone; // index into physically simulated bone inline void *pProcedure() const { if (procindex == 0) return NULL; else return (void *)(((byte *)this) + procindex); }; int surfacepropidx; // index into string tablefor property name inline char *const pszSurfaceProp(void) const { return ((char *)this) + surfacepropidx; } int contents; // See BSPFlags.h for the contents flags int unused[8]; // remove as appropriate mstudiobone_t() {} private: // No copy constructors allowed mstudiobone_t(const mstudiobone_t &vOther); }; struct mstudiolinearbone_t { DECLARE_BYTESWAP_DATADESC(); int numbones; int flagsindex; inline int flags(int i) const { Assert(i >= 0 && i < numbones); return *((int *)(((byte *)this) + flagsindex) + i); }; inline int *pflags(int i) { Assert(i >= 0 && i < numbones); return ((int *)(((byte *)this) + flagsindex) + i); }; int parentindex; inline int parent(int i) const { Assert(i >= 0 && i < numbones); return *((int *)(((byte *)this) + parentindex) + i); }; int posindex; inline Vector pos(int i) const { Assert(i >= 0 && i < numbones); return *((Vector *)(((byte *)this) + posindex) + i); }; int quatindex; inline Quaternion quat(int i) const { Assert(i >= 0 && i < numbones); return *((Quaternion *)(((byte *)this) + quatindex) + i); }; int rotindex; inline RadianEuler rot(int i) const { Assert(i >= 0 && i < numbones); return *((RadianEuler *)(((byte *)this) + rotindex) + i); }; int posetoboneindex; inline matrix3x4_t poseToBone(int i) const { Assert(i >= 0 && i < numbones); return *((matrix3x4_t *)(((byte *)this) + posetoboneindex) + i); }; int posscaleindex; inline Vector posscale(int i) const { Assert(i >= 0 && i < numbones); return *((Vector *)(((byte *)this) + posscaleindex) + i); }; int rotscaleindex; inline Vector rotscale(int i) const { Assert(i >= 0 && i < numbones); return *((Vector *)(((byte *)this) + rotscaleindex) + i); }; int qalignmentindex; inline Quaternion qalignment(int i) const { Assert(i >= 0 && i < numbones); return *((Quaternion *)(((byte *)this) + qalignmentindex) + i); }; int unused[6]; mstudiolinearbone_t() {} private: // No copy constructors allowed mstudiolinearbone_t(const mstudiolinearbone_t &vOther); }; //----------------------------------------------------------------------------- // The component of the bone used by mstudioboneflexdriver_t //----------------------------------------------------------------------------- enum StudioBoneFlexComponent_t { STUDIO_BONE_FLEX_INVALID = -1, // Invalid STUDIO_BONE_FLEX_TX = 0, // Translate X STUDIO_BONE_FLEX_TY = 1, // Translate Y STUDIO_BONE_FLEX_TZ = 2 // Translate Z }; //----------------------------------------------------------------------------- // Component is one of Translate X, Y or Z [0,2] (StudioBoneFlexComponent_t) //----------------------------------------------------------------------------- struct mstudioboneflexdrivercontrol_t { DECLARE_BYTESWAP_DATADESC(); int m_nBoneComponent; // Bone component that drives flex, // StudioBoneFlexComponent_t int m_nFlexControllerIndex; // Flex controller to drive float m_flMin; // Min value of bone component mapped to 0 on flex controller float m_flMax; // Max value of bone component mapped to 1 on flex controller mstudioboneflexdrivercontrol_t() {} private: // No copy constructors allowed mstudioboneflexdrivercontrol_t( const mstudioboneflexdrivercontrol_t &vOther); }; //----------------------------------------------------------------------------- // Drive flex controllers from bone components //----------------------------------------------------------------------------- struct mstudioboneflexdriver_t { DECLARE_BYTESWAP_DATADESC(); int m_nBoneIndex; // Bone to drive flex controller int m_nControlCount; // Number of flex controllers being driven int m_nControlIndex; // Index into data where controllers are (relative to // this) inline mstudioboneflexdrivercontrol_t *pBoneFlexDriverControl(int i) const { Assert(i >= 0 && i < m_nControlCount); return (mstudioboneflexdrivercontrol_t *)(((byte *)this) + m_nControlIndex) + i; } int unused[3]; mstudioboneflexdriver_t() {} private: // No copy constructors allowed mstudioboneflexdriver_t(const mstudioboneflexdriver_t &vOther); }; #define BONE_CALCULATE_MASK 0x1F #define BONE_PHYSICALLY_SIMULATED \ 0x01 // bone is physically simulated when physics are active #define BONE_PHYSICS_PROCEDURAL 0x02 // procedural when physics is active #define BONE_ALWAYS_PROCEDURAL 0x04 // bone is always procedurally animated #define BONE_SCREEN_ALIGN_SPHERE \ 0x08 // bone aligns to the screen, not constrained in motion. #define BONE_SCREEN_ALIGN_CYLINDER \ 0x10 // bone aligns to the screen, constrained by it's own axis. #define BONE_USED_MASK 0x0007FF00 #define BONE_USED_BY_ANYTHING 0x0007FF00 #define BONE_USED_BY_HITBOX 0x00000100 // bone (or child) is used by a hit box #define BONE_USED_BY_ATTACHMENT \ 0x00000200 // bone (or child) is used by an attachment point #define BONE_USED_BY_VERTEX_MASK 0x0003FC00 #define BONE_USED_BY_VERTEX_LOD0 \ 0x00000400 // bone (or child) is used by the toplevel model via skinned // vertex #define BONE_USED_BY_VERTEX_LOD1 0x00000800 #define BONE_USED_BY_VERTEX_LOD2 0x00001000 #define BONE_USED_BY_VERTEX_LOD3 0x00002000 #define BONE_USED_BY_VERTEX_LOD4 0x00004000 #define BONE_USED_BY_VERTEX_LOD5 0x00008000 #define BONE_USED_BY_VERTEX_LOD6 0x00010000 #define BONE_USED_BY_VERTEX_LOD7 0x00020000 #define BONE_USED_BY_BONE_MERGE \ 0x00040000 // bone is available for bone merge to occur against it #define BONE_USED_BY_VERTEX_AT_LOD(lod) (BONE_USED_BY_VERTEX_LOD0 << (lod)) #define BONE_USED_BY_ANYTHING_AT_LOD(lod) \ ((BONE_USED_BY_ANYTHING & ~BONE_USED_BY_VERTEX_MASK) | \ BONE_USED_BY_VERTEX_AT_LOD(lod)) #define MAX_NUM_LODS 8 #define BONE_TYPE_MASK 0x00F00000 #define BONE_FIXED_ALIGNMENT \ 0x00100000 // bone can't spin 360 degrees, all interpolation is normalized // around a fixed orientation #define BONE_HAS_SAVEFRAME_POS 0x00200000 // Vector48 #define BONE_HAS_SAVEFRAME_ROT 0x00400000 // Quaternion64 // bone controllers struct mstudiobonecontroller_t { DECLARE_BYTESWAP_DATADESC(); int bone; // -1 == 0 int type; // X, Y, Z, XR, YR, ZR, M float start; float end; int rest; // byte index value at rest int inputfield; // 0-3 user set controller, 4 mouth int unused[8]; }; // intersection boxes struct mstudiobbox_t { DECLARE_BYTESWAP_DATADESC(); int bone; int group; // intersection group Vector bbmin; // bounding box Vector bbmax; int szhitboxnameindex; // offset to the name of the hitbox. int unused[8]; const char *pszHitboxName() { if (szhitboxnameindex == 0) return ""; return ((const char *)this) + szhitboxnameindex; } mstudiobbox_t() {} private: // No copy constructors allowed mstudiobbox_t(const mstudiobbox_t &vOther); }; // demand loaded sequence groups struct mstudiomodelgroup_t { DECLARE_BYTESWAP_DATADESC(); int szlabelindex; // textual name inline char *const pszLabel(void) const { return ((char *)this) + szlabelindex; } int sznameindex; // file name inline char *const pszName(void) const { return ((char *)this) + sznameindex; } }; struct mstudiomodelgrouplookup_t { int modelgroup; int indexwithingroup; }; // events struct mstudioevent_t { DECLARE_BYTESWAP_DATADESC(); float cycle; int event; int type; inline const char *pszOptions(void) const { return options; } char options[64]; int szeventindex; inline char *const pszEventName(void) const { return ((char *)this) + szeventindex; } }; #define ATTACHMENT_FLAG_WORLD_ALIGN 0x10000 // attachment struct mstudioattachment_t { DECLARE_BYTESWAP_DATADESC(); int sznameindex; inline char *const pszName(void) const { return ((char *)this) + sznameindex; } unsigned int flags; int localbone; matrix3x4_t local; // attachment point int unused[8]; }; #define IK_SELF 1 #define IK_WORLD 2 #define IK_GROUND 3 #define IK_RELEASE 4 #define IK_ATTACHMENT 5 #define IK_UNLATCH 6 struct mstudioikerror_t { DECLARE_BYTESWAP_DATADESC(); Vector pos; Quaternion q; mstudioikerror_t() {} private: // No copy constructors allowed mstudioikerror_t(const mstudioikerror_t &vOther); }; union mstudioanimvalue_t; struct mstudiocompressedikerror_t { DECLARE_BYTESWAP_DATADESC(); float scale[6]; short offset[6]; inline mstudioanimvalue_t *pAnimvalue(int i) const { if (offset[i] > 0) return (mstudioanimvalue_t *)(((byte *)this) + offset[i]); else return NULL; }; mstudiocompressedikerror_t() {} private: // No copy constructors allowed mstudiocompressedikerror_t(const mstudiocompressedikerror_t &vOther); }; struct mstudioikrule_t { DECLARE_BYTESWAP_DATADESC(); int index; int type; int chain; int bone; int slot; // iktarget slot. Usually same as chain. float height; float radius; float floor; Vector pos; Quaternion q; int compressedikerrorindex; inline mstudiocompressedikerror_t *pCompressedError() const { return (mstudiocompressedikerror_t *)(((byte *)this) + compressedikerrorindex); }; int unused2; int iStart; int ikerrorindex; inline mstudioikerror_t *pError(int i) const { return (ikerrorindex) ? (mstudioikerror_t *)(((byte *)this) + ikerrorindex) + (i - iStart) : NULL; }; float start; // beginning of influence float peak; // start of full influence float tail; // end of full influence float end; // end of all influence float unused3; // float contact; // frame footstep makes ground concact float drop; // how far down the foot should drop when reaching for IK float top; // top of the foot box int unused6; int unused7; int unused8; int szattachmentindex; // name of world attachment inline char *const pszAttachment(void) const { return ((char *)this) + szattachmentindex; } int unused[7]; mstudioikrule_t() {} private: // No copy constructors allowed mstudioikrule_t(const mstudioikrule_t &vOther); }; struct mstudioiklock_t { DECLARE_BYTESWAP_DATADESC(); int chain; float flPosWeight; float flLocalQWeight; int flags; int unused[4]; }; struct mstudiolocalhierarchy_t { DECLARE_BYTESWAP_DATADESC(); int iBone; // bone being adjusted int iNewParent; // the bones new parent float start; // beginning of influence float peak; // start of full influence float tail; // end of full influence float end; // end of all influence int iStart; // first frame int localanimindex; inline mstudiocompressedikerror_t *pLocalAnim() const { return (mstudiocompressedikerror_t *)(((byte *)this) + localanimindex); }; int unused[4]; }; // animation frames union mstudioanimvalue_t { struct { byte valid; byte total; } num; short value; }; struct mstudioanim_valueptr_t { DECLARE_BYTESWAP_DATADESC(); short offset[3]; inline mstudioanimvalue_t *pAnimvalue(int i) const { if (offset[i] > 0) return (mstudioanimvalue_t *)(((byte *)this) + offset[i]); else return NULL; }; }; #define STUDIO_ANIM_RAWPOS 0x01 // Vector48 #define STUDIO_ANIM_RAWROT 0x02 // Quaternion48 #define STUDIO_ANIM_ANIMPOS 0x04 // mstudioanim_valueptr_t #define STUDIO_ANIM_ANIMROT 0x08 // mstudioanim_valueptr_t #define STUDIO_ANIM_DELTA 0x10 #define STUDIO_ANIM_RAWROT2 0x20 // Quaternion64 // per bone per animation DOF and weight pointers struct mstudioanim_t { DECLARE_BYTESWAP_DATADESC(); byte bone; byte flags; // weighing options // valid for animating data only inline byte *pData(void) const { return (((byte *)this) + sizeof(struct mstudioanim_t)); }; inline mstudioanim_valueptr_t *pRotV(void) const { return (mstudioanim_valueptr_t *)(pData()); }; inline mstudioanim_valueptr_t *pPosV(void) const { return (mstudioanim_valueptr_t *)(pData()) + ((flags & STUDIO_ANIM_ANIMROT) != 0); }; // valid if animation unvaring over timeline inline Quaternion48 *pQuat48(void) const { return (Quaternion48 *)(pData()); }; inline Quaternion64 *pQuat64(void) const { return (Quaternion64 *)(pData()); }; inline Vector48 *pPos(void) const { return (Vector48 *)(pData() + ((flags & STUDIO_ANIM_RAWROT) != 0) * sizeof(*pQuat48()) + ((flags & STUDIO_ANIM_RAWROT2) != 0) * sizeof(*pQuat64())); }; short nextoffset; inline mstudioanim_t *pNext(void) const { if (nextoffset != 0) return (mstudioanim_t *)(((byte *)this) + nextoffset); else return NULL; }; }; struct mstudiomovement_t { DECLARE_BYTESWAP_DATADESC(); int endframe; int motionflags; float v0; // velocity at start of block float v1; // velocity at end of block float angle; // YAW rotation at end of this blocks movement Vector vector; // movement vector relative to this blocks initial angle Vector position; // relative to start of animation??? mstudiomovement_t() {} private: // No copy constructors allowed mstudiomovement_t(const mstudiomovement_t &vOther); }; struct studiohdr_t; // used for piecewise loading of animation data struct mstudioanimblock_t { DECLARE_BYTESWAP_DATADESC(); int datastart; int dataend; }; struct mstudioanimsections_t { DECLARE_BYTESWAP_DATADESC(); int animblock; int animindex; }; struct mstudioanimdesc_t { DECLARE_BYTESWAP_DATADESC(); int baseptr; inline studiohdr_t *pStudiohdr(void) const { return (studiohdr_t *)(((byte *)this) + baseptr); } int sznameindex; inline char *const pszName(void) const { return ((char *)this) + sznameindex; } float fps; // frames per second int flags; // looping/non-looping flags int numframes; // piecewise movement int nummovements; int movementindex; inline mstudiomovement_t *const pMovement(int i) const { return (mstudiomovement_t *)(((byte *)this) + movementindex) + i; }; int unused1[6]; // remove as appropriate (and zero if loading older // versions) int animblock; int animindex; // non-zero when anim data isn't in sections mstudioanim_t *pAnimBlock(int block, int index) const; // returns pointer to a specific anim block (local or external) mstudioanim_t *pAnim(int *piFrame, float &flStall) const; // returns pointer to data and new frame index mstudioanim_t *pAnim( int *piFrame) const; // returns pointer to data and new frame index int numikrules; int ikruleindex; // non-zero when IK data is stored in the mdl int animblockikruleindex; // non-zero when IK data is stored in animblock // file mstudioikrule_t *pIKRule(int i) const; int numlocalhierarchy; int localhierarchyindex; mstudiolocalhierarchy_t *pHierarchy(int i) const; int sectionindex; int sectionframes; // number of frames used in each fast lookup section, // zero if not used inline mstudioanimsections_t *const pSection(int i) const { return (mstudioanimsections_t *)(((byte *)this) + sectionindex) + i; } short zeroframespan; // frames per span short zeroframecount; // number of spans int zeroframeindex; byte *pZeroFrameData() const { if (zeroframeindex) return (((byte *)this) + zeroframeindex); else return NULL; }; mutable float zeroframestalltime; // saved during read stalls mstudioanimdesc_t() {} private: // No copy constructors allowed mstudioanimdesc_t(const mstudioanimdesc_t &vOther); }; struct mstudioikrule_t; struct mstudioautolayer_t { DECLARE_BYTESWAP_DATADESC(); // private: short iSequence; short iPose; // public: int flags; float start; // beginning of influence float peak; // start of full influence float tail; // end of full influence float end; // end of all influence }; struct mstudioactivitymodifier_t { DECLARE_BYTESWAP_DATADESC(); int sznameindex; inline char *pszName() { return (sznameindex) ? (char *)(((byte *)this) + sznameindex) : NULL; } }; // sequence descriptions struct mstudioseqdesc_t { DECLARE_BYTESWAP_DATADESC(); int baseptr; inline studiohdr_t *pStudiohdr(void) const { return (studiohdr_t *)(((byte *)this) + baseptr); } int szlabelindex; inline char *const pszLabel(void) const { return ((char *)this) + szlabelindex; } int szactivitynameindex; inline char *const pszActivityName(void) const { return ((char *)this) + szactivitynameindex; } int flags; // looping/non-looping flags int activity; // initialized at loadtime to game DLL values int actweight; int numevents; int eventindex; inline mstudioevent_t *pEvent(int i) const { Assert(i >= 0 && i < numevents); return (mstudioevent_t *)(((byte *)this) + eventindex) + i; }; Vector bbmin; // per sequence bounding box Vector bbmax; int numblends; // Index into array of shorts which is groupsize[0] x groupsize[1] in length int animindexindex; inline int anim(int x, int y) const { if (x >= groupsize[0]) { x = groupsize[0] - 1; } if (y >= groupsize[1]) { y = groupsize[1] - 1; } int offset = y * groupsize[0] + x; short *blends = (short *)(((byte *)this) + animindexindex); int value = (int)blends[offset]; return value; } int movementindex; // [blend] float array for blended movement int groupsize[2]; int paramindex[2]; // X, Y, Z, XR, YR, ZR float paramstart[2]; // local (0..1) starting value float paramend[2]; // local (0..1) ending value int paramparent; float fadeintime; // ideal cross fate in time (0.2 default) float fadeouttime; // ideal cross fade out time (0.2 default) int localentrynode; // transition node at entry int localexitnode; // transition node at exit int nodeflags; // transition rules float entryphase; // used to match entry gait float exitphase; // used to match exit gait float lastframe; // frame that should generation EndOfSequence int nextseq; // auto advancing sequences int pose; // index of delta animation between end and nextseq int numikrules; int numautolayers; // int autolayerindex; inline mstudioautolayer_t *pAutolayer(int i) const { Assert(i >= 0 && i < numautolayers); return (mstudioautolayer_t *)(((byte *)this) + autolayerindex) + i; }; int weightlistindex; inline float *pBoneweight(int i) const { return ((float *)(((byte *)this) + weightlistindex) + i); }; inline float weight(int i) const { return *(pBoneweight(i)); }; // FIXME: make this 2D instead of 2x1D arrays int posekeyindex; float *pPoseKey(int iParam, int iAnim) const { return (float *)(((byte *)this) + posekeyindex) + iParam * groupsize[0] + iAnim; } float poseKey(int iParam, int iAnim) const { return *(pPoseKey(iParam, iAnim)); } int numiklocks; int iklockindex; inline mstudioiklock_t *pIKLock(int i) const { Assert(i >= 0 && i < numiklocks); return (mstudioiklock_t *)(((byte *)this) + iklockindex) + i; }; // Key values int keyvalueindex; int keyvaluesize; inline const char *KeyValueText(void) const { return keyvaluesize != 0 ? ((char *)this) + keyvalueindex : NULL; } int cycleposeindex; // index of pose parameter to use as cycle index int activitymodifierindex; int numactivitymodifiers; inline mstudioactivitymodifier_t *pActivityModifier(int i) const { Assert(i >= 0 && i < numactivitymodifiers); return activitymodifierindex != 0 ? (mstudioactivitymodifier_t *)(((byte *)this) + activitymodifierindex) + i : NULL; }; int unused[5]; // remove/add as appropriate (grow back to 8 ints on version // change!) mstudioseqdesc_t() {} private: // No copy constructors allowed mstudioseqdesc_t(const mstudioseqdesc_t &vOther); }; struct mstudioposeparamdesc_t { DECLARE_BYTESWAP_DATADESC(); int sznameindex; inline char *const pszName(void) const { return ((char *)this) + sznameindex; } int flags; // ???? float start; // starting value float end; // ending value float loop; // looping range, 0 for no looping, 360 for rotations, etc. }; struct mstudioflexdesc_t { DECLARE_BYTESWAP_DATADESC(); int szFACSindex; inline char *const pszFACS(void) const { return ((char *)this) + szFACSindex; } }; struct mstudioflexcontroller_t { DECLARE_BYTESWAP_DATADESC(); int sztypeindex; inline char *const pszType(void) const { return ((char *)this) + sztypeindex; } int sznameindex; inline char *const pszName(void) const { return ((char *)this) + sznameindex; } mutable int localToGlobal; // remapped at load time to master list float min; float max; }; enum FlexControllerRemapType_t { FLEXCONTROLLER_REMAP_PASSTHRU = 0, FLEXCONTROLLER_REMAP_2WAY, // Control 0 -> ramps from 1-0 from 0->0.5. // Control 1 -> ramps from 0-1 from 0.5->1 FLEXCONTROLLER_REMAP_NWAY, // StepSize = 1 / (control count-1) Control n -> // ramps from 0-1-0 from (n-1)*StepSize to // n*StepSize to (n+1)*StepSize. A second // control is needed to specify amount to use FLEXCONTROLLER_REMAP_EYELID }; class CStudioHdr; struct mstudioflexcontrollerui_t { DECLARE_BYTESWAP_DATADESC(); int sznameindex; inline char *const pszName(void) const { return ((char *)this) + sznameindex; } // These are used like a union to save space // Here are the possible configurations for a UI controller // // SIMPLE NON-STEREO: 0: control 1: unused 2: unused // STEREO: 0: left 1: right 2: // unused NWAY NON-STEREO: 0: control 1: unused 2: value // NWAY STEREO: 0: left 1: right 2: value int szindex0; int szindex1; int szindex2; inline const mstudioflexcontroller_t *pController(void) const { return !stereo ? (mstudioflexcontroller_t *)((char *)this + szindex0) : NULL; } inline char *const pszControllerName(void) const { return !stereo ? pController()->pszName() : NULL; } inline int controllerIndex(const CStudioHdr &cStudioHdr) const; inline const mstudioflexcontroller_t *pLeftController(void) const { return stereo ? (mstudioflexcontroller_t *)((char *)this + szindex0) : NULL; } inline char *const pszLeftName(void) const { return stereo ? pLeftController()->pszName() : NULL; } inline int leftIndex(const CStudioHdr &cStudioHdr) const; inline const mstudioflexcontroller_t *pRightController(void) const { return stereo ? (mstudioflexcontroller_t *)((char *)this + szindex1) : NULL; } inline char *const pszRightName(void) const { return stereo ? pRightController()->pszName() : NULL; } inline int rightIndex(const CStudioHdr &cStudioHdr) const; inline const mstudioflexcontroller_t *pNWayValueController(void) const { return remaptype == FLEXCONTROLLER_REMAP_NWAY ? (mstudioflexcontroller_t *)((char *)this + szindex2) : NULL; } inline char *const pszNWayValueName(void) const { return remaptype == FLEXCONTROLLER_REMAP_NWAY ? pNWayValueController()->pszName() : NULL; } inline int nWayValueIndex(const CStudioHdr &cStudioHdr) const; // Number of controllers this ui description contains, 1, 2 or 3 inline int Count() const { return (stereo ? 2 : 1) + (remaptype == FLEXCONTROLLER_REMAP_NWAY ? 1 : 0); } inline const mstudioflexcontroller_t *pController(int index) const; unsigned char remaptype; // See the FlexControllerRemapType_t enum bool stereo; // Is this a stereo control? byte unused[2]; }; // this is the memory image of vertex anims (16-bit fixed point) struct mstudiovertanim_t { DECLARE_BYTESWAP_DATADESC(); unsigned short index; byte speed; // 255/max_length_in_flex byte side; // 255/left_right protected: // JasonM changing this type a lot, to prefer fixed point 16 bit... union { short delta[3]; float16 flDelta[3]; }; union { short ndelta[3]; float16 flNDelta[3]; }; public: inline void ConvertToFixed(float flVertAnimFixedPointScale) { delta[0] = flDelta[0].GetFloat() / flVertAnimFixedPointScale; delta[1] = flDelta[1].GetFloat() / flVertAnimFixedPointScale; delta[2] = flDelta[2].GetFloat() / flVertAnimFixedPointScale; ndelta[0] = flNDelta[0].GetFloat() / flVertAnimFixedPointScale; ndelta[1] = flNDelta[1].GetFloat() / flVertAnimFixedPointScale; ndelta[2] = flNDelta[2].GetFloat() / flVertAnimFixedPointScale; } inline Vector GetDeltaFixed(float flVertAnimFixedPointScale) { return Vector(delta[0] * flVertAnimFixedPointScale, delta[1] * flVertAnimFixedPointScale, delta[2] * flVertAnimFixedPointScale); } inline Vector GetNDeltaFixed(float flVertAnimFixedPointScale) { return Vector(ndelta[0] * flVertAnimFixedPointScale, ndelta[1] * flVertAnimFixedPointScale, ndelta[2] * flVertAnimFixedPointScale); } inline void GetDeltaFixed4DAligned(Vector4DAligned *vFillIn, float flVertAnimFixedPointScale) { vFillIn->Set(delta[0] * flVertAnimFixedPointScale, delta[1] * flVertAnimFixedPointScale, delta[2] * flVertAnimFixedPointScale, 0.0f); } inline void GetNDeltaFixed4DAligned(Vector4DAligned *vFillIn, float flVertAnimFixedPointScale) { vFillIn->Set(ndelta[0] * flVertAnimFixedPointScale, ndelta[1] * flVertAnimFixedPointScale, ndelta[2] * flVertAnimFixedPointScale, 0.0f); } inline Vector GetDeltaFloat() { return Vector(flDelta[0].GetFloat(), flDelta[1].GetFloat(), flDelta[2].GetFloat()); } inline Vector GetNDeltaFloat() { return Vector(flNDelta[0].GetFloat(), flNDelta[1].GetFloat(), flNDelta[2].GetFloat()); } inline void SetDeltaFixed(const Vector &vInput, float flVertAnimFixedPointScale) { delta[0] = vInput.x / flVertAnimFixedPointScale; delta[1] = vInput.y / flVertAnimFixedPointScale; delta[2] = vInput.z / flVertAnimFixedPointScale; } inline void SetNDeltaFixed(const Vector &vInputNormal, float flVertAnimFixedPointScale) { ndelta[0] = vInputNormal.x / flVertAnimFixedPointScale; ndelta[1] = vInputNormal.y / flVertAnimFixedPointScale; ndelta[2] = vInputNormal.z / flVertAnimFixedPointScale; } // Ick...can also force fp16 data into this structure for writing to file in // legacy format... inline void SetDeltaFloat(const Vector &vInput) { flDelta[0].SetFloat(vInput.x); flDelta[1].SetFloat(vInput.y); flDelta[2].SetFloat(vInput.z); } inline void SetNDeltaFloat(const Vector &vInputNormal) { flNDelta[0].SetFloat(vInputNormal.x); flNDelta[1].SetFloat(vInputNormal.y); flNDelta[2].SetFloat(vInputNormal.z); } class CSortByIndex { public: bool operator()(const mstudiovertanim_t &left, const mstudiovertanim_t &right) const { return left.index < right.index; } }; friend class CSortByIndex; mstudiovertanim_t() {} // private: // No copy constructors allowed, but it's needed for std::sort() // mstudiovertanim_t(const mstudiovertanim_t& vOther); }; // this is the memory image of vertex anims (16-bit fixed point) struct mstudiovertanim_wrinkle_t : public mstudiovertanim_t { DECLARE_BYTESWAP_DATADESC(); short wrinkledelta; inline void SetWrinkleFixed(float flWrinkle, float flVertAnimFixedPointScale) { int nWrinkleDeltaInt = flWrinkle / flVertAnimFixedPointScale; wrinkledelta = clamp(nWrinkleDeltaInt, -32767, 32767); } inline Vector4D GetDeltaFixed(float flVertAnimFixedPointScale) { return Vector4D(delta[0] * flVertAnimFixedPointScale, delta[1] * flVertAnimFixedPointScale, delta[2] * flVertAnimFixedPointScale, wrinkledelta * flVertAnimFixedPointScale); } inline void GetDeltaFixed4DAligned(Vector4DAligned *vFillIn, float flVertAnimFixedPointScale) { vFillIn->Set(delta[0] * flVertAnimFixedPointScale, delta[1] * flVertAnimFixedPointScale, delta[2] * flVertAnimFixedPointScale, wrinkledelta * flVertAnimFixedPointScale); } inline float GetWrinkleDeltaFixed(float flVertAnimFixedPointScale) { return wrinkledelta * flVertAnimFixedPointScale; } }; enum StudioVertAnimType_t { STUDIO_VERT_ANIM_NORMAL = 0, STUDIO_VERT_ANIM_WRINKLE, }; struct mstudioflex_t { DECLARE_BYTESWAP_DATADESC(); int flexdesc; // input value float target0; // zero float target1; // one float target2; // one float target3; // zero int numverts; int vertindex; inline mstudiovertanim_t *pVertanim(int i) const { Assert(vertanimtype == STUDIO_VERT_ANIM_NORMAL); return (mstudiovertanim_t *)(((byte *)this) + vertindex) + i; }; inline mstudiovertanim_wrinkle_t *pVertanimWrinkle(int i) const { Assert(vertanimtype == STUDIO_VERT_ANIM_WRINKLE); return (mstudiovertanim_wrinkle_t *)(((byte *)this) + vertindex) + i; }; inline byte *pBaseVertanim() const { return ((byte *)this) + vertindex; }; inline int VertAnimSizeBytes() const { return (vertanimtype == STUDIO_VERT_ANIM_NORMAL) ? sizeof(mstudiovertanim_t) : sizeof(mstudiovertanim_wrinkle_t); } int flexpair; // second flex desc unsigned char vertanimtype; // See StudioVertAnimType_t unsigned char unusedchar[3]; int unused[6]; }; struct mstudioflexop_t { DECLARE_BYTESWAP_DATADESC(); int op; union { int index; float value; } d; }; struct mstudioflexrule_t { DECLARE_BYTESWAP_DATADESC(); int flex; int numops; int opindex; inline mstudioflexop_t *iFlexOp(int i) const { return (mstudioflexop_t *)(((byte *)this) + opindex) + i; }; }; // 16 bytes struct mstudioboneweight_t { DECLARE_BYTESWAP_DATADESC(); float weight[MAX_NUM_BONES_PER_VERT]; char bone[MAX_NUM_BONES_PER_VERT]; byte numbones; // byte material; // short firstref; // short lastref; }; // NOTE: This is exactly 48 bytes struct mstudiovertex_t { DECLARE_BYTESWAP_DATADESC(); mstudioboneweight_t m_BoneWeights; Vector m_vecPosition; Vector m_vecNormal; Vector2D m_vecTexCoord; mstudiovertex_t() {} private: // No copy constructors allowed mstudiovertex_t(const mstudiovertex_t &vOther); }; // skin info struct mstudiotexture_t { DECLARE_BYTESWAP_DATADESC(); int sznameindex; inline char *const pszName(void) const { return ((char *)this) + sznameindex; } int flags; int used; int unused1; mutable IMaterial *material; // fixme: this needs to go away . .isn't used // by the engine, but is used by studiomdl mutable void *clientmaterial; // gary, replace with client material pointer if used int unused[10]; }; // eyeball struct mstudioeyeball_t { DECLARE_BYTESWAP_DATADESC(); int sznameindex; inline char *const pszName(void) const { return ((char *)this) + sznameindex; } int bone; Vector org; float zoffset; float radius; Vector up; Vector forward; int texture; int unused1; float iris_scale; int unused2; int upperflexdesc[3]; // index of raiser, neutral, and lowerer flexdesc // that is set by flex controllers int lowerflexdesc[3]; float uppertarget[3]; // angle (radians) of raised, neutral, and lowered // lid positions float lowertarget[3]; int upperlidflexdesc; // index of flex desc that actual lid flexes look to int lowerlidflexdesc; int unused[4]; // These were used before, so not guaranteed to be 0 bool m_bNonFACS; // Never used before version 44 char unused3[3]; int unused4[7]; mstudioeyeball_t() {} private: // No copy constructors allowed mstudioeyeball_t(const mstudioeyeball_t &vOther); }; // ikinfo struct mstudioiklink_t { DECLARE_BYTESWAP_DATADESC(); int bone; Vector kneeDir; // ideal bending direction (per link, if applicable) Vector unused0; // unused mstudioiklink_t() {} private: // No copy constructors allowed mstudioiklink_t(const mstudioiklink_t &vOther); }; struct mstudioikchain_t { DECLARE_BYTESWAP_DATADESC(); int sznameindex; inline char *const pszName(void) const { return ((char *)this) + sznameindex; } int linktype; int numlinks; int linkindex; inline mstudioiklink_t *pLink(int i) const { return (mstudioiklink_t *)(((byte *)this) + linkindex) + i; }; // FIXME: add unused entries }; struct mstudioiface_t { unsigned short a, b, c; // Indices to vertices }; struct mstudiomodel_t; struct mstudio_modelvertexdata_t { DECLARE_BYTESWAP_DATADESC(); Vector *Position(int i) const; Vector *Normal(int i) const; Vector4D *TangentS(int i) const; Vector2D *Texcoord(int i) const; mstudioboneweight_t *BoneWeights(int i) const; mstudiovertex_t *Vertex(int i) const; bool HasTangentData(void) const; int GetGlobalVertexIndex(int i) const; int GetGlobalTangentIndex(int i) const; // base of external vertex data stores const void *pVertexData; const void *pTangentData; }; struct mstudio_meshvertexdata_t { DECLARE_BYTESWAP_DATADESC(); Vector *Position(int i) const; Vector *Normal(int i) const; Vector4D *TangentS(int i) const; Vector2D *Texcoord(int i) const; mstudioboneweight_t *BoneWeights(int i) const; mstudiovertex_t *Vertex(int i) const; bool HasTangentData(void) const; int GetModelVertexIndex(int i) const; int GetGlobalVertexIndex(int i) const; // indirection to this mesh's model's vertex data const mstudio_modelvertexdata_t *modelvertexdata; // used for fixup calcs when culling top level lods // expected number of mesh verts at desired lod int numLODVertexes[MAX_NUM_LODS]; }; struct mstudiomesh_t { DECLARE_BYTESWAP_DATADESC(); int material; int modelindex; mstudiomodel_t *pModel() const; int numvertices; // number of unique vertices/normals/texcoords int vertexoffset; // vertex mstudiovertex_t // Access thin/fat mesh vertex data (only one will return a non-NULL result) const mstudio_meshvertexdata_t *GetVertexData(void *pModelData = NULL); const thinModelVertices_t *GetThinVertexData(void *pModelData = NULL); int numflexes; // vertex animation int flexindex; inline mstudioflex_t *pFlex(int i) const { return (mstudioflex_t *)(((byte *)this) + flexindex) + i; }; // special codes for material operations int materialtype; int materialparam; // a unique ordinal for this mesh int meshid; Vector center; mstudio_meshvertexdata_t vertexdata; int unused[8]; // remove as appropriate mstudiomesh_t() {} private: // No copy constructors allowed mstudiomesh_t(const mstudiomesh_t &vOther); }; // studio models struct mstudiomodel_t { DECLARE_BYTESWAP_DATADESC(); inline const char *pszName(void) const { return name; } char name[64]; int type; float boundingradius; int nummeshes; int meshindex; inline mstudiomesh_t *pMesh(int i) const { return (mstudiomesh_t *)(((byte *)this) + meshindex) + i; }; // cache purposes int numvertices; // number of unique vertices/normals/texcoords int vertexindex; // vertex Vector int tangentsindex; // tangents Vector // These functions are defined in application-specific code: const vertexFileHeader_t *CacheVertexData(void *pModelData); // Access thin/fat mesh vertex data (only one will return a non-NULL result) const mstudio_modelvertexdata_t *GetVertexData(void *pModelData = NULL); const thinModelVertices_t *GetThinVertexData(void *pModelData = NULL); int numattachments; int attachmentindex; int numeyeballs; int eyeballindex; inline mstudioeyeball_t *pEyeball(int i) { return (mstudioeyeball_t *)(((byte *)this) + eyeballindex) + i; }; mstudio_modelvertexdata_t vertexdata; int unused[8]; // remove as appropriate }; inline bool mstudio_modelvertexdata_t::HasTangentData(void) const { return (pTangentData != NULL); } inline int mstudio_modelvertexdata_t::GetGlobalVertexIndex(int i) const { mstudiomodel_t *modelptr = (mstudiomodel_t *)((byte *)this - offsetof(mstudiomodel_t, vertexdata)); Assert((modelptr->vertexindex % sizeof(mstudiovertex_t)) == 0); return (i + (modelptr->vertexindex / sizeof(mstudiovertex_t))); } inline int mstudio_modelvertexdata_t::GetGlobalTangentIndex(int i) const { mstudiomodel_t *modelptr = (mstudiomodel_t *)((byte *)this - offsetof(mstudiomodel_t, vertexdata)); Assert((modelptr->tangentsindex % sizeof(Vector4D)) == 0); return (i + (modelptr->tangentsindex / sizeof(Vector4D))); } inline mstudiovertex_t *mstudio_modelvertexdata_t::Vertex(int i) const { return (mstudiovertex_t *)pVertexData + GetGlobalVertexIndex(i); } inline Vector *mstudio_modelvertexdata_t::Position(int i) const { return &Vertex(i)->m_vecPosition; } inline Vector *mstudio_modelvertexdata_t::Normal(int i) const { return &Vertex(i)->m_vecNormal; } inline Vector4D *mstudio_modelvertexdata_t::TangentS(int i) const { // NOTE: The tangents vector is 16-bytes in a separate array // because it only exists on the high end, and if I leave it out // of the mstudiovertex_t, the vertex is 64-bytes (good for low end) return (Vector4D *)pTangentData + GetGlobalTangentIndex(i); } inline Vector2D *mstudio_modelvertexdata_t::Texcoord(int i) const { return &Vertex(i)->m_vecTexCoord; } inline mstudioboneweight_t *mstudio_modelvertexdata_t::BoneWeights( int i) const { return &Vertex(i)->m_BoneWeights; } inline mstudiomodel_t *mstudiomesh_t::pModel() const { return (mstudiomodel_t *)(((byte *)this) + modelindex); } inline bool mstudio_meshvertexdata_t::HasTangentData(void) const { return modelvertexdata->HasTangentData(); } inline const mstudio_meshvertexdata_t *mstudiomesh_t::GetVertexData( void *pModelData) { // get this mesh's model's vertex data (allow for // mstudiomodel_t::GetVertexData returning NULL if the data has been // converted to 'thin' vertices) this->pModel()->GetVertexData(pModelData); vertexdata.modelvertexdata = &(this->pModel()->vertexdata); if (!vertexdata.modelvertexdata->pVertexData) return NULL; return &vertexdata; } inline const thinModelVertices_t *mstudiomesh_t::GetThinVertexData( void *pModelData) { // get this mesh's model's thin vertex data return this->pModel()->GetThinVertexData(pModelData); } inline int mstudio_meshvertexdata_t::GetModelVertexIndex(int i) const { mstudiomesh_t *meshptr = (mstudiomesh_t *)((byte *)this - offsetof(mstudiomesh_t, vertexdata)); return meshptr->vertexoffset + i; } inline int mstudio_meshvertexdata_t::GetGlobalVertexIndex(int i) const { return modelvertexdata->GetGlobalVertexIndex(GetModelVertexIndex(i)); } inline Vector *mstudio_meshvertexdata_t::Position(int i) const { return modelvertexdata->Position(GetModelVertexIndex(i)); }; inline Vector *mstudio_meshvertexdata_t::Normal(int i) const { return modelvertexdata->Normal(GetModelVertexIndex(i)); }; inline Vector4D *mstudio_meshvertexdata_t::TangentS(int i) const { return modelvertexdata->TangentS(GetModelVertexIndex(i)); } inline Vector2D *mstudio_meshvertexdata_t::Texcoord(int i) const { return modelvertexdata->Texcoord(GetModelVertexIndex(i)); }; inline mstudioboneweight_t *mstudio_meshvertexdata_t::BoneWeights(int i) const { return modelvertexdata->BoneWeights(GetModelVertexIndex(i)); }; inline mstudiovertex_t *mstudio_meshvertexdata_t::Vertex(int i) const { return modelvertexdata->Vertex(GetModelVertexIndex(i)); } // a group of studio model data enum studiomeshgroupflags_t { MESHGROUP_IS_FLEXED = 0x1, MESHGROUP_IS_HWSKINNED = 0x2, MESHGROUP_IS_DELTA_FLEXED = 0x4 }; // ---------------------------------------------------------- // runtime stuff // ---------------------------------------------------------- struct studiomeshgroup_t { IMesh *m_pMesh; int m_NumStrips; int m_Flags; // see studiomeshgroupflags_t OptimizedModel::StripHeader_t *m_pStripData; unsigned short *m_pGroupIndexToMeshIndex; int m_NumVertices; int *m_pUniqueTris; // for performance measurements unsigned short *m_pIndices; bool m_MeshNeedsRestore; short m_ColorMeshID; IMorph *m_pMorph; inline unsigned short MeshIndex(int i) const { return m_pGroupIndexToMeshIndex[m_pIndices[i]]; } }; // studio model data struct studiomeshdata_t { int m_NumGroup; studiomeshgroup_t *m_pMeshGroup; }; struct studioloddata_t { // not needed - this is really the same as studiohwdata_t.m_NumStudioMeshes // int m_NumMeshes; studiomeshdata_t *m_pMeshData; // there are studiohwdata_t.m_NumStudioMeshes of these. float m_SwitchPoint; // one of these for each lod since we can switch to simpler materials on // lower lods. int numMaterials; IMaterial * *ppMaterials; /* will have studiohdr_t.numtextures elements allocated */ // hack - this needs to go away. int *pMaterialFlags; /* will have studiohdr_t.numtextures elements allocated */ // For decals on hardware morphing, we must actually do hardware skinning // For this to work, we have to hope that the total # of bones used by // hw flexed verts is < than the max possible for the dx level we're running // under int *m_pHWMorphDecalBoneRemap; int m_nDecalBoneCount; }; struct studiohwdata_t { int m_RootLOD; // calced and clamped, nonzero for lod culling int m_NumLODs; studioloddata_t *m_pLODs; int m_NumStudioMeshes; inline float LODMetric(float unitSphereSize) const { return (unitSphereSize != 0.0f) ? (100.0f / unitSphereSize) : 0.0f; } inline int GetLODForMetric(float lodMetric) const { if (!m_NumLODs) return 0; // shadow lod is specified on the last lod with a negative switch // never consider shadow lod as viable candidate int numLODs = (m_pLODs[m_NumLODs - 1].m_SwitchPoint < 0.0f) ? m_NumLODs - 1 : m_NumLODs; for (int i = m_RootLOD; i < numLODs - 1; i++) { if (m_pLODs[i + 1].m_SwitchPoint > lodMetric) return i; } return numLODs - 1; } }; // ---------------------------------------------------------- // ---------------------------------------------------------- // body part index struct mstudiobodyparts_t { DECLARE_BYTESWAP_DATADESC(); int sznameindex; inline char *const pszName(void) const { return ((char *)this) + sznameindex; } int nummodels; int base; int modelindex; // index into models array inline mstudiomodel_t *pModel(int i) const { return (mstudiomodel_t *)(((byte *)this) + modelindex) + i; }; }; struct mstudiomouth_t { DECLARE_BYTESWAP_DATADESC(); int bone; Vector forward; int flexdesc; mstudiomouth_t() {} private: // No copy constructors allowed mstudiomouth_t(const mstudiomouth_t &vOther); }; struct mstudiohitboxset_t { DECLARE_BYTESWAP_DATADESC(); int sznameindex; inline char *const pszName(void) const { return ((char *)this) + sznameindex; } int numhitboxes; int hitboxindex; inline mstudiobbox_t *pHitbox(int i) const { return (mstudiobbox_t *)(((byte *)this) + hitboxindex) + i; }; }; //----------------------------------------------------------------------------- // Src bone transforms are transformations that will convert .dmx or .smd-based // animations into .mdl-based animations NOTE: The operation you should apply // is: pretransform * bone transform * posttransform //----------------------------------------------------------------------------- struct mstudiosrcbonetransform_t { DECLARE_BYTESWAP_DATADESC(); int sznameindex; inline const char *pszName(void) const { return ((char *)this) + sznameindex; } matrix3x4_t pretransform; matrix3x4_t posttransform; }; // ---------------------------------------------------------- // Purpose: Load time results on model compositing // ---------------------------------------------------------- class virtualgroup_t { public: virtualgroup_t(void) { cache = NULL; }; // tool dependant. In engine this is a model_t, in tool it's a direct // pointer void *cache; // converts cache entry into a usable studiohdr_t * const studiohdr_t *GetStudioHdr(void) const; CUtlVector boneMap; // maps global bone to local bone CUtlVector masterBone; // maps local bone to global bone CUtlVector masterSeq; // maps local sequence to master sequence CUtlVector masterAnim; // maps local animation to master animation CUtlVector masterAttachment; // maps local attachment to global CUtlVector masterPose; // maps local pose parameter to global CUtlVector masterNode; // maps local transition nodes to global }; struct virtualsequence_t { #ifdef _XBOX short flags; short activity; short group; short index; #else int flags; int activity; int group; int index; #endif }; struct virtualgeneric_t { #ifdef _XBOX short group; short index; #else int group; int index; #endif }; struct virtualmodel_t { void AppendSequences(int group, const studiohdr_t *pStudioHdr); void AppendAnimations(int group, const studiohdr_t *pStudioHdr); void AppendAttachments(int ground, const studiohdr_t *pStudioHdr); void AppendPoseParameters(int group, const studiohdr_t *pStudioHdr); void AppendBonemap(int group, const studiohdr_t *pStudioHdr); void AppendNodes(int group, const studiohdr_t *pStudioHdr); void AppendTransitions(int group, const studiohdr_t *pStudioHdr); void AppendIKLocks(int group, const studiohdr_t *pStudioHdr); void AppendModels(int group, const studiohdr_t *pStudioHdr); void UpdateAutoplaySequences(const studiohdr_t *pStudioHdr); virtualgroup_t *pAnimGroup(int animation) { return &m_group[m_anim[animation].group]; } // Note: user must manage mutex for this virtualgroup_t *pSeqGroup(int sequence) { // Check for out of range access that is causing crashes on some // servers. Perhaps caused by sourcemod bugs. Typical sequence in these // cases is ~292 when the count is 234. Using unsigned math allows for // free range checking against zero. if ((unsigned)sequence >= (unsigned)m_seq.Count()) { Assert(0); return 0; } return &m_group[m_seq[sequence].group]; } // Note: user must manage mutex for this CThreadFastMutex m_Lock; CUtlVector m_seq; CUtlVector m_anim; CUtlVector m_attachment; CUtlVector m_pose; CUtlVector m_group; CUtlVector m_node; CUtlVector m_iklock; CUtlVector m_autoplaySequences; }; // 'thin' vertex data, used to do model decals (see Studio_CreateThinVertexes()) struct thinModelVertices_t { void Init(int numBoneInfluences, Vector *positions, unsigned short *normals, float *boneWeights, char *boneIndices) { Assert(positions != NULL); Assert(normals != NULL); Assert((numBoneInfluences >= 0) && (numBoneInfluences <= 3)); Assert(numBoneInfluences > 0 ? !!boneIndices : !boneIndices); Assert(numBoneInfluences > 1 ? !!boneWeights : !boneWeights); m_numBoneInfluences = numBoneInfluences; m_vecPositions = positions; m_vecNormals = normals; m_boneWeights = boneWeights; m_boneIndices = boneIndices; } void SetPosition(int vertIndex, const Vector &position) { Assert(m_vecPositions); m_vecPositions[vertIndex] = position; } void SetNormal(int vertIndex, const Vector &normal) { Assert(m_vecNormals); unsigned int packedNormal; PackNormal_UBYTE4(normal.x, normal.y, normal.z, &packedNormal); m_vecNormals[vertIndex] = (unsigned short)(0x0000FFFF & packedNormal); } void SetBoneWeights(int vertIndex, const mstudioboneweight_t &boneWeights) { Assert((m_numBoneInfluences >= 1) && (m_numBoneInfluences <= 3)); Assert((boneWeights.numbones >= 1) && (boneWeights.numbones <= m_numBoneInfluences)); int numStoredWeights = max(0, (m_numBoneInfluences - 1)); float *pBaseWeight = m_boneWeights + vertIndex * numStoredWeights; char *pBaseIndex = m_boneIndices + vertIndex * m_numBoneInfluences; for (int i = 0; i < m_numBoneInfluences; i++) { pBaseIndex[i] = boneWeights.bone[i]; } for (int i = 0; i < numStoredWeights; i++) { pBaseWeight[i] = boneWeights.weight[i]; } } void GetMeshPosition(mstudiomesh_t *pMesh, int meshIndex, Vector *pPosition) const { Assert(pMesh); GetPosition(pMesh->vertexdata.GetGlobalVertexIndex(meshIndex), pPosition); } void GetMeshNormal(mstudiomesh_t *pMesh, int meshIndex, Vector *pNormal) const { Assert(pMesh); GetNormal(pMesh->vertexdata.GetGlobalVertexIndex(meshIndex), pNormal); } void GetMeshBoneWeights(mstudiomesh_t *pMesh, int meshIndex, mstudioboneweight_t *pBoneWeights) const { Assert(pMesh); GetBoneWeights(pMesh->vertexdata.GetGlobalVertexIndex(meshIndex), pBoneWeights); } void GetModelPosition(mstudiomodel_t *pModel, int modelIndex, Vector *pPosition) const { Assert(pModel); GetPosition(pModel->vertexdata.GetGlobalVertexIndex(modelIndex), pPosition); } void GetModelNormal(mstudiomodel_t *pModel, int modelIndex, Vector *pNormal) const { Assert(pModel); GetNormal(pModel->vertexdata.GetGlobalVertexIndex(modelIndex), pNormal); } void GetModelBoneWeights(mstudiomodel_t *pModel, int modelIndex, mstudioboneweight_t *pBoneWeights) const { Assert(pModel); GetBoneWeights(pModel->vertexdata.GetGlobalVertexIndex(modelIndex), pBoneWeights); } private: void GetPosition(int vertIndex, Vector *pPosition) const { Assert(pPosition); Assert(m_vecPositions); *pPosition = m_vecPositions[vertIndex]; } void GetNormal(int vertIndex, Vector *pNormal) const { Assert(pNormal); Assert(m_vecNormals); unsigned int packedNormal = 0x0000FFFF & m_vecNormals[vertIndex]; UnpackNormal_UBYTE4(&packedNormal, pNormal->Base()); } void GetBoneWeights(int vertIndex, mstudioboneweight_t *pBoneWeights) const { Assert(pBoneWeights); Assert((m_numBoneInfluences <= 1) || (m_boneWeights != NULL)); Assert((m_numBoneInfluences <= 0) || (m_boneIndices != NULL)); int numStoredWeights = max(0, (m_numBoneInfluences - 1)); float *pBaseWeight = m_boneWeights + vertIndex * numStoredWeights; char *pBaseIndex = m_boneIndices + vertIndex * m_numBoneInfluences; float sum = 0.0f; for (int i = 0; i < MAX_NUM_BONES_PER_VERT; i++) { if (i < (m_numBoneInfluences - 1)) pBoneWeights->weight[i] = pBaseWeight[i]; else pBoneWeights->weight[i] = 1.0f - sum; sum += pBoneWeights->weight[i]; pBoneWeights->bone[i] = (i < m_numBoneInfluences) ? pBaseIndex[i] : 0; } // Treat 'zero weights' as '100% binding to bone zero': pBoneWeights->numbones = m_numBoneInfluences ? m_numBoneInfluences : 1; } int m_numBoneInfluences; // Number of bone influences per vertex, N float *m_boneWeights; // This array stores (N-1) weights per vertex (unless // N is zero) char *m_boneIndices; // This array stores N indices per vertex Vector *m_vecPositions; unsigned short *m_vecNormals; // Normals are compressed into 16 bits apiece // (see PackNormal_UBYTE4() ) }; // ---------------------------------------------------------- // Studio Model Vertex Data File // Position independent flat data for cache manager // ---------------------------------------------------------- // little-endian "IDSV" #define MODEL_VERTEX_FILE_ID (('V' << 24) + ('S' << 16) + ('D' << 8) + 'I') #define MODEL_VERTEX_FILE_VERSION 4 // this id (IDCV) is used once the vertex data has been compressed (see // CMDLCache::CreateThinVertexes) #define MODEL_VERTEX_FILE_THIN_ID (('V' << 24) + ('C' << 16) + ('D' << 8) + 'I') struct vertexFileHeader_t { DECLARE_BYTESWAP_DATADESC(); int id; // MODEL_VERTEX_FILE_ID int version; // MODEL_VERTEX_FILE_VERSION int checksum; // same as studiohdr_t, ensures sync int numLODs; // num of valid lods int numLODVertexes[MAX_NUM_LODS]; // num verts for desired root lod int numFixups; // num of vertexFileFixup_t int fixupTableStart; // offset from base to fixup table int vertexDataStart; // offset from base to vertex block int tangentDataStart; // offset from base to tangent block public: // Accessor to fat vertex data const mstudiovertex_t *GetVertexData() const { if ((id == MODEL_VERTEX_FILE_ID) && (vertexDataStart != 0)) return (mstudiovertex_t *)(vertexDataStart + (byte *)this); else return NULL; } // Accessor to (fat) tangent vertex data (tangents aren't stored in // compressed data) const Vector4D *GetTangentData() const { if ((id == MODEL_VERTEX_FILE_ID) && (tangentDataStart != 0)) return (Vector4D *)(tangentDataStart + (byte *)this); else return NULL; } // Accessor to thin vertex data const thinModelVertices_t *GetThinVertexData() const { if ((id == MODEL_VERTEX_FILE_THIN_ID) && (vertexDataStart != 0)) return (thinModelVertices_t *)(vertexDataStart + (byte *)this); else return NULL; } }; // model vertex data accessor (defined here so vertexFileHeader_t can be used) inline const mstudio_modelvertexdata_t *mstudiomodel_t::GetVertexData( void *pModelData) { const vertexFileHeader_t *pVertexHdr = CacheVertexData(pModelData); if (!pVertexHdr) { vertexdata.pVertexData = NULL; vertexdata.pTangentData = NULL; return NULL; } vertexdata.pVertexData = pVertexHdr->GetVertexData(); vertexdata.pTangentData = pVertexHdr->GetTangentData(); if (!vertexdata.pVertexData) return NULL; return &vertexdata; } // model thin vertex data accessor (defined here so vertexFileHeader_t can be // used) inline const thinModelVertices_t *mstudiomodel_t::GetThinVertexData( void *pModelData) { const vertexFileHeader_t *pVertexHdr = CacheVertexData(pModelData); if (!pVertexHdr) return NULL; return pVertexHdr->GetThinVertexData(); } // apply sequentially to lod sorted vertex and tangent pools to re-establish // mesh order struct vertexFileFixup_t { DECLARE_BYTESWAP_DATADESC(); int lod; // used to skip culled root lod int sourceVertexID; // absolute index from start of vertex/tangent blocks int numVertexes; }; // This flag is set if no hitbox information was specified #define STUDIOHDR_FLAGS_AUTOGENERATED_HITBOX 0x00000001 // NOTE: This flag is set at loadtime, not mdl build time so that we don't have // to rebuild models when we change materials. #define STUDIOHDR_FLAGS_USES_ENV_CUBEMAP 0x00000002 // Use this when there are translucent parts to the model but we're not going to // sort it #define STUDIOHDR_FLAGS_FORCE_OPAQUE 0x00000004 // Use this when we want to render the opaque parts during the opaque pass // and the translucent parts during the translucent pass #define STUDIOHDR_FLAGS_TRANSLUCENT_TWOPASS 0x00000008 // This is set any time the .qc files has $staticprop in it // Means there's no bones and no transforms #define STUDIOHDR_FLAGS_STATIC_PROP 0x00000010 // NOTE: This flag is set at loadtime, not mdl build time so that we don't have // to rebuild models when we change materials. #define STUDIOHDR_FLAGS_USES_FB_TEXTURE 0x00000020 // This flag is set by studiomdl.exe if a separate "$shadowlod" entry was // present // for the .mdl (the shadow lod is the last entry in the lod list if present) #define STUDIOHDR_FLAGS_HASSHADOWLOD 0x00000040 // NOTE: This flag is set at loadtime, not mdl build time so that we don't have // to rebuild models when we change materials. #define STUDIOHDR_FLAGS_USES_BUMPMAPPING 0x00000080 // NOTE: This flag is set when we should use the actual materials on the shadow // LOD instead of overriding them with the default one (necessary for // translucent shadows) #define STUDIOHDR_FLAGS_USE_SHADOWLOD_MATERIALS 0x00000100 // NOTE: This flag is set when we should use the actual materials on the shadow // LOD instead of overriding them with the default one (necessary for // translucent shadows) #define STUDIOHDR_FLAGS_OBSOLETE 0x00000200 #define STUDIOHDR_FLAGS_UNUSED 0x00000400 // NOTE: This flag is set at mdl build time #define STUDIOHDR_FLAGS_NO_FORCED_FADE 0x00000800 // NOTE: The npc will lengthen the viseme check to always include two phonemes #define STUDIOHDR_FLAGS_FORCE_PHONEME_CROSSFADE 0x00001000 // This flag is set when the .qc has $constantdirectionallight in it // If set, we use constantdirectionallightdot to calculate light intensity // rather than the normal directional dot product // only valid if STUDIOHDR_FLAGS_STATIC_PROP is also set #define STUDIOHDR_FLAGS_CONSTANT_DIRECTIONAL_LIGHT_DOT 0x00002000 // Flag to mark delta flexes as already converted from disk format to memory // format #define STUDIOHDR_FLAGS_FLEXES_CONVERTED 0x00004000 // Indicates the studiomdl was built in preview mode #define STUDIOHDR_FLAGS_BUILT_IN_PREVIEW_MODE 0x00008000 // Ambient boost (runtime flag) #define STUDIOHDR_FLAGS_AMBIENT_BOOST 0x00010000 // Don't cast shadows from this model (useful on first-person models) #define STUDIOHDR_FLAGS_DO_NOT_CAST_SHADOWS 0x00020000 // alpha textures should cast shadows in vrad on this model (ONLY prop_static!) #define STUDIOHDR_FLAGS_CAST_TEXTURE_SHADOWS 0x00040000 // flagged on load to indicate no animation events on this model #define STUDIOHDR_FLAGS_VERT_ANIM_FIXED_POINT_SCALE 0x00200000 // NOTE! Next time we up the .mdl file format, remove studiohdr2_t // and insert all fields in this structure into studiohdr_t. struct studiohdr2_t { // NOTE: For forward compat, make sure any methods in this struct // are also available in studiohdr_t so no leaf code ever directly // references a studiohdr2_t structure DECLARE_BYTESWAP_DATADESC(); int numsrcbonetransform; int srcbonetransformindex; int illumpositionattachmentindex; inline int IllumPositionAttachmentIndex() const { return illumpositionattachmentindex; } float flMaxEyeDeflection; inline float MaxEyeDeflection() const { return flMaxEyeDeflection != 0.0f ? flMaxEyeDeflection : 0.866f; } // default to cos(30) if not set int linearboneindex; inline mstudiolinearbone_t *pLinearBones() const { return (linearboneindex) ? (mstudiolinearbone_t *)(((byte *)this) + linearboneindex) : NULL; } int sznameindex; inline char *pszName() { return (sznameindex) ? (char *)(((byte *)this) + sznameindex) : NULL; } int m_nBoneFlexDriverCount; int m_nBoneFlexDriverIndex; inline mstudioboneflexdriver_t *pBoneFlexDriver(int i) const { Assert(i >= 0 && i < m_nBoneFlexDriverCount); return (mstudioboneflexdriver_t *)(((byte *)this) + m_nBoneFlexDriverIndex) + i; } int reserved[56]; }; struct studiohdr_t { DECLARE_BYTESWAP_DATADESC(); int id; int version; int checksum; // this has to be the same in the phy and vtx files to load! inline const char *pszName(void) const { if (studiohdr2index && pStudioHdr2()->pszName()) return pStudioHdr2()->pszName(); else return name; } char name[64]; int length; Vector eyeposition; // ideal eye position Vector illumposition; // illumination center Vector hull_min; // ideal movement hull size Vector hull_max; Vector view_bbmin; // clipping bounding box Vector view_bbmax; int flags; int numbones; // bones int boneindex; inline mstudiobone_t *pBone(int i) const { Assert(i >= 0 && i < numbones); return (mstudiobone_t *)(((byte *)this) + boneindex) + i; }; int RemapSeqBone(int iSequence, int iLocalBone) const; // maps local sequence bone to global bone int RemapAnimBone(int iAnim, int iLocalBone) const; // maps local animations bone to global bone int numbonecontrollers; // bone controllers int bonecontrollerindex; inline mstudiobonecontroller_t *pBonecontroller(int i) const { Assert(i >= 0 && i < numbonecontrollers); return (mstudiobonecontroller_t *)(((byte *)this) + bonecontrollerindex) + i; }; int numhitboxsets; int hitboxsetindex; // Look up hitbox set by index mstudiohitboxset_t *pHitboxSet(int i) const { Assert(i >= 0 && i < numhitboxsets); return (mstudiohitboxset_t *)(((byte *)this) + hitboxsetindex) + i; }; // Calls through to hitbox to determine size of specified set inline mstudiobbox_t *pHitbox(int i, int set) const { mstudiohitboxset_t const *s = pHitboxSet(set); if (!s) return NULL; return s->pHitbox(i); }; // Calls through to set to get hitbox count for set inline int iHitboxCount(int set) const { mstudiohitboxset_t const *s = pHitboxSet(set); if (!s) return 0; return s->numhitboxes; }; // file local animations? and sequences // private: int numlocalanim; // animations/poses int localanimindex; // animation descriptions inline mstudioanimdesc_t *pLocalAnimdesc(int i) const { if (i < 0 || i >= numlocalanim) i = 0; return (mstudioanimdesc_t *)(((byte *)this) + localanimindex) + i; }; int numlocalseq; // sequences int localseqindex; inline mstudioseqdesc_t *pLocalSeqdesc(int i) const { if (i < 0 || i >= numlocalseq) i = 0; return (mstudioseqdesc_t *)(((byte *)this) + localseqindex) + i; }; // public: bool SequencesAvailable() const; int GetNumSeq() const; mstudioanimdesc_t &pAnimdesc(int i) const; mstudioseqdesc_t &pSeqdesc(int i) const; int iRelativeAnim(int baseseq, int relanim) const; // maps seq local anim reference to global anim index int iRelativeSeq(int baseseq, int relseq) const; // maps seq local seq reference to global seq index // private: mutable int activitylistversion; // initialization flag - have the // sequences been indexed? mutable int eventsindexed; // public: int GetSequenceActivity(int iSequence); void SetSequenceActivity(int iSequence, int iActivity); int GetActivityListVersion(void); void SetActivityListVersion(int version) const; int GetEventListVersion(void); void SetEventListVersion(int version); // raw textures int numtextures; int textureindex; inline mstudiotexture_t *pTexture(int i) const { Assert(i >= 0 && i < numtextures); return (mstudiotexture_t *)(((byte *)this) + textureindex) + i; }; // raw textures search paths int numcdtextures; int cdtextureindex; inline char *pCdtexture(int i) const { return (((char *)this) + *((int *)(((byte *)this) + cdtextureindex) + i)); }; // replaceable textures tables int numskinref; int numskinfamilies; int skinindex; inline short *pSkinref(int i) const { return (short *)(((byte *)this) + skinindex) + i; }; int numbodyparts; int bodypartindex; inline mstudiobodyparts_t *pBodypart(int i) const { return (mstudiobodyparts_t *)(((byte *)this) + bodypartindex) + i; }; // queryable attachable points // private: int numlocalattachments; int localattachmentindex; inline mstudioattachment_t *pLocalAttachment(int i) const { Assert(i >= 0 && i < numlocalattachments); return (mstudioattachment_t *)(((byte *)this) + localattachmentindex) + i; }; // public: int GetNumAttachments(void) const; const mstudioattachment_t &pAttachment(int i) const; int GetAttachmentBone(int i); // used on my tools in hlmv, not persistant void SetAttachmentBone(int iAttachment, int iBone); // animation node to animation node transition graph // private: int numlocalnodes; int localnodeindex; int localnodenameindex; inline char *pszLocalNodeName(int iNode) const { Assert(iNode >= 0 && iNode < numlocalnodes); return (((char *)this) + *((int *)(((byte *)this) + localnodenameindex) + iNode)); } inline byte *pLocalTransition(int i) const { Assert(i >= 0 && i < (numlocalnodes * numlocalnodes)); return (byte *)(((byte *)this) + localnodeindex) + i; }; // public: int EntryNode(int iSequence); int ExitNode(int iSequence); char *pszNodeName(int iNode); int GetTransition(int iFrom, int iTo) const; int numflexdesc; int flexdescindex; inline mstudioflexdesc_t *pFlexdesc(int i) const { Assert(i >= 0 && i < numflexdesc); return (mstudioflexdesc_t *)(((byte *)this) + flexdescindex) + i; }; int numflexcontrollers; int flexcontrollerindex; inline mstudioflexcontroller_t *pFlexcontroller( LocalFlexController_t i) const { Assert(numflexcontrollers == 0 || (i >= 0 && i < numflexcontrollers)); return (mstudioflexcontroller_t *)(((byte *)this) + flexcontrollerindex) + i; }; int numflexrules; int flexruleindex; inline mstudioflexrule_t *pFlexRule(int i) const { Assert(i >= 0 && i < numflexrules); return (mstudioflexrule_t *)(((byte *)this) + flexruleindex) + i; }; int numikchains; int ikchainindex; inline mstudioikchain_t *pIKChain(int i) const { Assert(i >= 0 && i < numikchains); return (mstudioikchain_t *)(((byte *)this) + ikchainindex) + i; }; int nummouths; int mouthindex; inline mstudiomouth_t *pMouth(int i) const { Assert(i >= 0 && i < nummouths); return (mstudiomouth_t *)(((byte *)this) + mouthindex) + i; }; // private: int numlocalposeparameters; int localposeparamindex; inline mstudioposeparamdesc_t *pLocalPoseParameter(int i) const { Assert(i >= 0 && i < numlocalposeparameters); return (mstudioposeparamdesc_t *)(((byte *)this) + localposeparamindex) + i; }; // public: int GetNumPoseParameters(void) const; const mstudioposeparamdesc_t &pPoseParameter(int i); int GetSharedPoseParameter(int iSequence, int iLocalPose) const; int surfacepropindex; inline char *const pszSurfaceProp(void) const { return ((char *)this) + surfacepropindex; } // Key values int keyvalueindex; int keyvaluesize; inline const char *KeyValueText(void) const { return keyvaluesize != 0 ? ((char *)this) + keyvalueindex : NULL; } int numlocalikautoplaylocks; int localikautoplaylockindex; inline mstudioiklock_t *pLocalIKAutoplayLock(int i) const { Assert(i >= 0 && i < numlocalikautoplaylocks); return (mstudioiklock_t *)(((byte *)this) + localikautoplaylockindex) + i; }; int GetNumIKAutoplayLocks(void) const; const mstudioiklock_t &pIKAutoplayLock(int i); int CountAutoplaySequences() const; int CopyAutoplaySequences(unsigned short *pOut, int outCount) const; int GetAutoplayList(unsigned short **pOut) const; // The collision model mass that jay wanted float mass; int contents; // external animations, models, etc. int numincludemodels; int includemodelindex; inline mstudiomodelgroup_t *pModelGroup(int i) const { Assert(i >= 0 && i < numincludemodels); return (mstudiomodelgroup_t *)(((byte *)this) + includemodelindex) + i; }; // implementation specific call to get a named model const studiohdr_t *FindModel(void **cache, char const *modelname) const; // implementation specific back pointer to virtual data mutable void *virtualModel; virtualmodel_t *GetVirtualModel(void) const; // for demand loaded animation blocks int szanimblocknameindex; inline char *const pszAnimBlockName(void) const { return ((char *)this) + szanimblocknameindex; } int numanimblocks; int animblockindex; inline mstudioanimblock_t *pAnimBlock(int i) const { Assert(i > 0 && i < numanimblocks); return (mstudioanimblock_t *)(((byte *)this) + animblockindex) + i; }; mutable void *animblockModel; byte *GetAnimBlock(int i) const; int bonetablebynameindex; inline const byte *GetBoneTableSortedByName() const { return (byte *)this + bonetablebynameindex; } // used by tools only that don't cache, but persist mdl's peer data // engine uses virtualModel to back link to cache pointers void *pVertexBase; void *pIndexBase; // if STUDIOHDR_FLAGS_CONSTANT_DIRECTIONAL_LIGHT_DOT is set, // this value is used to calculate directional components of lighting // on static props byte constdirectionallightdot; // set during load of mdl data to track *desired* lod configuration (not // actual) the *actual* clamped root lod is found in studiohwdata this is // stored here as a global store to ensure the staged loading matches the // rendering byte rootLOD; // set in the mdl data to specify that lod configuration should only allow // first numAllowRootLODs to be set as root LOD: // numAllowedRootLODs = 0 means no restriction, any lod can be set as root //lod. numAllowedRootLODs = N means that lod0 - lod(N-1) can be set as //root lod, but not lodN or lower. byte numAllowedRootLODs; byte unused[1]; int unused4; // zero out if version < 47 int numflexcontrollerui; int flexcontrolleruiindex; mstudioflexcontrollerui_t *pFlexControllerUI(int i) const { Assert(i >= 0 && i < numflexcontrollerui); return (mstudioflexcontrollerui_t *)(((byte *)this) + flexcontrolleruiindex) + i; } float flVertAnimFixedPointScale; inline float VertAnimFixedPointScale() const { return (flags & STUDIOHDR_FLAGS_VERT_ANIM_FIXED_POINT_SCALE) ? flVertAnimFixedPointScale : 1.0f / 4096.0f; } int unused3[1]; // FIXME: Remove when we up the model version. Move all fields of // studiohdr2_t into studiohdr_t. int studiohdr2index; studiohdr2_t *pStudioHdr2() const { return (studiohdr2_t *)(((byte *)this) + studiohdr2index); } // Src bone transforms are transformations that will convert .dmx or // .smd-based animations into .mdl-based animations int NumSrcBoneTransforms() const { return studiohdr2index ? pStudioHdr2()->numsrcbonetransform : 0; } const mstudiosrcbonetransform_t *SrcBoneTransform(int i) const { Assert(i >= 0 && i < NumSrcBoneTransforms()); return (mstudiosrcbonetransform_t *)(((byte *)this) + pStudioHdr2()->srcbonetransformindex) + i; } inline int IllumPositionAttachmentIndex() const { return studiohdr2index ? pStudioHdr2()->IllumPositionAttachmentIndex() : 0; } inline float MaxEyeDeflection() const { return studiohdr2index ? pStudioHdr2()->MaxEyeDeflection() : 0.866f; } // default to cos(30) if not set inline mstudiolinearbone_t *pLinearBones() const { return studiohdr2index ? pStudioHdr2()->pLinearBones() : NULL; } inline int BoneFlexDriverCount() const { return studiohdr2index ? pStudioHdr2()->m_nBoneFlexDriverCount : 0; } inline const mstudioboneflexdriver_t *BoneFlexDriver(int i) const { Assert(i >= 0 && i < BoneFlexDriverCount()); return studiohdr2index ? pStudioHdr2()->pBoneFlexDriver(i) : NULL; } // NOTE: No room to add stuff? Up the .mdl file format version // [and move all fields in studiohdr2_t into studiohdr_t and kill // studiohdr2_t], or add your stuff to studiohdr2_t. See // NumSrcBoneTransforms/SrcBoneTransform for the pattern to use. int unused2[1]; studiohdr_t() {} private: // No copy constructors allowed studiohdr_t(const studiohdr_t &vOther); friend struct virtualmodel_t; }; //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- class IDataCache; class IMDLCache; class CStudioHdr { public: CStudioHdr(void); CStudioHdr(const studiohdr_t *pStudioHdr, IMDLCache *mdlcache = NULL); ~CStudioHdr() { Term(); } void Init(const studiohdr_t *pStudioHdr, IMDLCache *mdlcache = NULL); void Term(); public: inline bool IsVirtual(void) { return (m_pVModel != NULL); }; inline bool IsValid(void) { return (m_pStudioHdr != NULL); }; inline bool IsReadyForAccess(void) const { return (m_pStudioHdr != NULL); }; inline virtualmodel_t *GetVirtualModel(void) const { return m_pVModel; }; inline const studiohdr_t *GetRenderHdr(void) const { return m_pStudioHdr; }; const studiohdr_t *pSeqStudioHdr(int sequence); const studiohdr_t *pAnimStudioHdr(int animation); private: mutable const studiohdr_t *m_pStudioHdr; mutable virtualmodel_t *m_pVModel; const virtualmodel_t *ResetVModel(const virtualmodel_t *pVModel) const; const studiohdr_t *GroupStudioHdr(int group); mutable CUtlVector m_pStudioHdrCache; mutable int m_nFrameUnlockCounter; int *m_pFrameUnlockCounter; CThreadFastMutex m_FrameUnlockCounterMutex; public: inline int numbones(void) const { return m_pStudioHdr->numbones; }; inline mstudiobone_t *pBone(int i) const { return m_pStudioHdr->pBone(i); }; int RemapAnimBone(int iAnim, int iLocalBone) const; // maps local animations bone to global bone int RemapSeqBone(int iSequence, int iLocalBone) const; // maps local sequence bone to global bone bool SequencesAvailable() const; int GetNumSeq(void) const; mstudioanimdesc_t &pAnimdesc(int i); mstudioseqdesc_t &pSeqdesc(int iSequence); int iRelativeAnim(int baseseq, int relanim) const; // maps seq local anim reference to global anim index int iRelativeSeq(int baseseq, int relseq) const; // maps seq local seq reference to global seq index int GetSequenceActivity(int iSequence); void SetSequenceActivity(int iSequence, int iActivity); int GetActivityListVersion(void); void SetActivityListVersion(int version); int GetEventListVersion(void); void SetEventListVersion(int version); int GetNumAttachments(void) const; const mstudioattachment_t &pAttachment(int i); int GetAttachmentBone(int i); // used on my tools in hlmv, not persistant void SetAttachmentBone(int iAttachment, int iBone); int EntryNode(int iSequence); int ExitNode(int iSequence); char *pszNodeName(int iNode); // FIXME: where should this one be? int GetTransition(int iFrom, int iTo) const; int GetNumPoseParameters(void) const; const mstudioposeparamdesc_t &pPoseParameter(int i); int GetSharedPoseParameter(int iSequence, int iLocalPose) const; int GetNumIKAutoplayLocks(void) const; const mstudioiklock_t &pIKAutoplayLock(int i); inline int CountAutoplaySequences() const { return m_pStudioHdr->CountAutoplaySequences(); }; inline int CopyAutoplaySequences(unsigned short *pOut, int outCount) const { return m_pStudioHdr->CopyAutoplaySequences(pOut, outCount); }; inline int GetAutoplayList(unsigned short **pOut) const { return m_pStudioHdr->GetAutoplayList(pOut); }; inline int GetNumBoneControllers(void) const { return m_pStudioHdr->numbonecontrollers; }; inline mstudiobonecontroller_t *pBonecontroller(int i) const { return m_pStudioHdr->pBonecontroller(i); }; inline int numikchains() const { return m_pStudioHdr->numikchains; }; inline int GetNumIKChains(void) const { return m_pStudioHdr->numikchains; }; inline mstudioikchain_t *pIKChain(int i) const { return m_pStudioHdr->pIKChain(i); }; inline int numflexrules() const { return m_pStudioHdr->numflexrules; }; inline mstudioflexrule_t *pFlexRule(int i) const { return m_pStudioHdr->pFlexRule(i); }; inline int numflexdesc() const { return m_pStudioHdr->numflexdesc; }; inline mstudioflexdesc_t *pFlexdesc(int i) const { return m_pStudioHdr->pFlexdesc(i); }; inline LocalFlexController_t numflexcontrollers() const { return (LocalFlexController_t)m_pStudioHdr->numflexcontrollers; }; inline mstudioflexcontroller_t *pFlexcontroller( LocalFlexController_t i) const { return m_pStudioHdr->pFlexcontroller(i); }; inline int numflexcontrollerui() const { return m_pStudioHdr->numflexcontrollerui; }; inline mstudioflexcontrollerui_t *pFlexcontrollerUI(int i) const { return m_pStudioHdr->pFlexControllerUI(i); }; // inline const char *name() const { return m_pStudioHdr->name; }; // // deprecated -- remove after full xbox merge inline const char *pszName() const { return m_pStudioHdr->pszName(); }; inline int numbonecontrollers() const { return m_pStudioHdr->numbonecontrollers; }; inline int numhitboxsets() const { return m_pStudioHdr->numhitboxsets; }; inline mstudiohitboxset_t *pHitboxSet(int i) const { return m_pStudioHdr->pHitboxSet(i); }; inline mstudiobbox_t *pHitbox(int i, int set) const { return m_pStudioHdr->pHitbox(i, set); }; inline int iHitboxCount(int set) const { return m_pStudioHdr->iHitboxCount(set); }; inline int numbodyparts() const { return m_pStudioHdr->numbodyparts; }; inline mstudiobodyparts_t *pBodypart(int i) const { return m_pStudioHdr->pBodypart(i); }; inline int numskinfamilies() const { return m_pStudioHdr->numskinfamilies; } inline Vector eyeposition() const { return m_pStudioHdr->eyeposition; }; inline int flags() const { return m_pStudioHdr->flags; }; inline char *const pszSurfaceProp(void) const { return m_pStudioHdr->pszSurfaceProp(); }; inline float mass() const { return m_pStudioHdr->mass; }; inline int contents() const { return m_pStudioHdr->contents; } inline const byte *GetBoneTableSortedByName() const { return m_pStudioHdr->GetBoneTableSortedByName(); }; inline Vector illumposition() const { return m_pStudioHdr->illumposition; }; inline Vector hull_min() const { return m_pStudioHdr->hull_min; }; // ideal movement hull size inline Vector hull_max() const { return m_pStudioHdr->hull_max; }; inline Vector view_bbmin() const { return m_pStudioHdr->view_bbmin; }; // clipping bounding box inline Vector view_bbmax() const { return m_pStudioHdr->view_bbmax; }; inline int numtextures() const { return m_pStudioHdr->numtextures; }; inline int IllumPositionAttachmentIndex() const { return m_pStudioHdr->IllumPositionAttachmentIndex(); } inline float MaxEyeDeflection() const { return m_pStudioHdr->MaxEyeDeflection(); } inline mstudiolinearbone_t *pLinearBones() const { return m_pStudioHdr->pLinearBones(); } inline int BoneFlexDriverCount() const { return m_pStudioHdr->BoneFlexDriverCount(); } inline const mstudioboneflexdriver_t *BoneFlexDriver(int i) const { return m_pStudioHdr->BoneFlexDriver(i); } inline float VertAnimFixedPointScale() const { return m_pStudioHdr->VertAnimFixedPointScale(); } public: int IsSequenceLooping(int iSequence); float GetSequenceCycleRate(int iSequence); void RunFlexRules(const float *src, float *dest); public: inline int boneFlags(int iBone) const { return m_boneFlags[iBone]; } inline int boneParent(int iBone) const { return m_boneParent[iBone]; } private: CUtlVector m_boneFlags; CUtlVector m_boneParent; public: // This class maps an activity to sequences allowed for that activity, // accelerating the resolution of SelectWeightedSequence(), especially on // PowerPC. Iterating through every sequence attached to a model turned out // to be a very destructive cache access pattern on 360. // // I've encapsulated this behavior inside a nested class for organizational // reasons; there is no particular programmatic or efficiency benefit to it. // It just makes clearer what particular code in the otherwise very // complicated StudioHdr class has to do with this particular optimization, // and it lets you collapse the whole definition down to a single line in // Visual Studio. class CActivityToSequenceMapping /* final */ { public: // A tuple of a sequence and its corresponding weight. Lists of these // correspond to activities. struct SequenceTuple { short seqnum; short weight; // the absolute value of the weight from the sequence // header CUtlSymbol *pActivityModifiers; // list of activity modifier symbols int iNumActivityModifiers; }; // The type of the hash's stored data, a composite of both key and value // (because that's how CUtlHash works): // key: an int, the activity # // values: an index into the m_pSequenceTuples array, a count of the // total sequences present for an activity, and the sum of their // weights. // Note this struct is 128-bits wide, exactly coincident to a PowerPC // cache line and VMX register. Please consider very carefully the // performance implications before adding any additional fields to this. // You could probably do away with totalWeight if you really had to. struct HashValueType { // KEY (hashed) int activityIdx; // VALUE (not hashed) int startingIdx; int count; int totalWeight; HashValueType(int _actIdx, int _stIdx, int _ct, int _tW) : activityIdx(_actIdx), startingIdx(_stIdx), count(_ct), totalWeight(_tW) {} // default constructor (ought not to be actually used) HashValueType() : activityIdx(-1), startingIdx(-1), count(-1), totalWeight(-1) { AssertMsg(false, "Don't use default HashValueType()!"); } class HashFuncs { public: // dummy constructor (gndn) HashFuncs(int) {} // COMPARE // compare two entries for uniqueness. We should never have two // different entries for the same activity, so we only compare // the activity index; this allows us to use the utlhash as a // dict by constructing dummy entries as hash lookup keys. bool operator()(const HashValueType &lhs, const HashValueType &rhs) const { return lhs.activityIdx == rhs.activityIdx; } // HASH // We only hash on the activity index; everything else is data. unsigned int operator()(const HashValueType &item) const { return HashInt(item.activityIdx); } }; }; typedef CUtlHash ActivityToValueIdxHash; // These must be here because IFM does not compile/link studio.cpp (?!?) // ctor CActivityToSequenceMapping(void) : m_pSequenceTuples(NULL), m_iSequenceTuplesCount(0), m_ActToSeqHash(8, 0, 0), m_expectedPStudioHdr(NULL), m_expectedVModel(NULL) #if STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE , m_bIsInitialized(false) #endif {}; // dtor -- not virtual because this class has no inheritors ~CActivityToSequenceMapping() { if (m_pSequenceTuples != NULL) { if (m_pSequenceTuples->pActivityModifiers != NULL) { delete[] m_pSequenceTuples->pActivityModifiers; } delete[] m_pSequenceTuples; } } /// Get the list of sequences for an activity. Returns the pointer to /// the first sequence tuple. Output parameters are a count of sequences /// present, and the total weight of all the sequences. (it would be /// more LHS-friendly to return these on registers, if only C++ offered /// more than one return value....) const SequenceTuple *GetSequences(int forActivity, int *outSequenceCount, int *outTotalWeight); /// The number of sequences available for an activity. int NumSequencesForActivity(int forActivity); #if STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE inline bool IsInitialized(void) { return m_bIsInitialized; } #endif private: /// Allocate my internal array. (It is freed in the destructor.) Also, /// build the hash of activities to sequences and populate /// m_pSequenceTuples. void Initialize(CStudioHdr *pstudiohdr); /// Force Initialize() to occur again, even if it has already occured. void Reinitialize(CStudioHdr *pstudiohdr); /// A more efficient version of the old SelectWeightedSequence() /// function in animation.cpp. int SelectWeightedSequence(CStudioHdr *pstudiohdr, int activity, int curSequence); // selects the sequence with the most matching modifiers int SelectWeightedSequenceFromModifiers(CStudioHdr *pstudiohdr, int activity, CUtlSymbol *pActivityModifiers, int iModifierCount); // Actually a big array, into which the hash values index. SequenceTuple *m_pSequenceTuples; unsigned int m_iSequenceTuplesCount; // (size of the whole array) #if STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE bool m_bIsInitialized; #endif // we don't store an outer pointer because we can't initialize it at // construction time (warning c4355) -- there are ways around this but // it's easier to just pass in a pointer to the CStudioHdr when we need // it, since this class isn't supposed to export its interface outside // the studio header anyway. CStudioHdr * const m_pOuter; ActivityToValueIdxHash m_ActToSeqHash; // we store these so we can know if the contents of the studiohdr have // changed from underneath our feet (this is an emergency data integrity // check) const void *m_expectedPStudioHdr; const void *m_expectedVModel; // double-check that the data I point to hasn't changed bool ValidateAgainst(const CStudioHdr *RESTRICT pstudiohdr); void SetValidationPair(const CStudioHdr *RESTRICT pstudiohdr); friend class CStudioHdr; }; CActivityToSequenceMapping m_ActivityToSequence; /// A more efficient version of the old SelectWeightedSequence() function in /// animation.cpp. Returns -1 on failure to find a sequence inline int SelectWeightedSequence(int activity, int curSequence) { #if STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE // We lazy-initialize the header on demand here, because // CStudioHdr::Init() is called from the constructor, at which time the // this pointer is illegitimate. if (!m_ActivityToSequence.IsInitialized()) { m_ActivityToSequence.Initialize(this); } #endif return m_ActivityToSequence.SelectWeightedSequence(this, activity, curSequence); } inline int SelectWeightedSequenceFromModifiers( int activity, CUtlSymbol *pActivityModifiers, int iModifierCount) { #if STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE // We lazy-initialize the header on demand here, because // CStudioHdr::Init() is called from the constructor, at which time the // this pointer is illegitimate. if (!m_ActivityToSequence.IsInitialized()) { m_ActivityToSequence.Initialize(this); } #endif return m_ActivityToSequence.SelectWeightedSequenceFromModifiers( this, activity, pActivityModifiers, iModifierCount); } /// True iff there is at least one sequence for the given activity. inline bool HaveSequenceForActivity(int activity) { #if STUDIO_SEQUENCE_ACTIVITY_LAZY_INITIALIZE if (!m_ActivityToSequence.IsInitialized()) { m_ActivityToSequence.Initialize(this); } #endif return (m_ActivityToSequence.NumSequencesForActivity(activity) > 0); } // Force this CStudioHdr's activity-to-sequence mapping to be reinitialized inline void ReinitializeSequenceMapping(void) { m_ActivityToSequence.Reinitialize(this); } #ifdef STUDIO_ENABLE_PERF_COUNTERS public: inline void ClearPerfCounters(void) { m_nPerfAnimatedBones = 0; m_nPerfUsedBones = 0; m_nPerfAnimationLayers = 0; }; // timing info mutable int m_nPerfAnimatedBones; mutable int m_nPerfUsedBones; mutable int m_nPerfAnimationLayers; #endif }; /* class CModelAccess { public: CModelAccess(CStudioHdr *pSemaphore) : m_pStudioHdr(pSemaphore) { m_pStudioHdr->IncrementAccess(); } ~CModelAccess() { m_pStudioHdr->DecrementAccess(); } private: CStudioHdr *m_pStudioHdr; }; #define ENABLE_MODEL_ACCESS( a ) \ CModelAccess ModelAccess##__LINE__( a->m_pStudioHdr ) */ //----------------------------------------------------------------------------- // Purpose: //----------------------------------------------------------------------------- struct flexweight_t { DECLARE_BYTESWAP_DATADESC(); int key; float weight; float influence; }; struct flexsetting_t { DECLARE_BYTESWAP_DATADESC(); int nameindex; inline char *pszName(void) const { return (char *)(((byte *)this) + nameindex); } // Leaving this for legacy support int obsolete1; // Number of flex settings int numsettings; int index; // OBSOLETE: int obsolete2; // Index of start of contiguous array of flexweight_t structures int settingindex; //----------------------------------------------------------------------------- // Purpose: Retrieves a pointer to the flexweight_t, including resolving // any markov chain hierarchy. Because of this possibility, we return // the number of settings in the weights array returned. We'll generally // call this function with i == 0 // Input : *base - // i - // **weights - // Output : int //----------------------------------------------------------------------------- inline int psetting(byte *base, int i, flexweight_t **weights) const; }; struct flexsettinghdr_t { DECLARE_BYTESWAP_DATADESC(); int id; int version; inline const char *pszName(void) const { return name; } char name[64]; int length; int numflexsettings; int flexsettingindex; inline flexsetting_t *pSetting(int i) const { return (flexsetting_t *)(((byte *)this) + flexsettingindex) + i; }; int nameindex; // look up flex settings by "index" int numindexes; int indexindex; inline flexsetting_t *pIndexedSetting(int index) const { if (index < 0 || index >= numindexes) { return NULL; } int i = *((int *)(((byte *)this) + indexindex) + index); if (i == -1) { return NULL; } return pSetting(i); } // index names of "flexcontrollers" int numkeys; int keynameindex; inline char *pLocalName(int i) const { return (char *)(((byte *)this) + *((int *)(((byte *)this) + keynameindex) + i)); }; int keymappingindex; inline int *pLocalToGlobal(int i) const { return (int *)(((byte *)this) + keymappingindex) + i; }; inline int LocalToGlobal(int i) const { return *pLocalToGlobal(i); }; }; //----------------------------------------------------------------------------- // Purpose: Retrieves a pointer to the flexweight_t. // Input : *base - flexsettinghdr_t * pointer // i - index of flex setting to retrieve // **weights - destination for weights array starting at index //i. // Output : int //----------------------------------------------------------------------------- inline int flexsetting_t::psetting(byte *base, int i, flexweight_t **weights) const { // Grab array pointer *weights = (flexweight_t *)(((byte *)this) + settingindex) + i; // Return true number of settings return numsettings; }; //----------------------------------------------------------------------------- // For a given flex controller ui struct, these return the index of the // studiohdr_t flex controller that correspond to the the left and right // flex controllers if the ui controller is a stereo control. // nWayValueIndex returns the index of the flex controller that is the value // flex controller for an NWAY combination // If these functions are called and the ui controller isn't of the type // specified then -1 is returned //----------------------------------------------------------------------------- inline int mstudioflexcontrollerui_t::controllerIndex( const CStudioHdr &cStudioHdr) const { return !stereo ? pController() - cStudioHdr.pFlexcontroller((LocalFlexController_t)0) : -1; } inline int mstudioflexcontrollerui_t::rightIndex( const CStudioHdr &cStudioHdr) const { return stereo ? pRightController() - cStudioHdr.pFlexcontroller((LocalFlexController_t)0) : -1; } inline int mstudioflexcontrollerui_t::leftIndex( const CStudioHdr &cStudioHdr) const { return stereo ? pLeftController() - cStudioHdr.pFlexcontroller((LocalFlexController_t)0) : -1; } inline int mstudioflexcontrollerui_t::nWayValueIndex( const CStudioHdr &cStudioHdr) const { return remaptype == FLEXCONTROLLER_REMAP_NWAY ? pNWayValueController() - cStudioHdr.pFlexcontroller((LocalFlexController_t)0) : -1; } inline const mstudioflexcontroller_t *mstudioflexcontrollerui_t::pController( int index) const { if (index < 0 || index > Count()) return NULL; if (remaptype == FLEXCONTROLLER_REMAP_NWAY) { if (stereo) return (mstudioflexcontroller_t *)((char *)this) + *(&szindex0 + index); if (index == 0) return pController(); if (index == 1) return pNWayValueController(); return NULL; } if (index > 1) return NULL; if (stereo) return (mstudioflexcontroller_t *)((char *)this) + *(&szindex0 + index); if (index > 0) return NULL; return pController(); } #define STUDIO_CONST 1 // get float #define STUDIO_FETCH1 2 // get Flexcontroller value #define STUDIO_FETCH2 3 // get flex weight #define STUDIO_ADD 4 #define STUDIO_SUB 5 #define STUDIO_MUL 6 #define STUDIO_DIV 7 #define STUDIO_NEG 8 // not implemented #define STUDIO_EXP 9 // not implemented #define STUDIO_OPEN 10 // only used in token parsing #define STUDIO_CLOSE 11 #define STUDIO_COMMA 12 // only used in token parsing #define STUDIO_MAX 13 #define STUDIO_MIN 14 #define STUDIO_2WAY_0 \ 15 // Fetch a value from a 2 Way slider for the 1st value RemapVal( 0.0, // 0.5, 0.0, 1.0 ) #define STUDIO_2WAY_1 \ 16 // Fetch a value from a 2 Way slider for the 2nd value RemapVal( // 0.5, 1.0, 0.0, 1.0 ) #define STUDIO_NWAY \ 17 // Fetch a value from a 2 Way slider for the 2nd value RemapVal( // 0.5, 1.0, 0.0, 1.0 ) #define STUDIO_COMBO \ 18 // Perform a combo operation (essentially multiply the last N values on // the stack) #define STUDIO_DOMINATE 19 // Performs a combination domination operation #define STUDIO_DME_LOWER_EYELID 20 // #define STUDIO_DME_UPPER_EYELID 21 // // motion flags #define STUDIO_X 0x00000001 #define STUDIO_Y 0x00000002 #define STUDIO_Z 0x00000004 #define STUDIO_XR 0x00000008 #define STUDIO_YR 0x00000010 #define STUDIO_ZR 0x00000020 #define STUDIO_LX 0x00000040 #define STUDIO_LY 0x00000080 #define STUDIO_LZ 0x00000100 #define STUDIO_LXR 0x00000200 #define STUDIO_LYR 0x00000400 #define STUDIO_LZR 0x00000800 #define STUDIO_LINEAR 0x00001000 #define STUDIO_TYPES 0x0003FFFF #define STUDIO_RLOOP 0x00040000 // controller that wraps shortest distance // sequence and autolayer flags #define STUDIO_LOOPING \ 0x0001 // ending frame should be the same as the starting frame #define STUDIO_SNAP \ 0x0002 // do not interpolate between previous animation and this one #define STUDIO_DELTA \ 0x0004 // this sequence "adds" to the base sequences, not slerp blends #define STUDIO_AUTOPLAY \ 0x0008 // temporary flag that forces the sequence to always play #define STUDIO_POST 0x0010 // #define STUDIO_ALLZEROS \ 0x0020 // this animation/sequence has no real animation data // 0x0040 #define STUDIO_CYCLEPOSE \ 0x0080 // cycle index is taken from a pose parameter index #define STUDIO_REALTIME \ 0x0100 // cycle index is taken from a real-time clock, not the animations // cycle index #define STUDIO_LOCAL 0x0200 // sequence has a local context sequence #define STUDIO_HIDDEN 0x0400 // don't show in default selection views #define STUDIO_OVERRIDE 0x0800 // a forward declared sequence (empty) #define STUDIO_ACTIVITY 0x1000 // Has been updated at runtime to activity index #define STUDIO_EVENT 0x2000 // Has been updated at runtime to event index #define STUDIO_WORLD 0x4000 // sequence blends in worldspace // autolayer flags // 0x0001 // 0x0002 // 0x0004 // 0x0008 #define STUDIO_AL_POST 0x0010 // // 0x0020 #define STUDIO_AL_SPLINE \ 0x0040 // convert layer ramp in/out curve is a spline instead of linear #define STUDIO_AL_XFADE \ 0x0080 // pre-bias the ramp curve to compense for a non-1 weight, assuming // a second layer is also going to accumulate // 0x0100 #define STUDIO_AL_NOBLEND \ 0x0200 // animation always blends at 1.0 (ignores weight) // 0x0400 // 0x0800 #define STUDIO_AL_LOCAL 0x1000 // layer is a local context sequence // 0x2000 #define STUDIO_AL_POSE \ 0x4000 // layer blends using a pose parameter instead of parent cycle // Insert this code anywhere that you need to allow for conversion from an old // STUDIO_VERSION to a new one. If we only support the current version, this // function should be empty. inline bool Studio_ConvertStudioHdrToNewVersion(studiohdr_t *pStudioHdr) { COMPILE_TIME_ASSERT(STUDIO_VERSION == 48); // put this to make sure this code is updated // upon changing version. int version = pStudioHdr->version; if (version == STUDIO_VERSION) return true; bool bResult = true; if (version < 46) { // some of the anim index data is incompatible for (int i = 0; i < pStudioHdr->numlocalanim; i++) { mstudioanimdesc_t *pAnim = (mstudioanimdesc_t *)pStudioHdr->pLocalAnimdesc(i); // old ANI files that used sections (v45 only) are not compatible if (pAnim->sectionframes != 0) { // zero most everything out memset(&(pAnim->numframes), 0, (byte *)(pAnim + 1) - (byte *)&(pAnim->numframes)); pAnim->numframes = 1; pAnim->animblock = -1; // disable animation fetching bResult = false; } } } if (version < 47) { // used to contain zeroframe cache data if (pStudioHdr->unused4 != 0) { pStudioHdr->unused4 = 0; bResult = false; } for (int i = 0; i < pStudioHdr->numlocalanim; i++) { mstudioanimdesc_t *pAnim = (mstudioanimdesc_t *)pStudioHdr->pLocalAnimdesc(i); pAnim->zeroframeindex = 0; pAnim->zeroframespan = 0; } } else if (version == 47) { for (int i = 0; i < pStudioHdr->numlocalanim; i++) { mstudioanimdesc_t *pAnim = (mstudioanimdesc_t *)pStudioHdr->pLocalAnimdesc(i); if (pAnim->zeroframeindex != 0) { pAnim->zeroframeindex = 0; pAnim->zeroframespan = 0; bResult = false; } } } // for now, just slam the version number since they're compatible pStudioHdr->version = STUDIO_VERSION; return bResult; } // must be run to fixup with specified rootLOD inline void Studio_SetRootLOD(studiohdr_t *pStudioHdr, int rootLOD) { // honor studiohdr restriction of root lod in case requested root lod // exceeds restriction. if (pStudioHdr->numAllowedRootLODs > 0 && rootLOD >= pStudioHdr->numAllowedRootLODs) { rootLOD = pStudioHdr->numAllowedRootLODs - 1; } Assert(rootLOD >= 0 && rootLOD < MAX_NUM_LODS); Clamp(rootLOD, 0, MAX_NUM_LODS - 1); // run the lod fixups that culls higher detail lods // vertexes are external, fixups ensure relative offsets and counts are // cognizant of shrinking data indexes are built in lodN..lod0 order so // higher detail lod data can be truncated at load the fixup lookup arrays // are filled (or replicated) to ensure all slots valid int vertexindex = 0; int tangentsindex = 0; int bodyPartID; for (bodyPartID = 0; bodyPartID < pStudioHdr->numbodyparts; bodyPartID++) { mstudiobodyparts_t *pBodyPart = pStudioHdr->pBodypart(bodyPartID); int modelID; for (modelID = 0; modelID < pBodyPart->nummodels; modelID++) { mstudiomodel_t *pModel = pBodyPart->pModel(modelID); int totalMeshVertexes = 0; int meshID; for (meshID = 0; meshID < pModel->nummeshes; meshID++) { mstudiomesh_t *pMesh = pModel->pMesh(meshID); // get the fixup, vertexes are reduced pMesh->numvertices = pMesh->vertexdata.numLODVertexes[rootLOD]; pMesh->vertexoffset = totalMeshVertexes; totalMeshVertexes += pMesh->numvertices; } // stay in sync pModel->numvertices = totalMeshVertexes; pModel->vertexindex = vertexindex; pModel->tangentsindex = tangentsindex; vertexindex += totalMeshVertexes * sizeof(mstudiovertex_t); tangentsindex += totalMeshVertexes * sizeof(Vector4D); } } // track the set desired configuration pStudioHdr->rootLOD = rootLOD; } // Determines allocation requirements for vertexes inline int Studio_VertexDataSize(const vertexFileHeader_t *pVvdHdr, int rootLOD, bool bNeedsTangentS) { // the quantity of vertexes necessary for root lod and all lower detail lods // add one extra vertex to each section // the extra vertex allows prefetch hints to read ahead 1 vertex without // faulting int numVertexes = pVvdHdr->numLODVertexes[rootLOD] + 1; int dataLength = pVvdHdr->vertexDataStart + numVertexes * sizeof(mstudiovertex_t); if (bNeedsTangentS) { dataLength += numVertexes * sizeof(Vector4D); } // allocate this much return dataLength; } // Load the minimum quantity of verts and run fixups inline int Studio_LoadVertexes(const vertexFileHeader_t *pTempVvdHdr, vertexFileHeader_t *pNewVvdHdr, int rootLOD, bool bNeedsTangentS) { int i; int target; int numVertexes; vertexFileFixup_t *pFixupTable; numVertexes = pTempVvdHdr->numLODVertexes[rootLOD]; // copy all data up to start of vertexes memcpy((void *)pNewVvdHdr, (void *)pTempVvdHdr, pTempVvdHdr->vertexDataStart); for (i = 0; i < rootLOD; i++) { pNewVvdHdr->numLODVertexes[i] = pNewVvdHdr->numLODVertexes[rootLOD]; } // fixup data starts if (bNeedsTangentS) { // tangent data follows possibly reduced vertex data pNewVvdHdr->tangentDataStart = pNewVvdHdr->vertexDataStart + numVertexes * sizeof(mstudiovertex_t); } else { // no tangent data will be available, mark for identification pNewVvdHdr->tangentDataStart = 0; } if (!pNewVvdHdr->numFixups) { // fixups not required // transfer vertex data memcpy((byte *)pNewVvdHdr + pNewVvdHdr->vertexDataStart, (byte *)pTempVvdHdr + pTempVvdHdr->vertexDataStart, numVertexes * sizeof(mstudiovertex_t)); if (bNeedsTangentS) { // transfer tangent data to cache memory memcpy((byte *)pNewVvdHdr + pNewVvdHdr->tangentDataStart, (byte *)pTempVvdHdr + pTempVvdHdr->tangentDataStart, numVertexes * sizeof(Vector4D)); } return numVertexes; } // fixups required // re-establish mesh ordered vertexes into cache memory, according to table target = 0; pFixupTable = (vertexFileFixup_t *)((byte *)pTempVvdHdr + pTempVvdHdr->fixupTableStart); for (i = 0; i < pTempVvdHdr->numFixups; i++) { if (pFixupTable[i].lod < rootLOD) { // working bottom up, skip over copying higher detail lods continue; } // copy vertexes memcpy((mstudiovertex_t *)((byte *)pNewVvdHdr + pNewVvdHdr->vertexDataStart) + target, (mstudiovertex_t *)((byte *)pTempVvdHdr + pTempVvdHdr->vertexDataStart) + pFixupTable[i].sourceVertexID, pFixupTable[i].numVertexes * sizeof(mstudiovertex_t)); if (bNeedsTangentS) { // copy tangents memcpy((Vector4D *)((byte *)pNewVvdHdr + pNewVvdHdr->tangentDataStart) + target, (Vector4D *)((byte *)pTempVvdHdr + pTempVvdHdr->tangentDataStart) + pFixupTable[i].sourceVertexID, pFixupTable[i].numVertexes * sizeof(Vector4D)); } // data is placed consecutively target += pFixupTable[i].numVertexes; } pNewVvdHdr->numFixups = 0; return target; } #endif // STUDIO_H