//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: // // $Header: $ // $NoKeywords: $ //=============================================================================// #ifndef UTLMAP_H #define UTLMAP_H #ifdef _WIN32 #pragma once #endif #include "../tier0/dbg.h" #include "utlrbtree.h" //----------------------------------------------------------------------------- // // Purpose: An associative container. Pretty much identical to std::map. // //----------------------------------------------------------------------------- // This is a useful macro to iterate from start to end in order in a map #define FOR_EACH_MAP(mapName, iteratorName) \ for (int iteratorName = (mapName).FirstInorder(); \ (mapName).IsUtlMap && iteratorName != (mapName).InvalidIndex(); \ iteratorName = (mapName).NextInorder(iteratorName)) // faster iteration, but in an unspecified order #define FOR_EACH_MAP_FAST(mapName, iteratorName) \ for (int iteratorName = 0; \ (mapName).IsUtlMap && iteratorName < (mapName).MaxElement(); \ ++iteratorName) \ if (!(mapName).IsValidIndex(iteratorName)) \ continue; \ else struct base_utlmap_t { public: // This enum exists so that FOR_EACH_MAP and FOR_EACH_MAP_FAST cannot // accidentally be used on a type that is not a CUtlMap. If the code // compiles then all is well. The check for IsUtlMap being true should be // free. Using an enum rather than a static const bool ensures that this // trick works even with optimizations disabled on gcc. enum CompileTimeCheck { IsUtlMap = 1 }; }; template class CUtlMap : public base_utlmap_t { public: typedef K KeyType_t; typedef T ElemType_t; typedef I IndexType_t; // Less func typedef // Returns true if the first parameter is "less" than the second typedef bool (*LessFunc_t)(const KeyType_t &, const KeyType_t &); // constructor, destructor // Left at growSize = 0, the memory will first allocate 1 element and double // in size at each increment. LessFunc_t is required, but may be set after // the constructor using SetLessFunc() below CUtlMap(int growSize = 0, int initSize = 0, LessFunc_t lessfunc = 0) : m_Tree(growSize, initSize, CKeyLess(lessfunc)) {} CUtlMap(LessFunc_t lessfunc) : m_Tree(CKeyLess(lessfunc)) {} void EnsureCapacity(int num) { m_Tree.EnsureCapacity(num); } // gets particular elements ElemType_t &Element(IndexType_t i) { return m_Tree.Element(i).elem; } const ElemType_t &Element(IndexType_t i) const { return m_Tree.Element(i).elem; } ElemType_t &operator[](IndexType_t i) { return m_Tree.Element(i).elem; } const ElemType_t &operator[](IndexType_t i) const { return m_Tree.Element(i).elem; } KeyType_t &Key(IndexType_t i) { return m_Tree.Element(i).key; } const KeyType_t &Key(IndexType_t i) const { return m_Tree.Element(i).key; } // Num elements unsigned int Count() const { return m_Tree.Count(); } // Max "size" of the vector IndexType_t MaxElement() const { return m_Tree.MaxElement(); } // Checks if a node is valid and in the map bool IsValidIndex(IndexType_t i) const { return m_Tree.IsValidIndex(i); } // Checks if the map as a whole is valid bool IsValid() const { return m_Tree.IsValid(); } // Invalid index static IndexType_t InvalidIndex() { return CTree::InvalidIndex(); } // Sets the less func void SetLessFunc(LessFunc_t func) { m_Tree.SetLessFunc(CKeyLess(func)); } // Insert method (inserts in order) IndexType_t Insert(const KeyType_t &key, const ElemType_t &insert) { Node_t node; node.key = key; node.elem = insert; return m_Tree.Insert(node); } IndexType_t Insert(const KeyType_t &key) { Node_t node; node.key = key; return m_Tree.Insert(node); } // Find method IndexType_t Find(const KeyType_t &key) const { Node_t dummyNode; dummyNode.key = key; return m_Tree.Find(dummyNode); } // Remove methods void RemoveAt(IndexType_t i) { m_Tree.RemoveAt(i); } bool Remove(const KeyType_t &key) { Node_t dummyNode; dummyNode.key = key; return m_Tree.Remove(dummyNode); } void RemoveAll() { m_Tree.RemoveAll(); } void Purge() { m_Tree.Purge(); } // Purges the list and calls delete on each element in it. void PurgeAndDeleteElements(); // Iteration IndexType_t FirstInorder() const { return m_Tree.FirstInorder(); } IndexType_t NextInorder(IndexType_t i) const { return m_Tree.NextInorder(i); } IndexType_t PrevInorder(IndexType_t i) const { return m_Tree.PrevInorder(i); } IndexType_t LastInorder() const { return m_Tree.LastInorder(); } // If you change the search key, this can be used to reinsert the // element into the map. void Reinsert(const KeyType_t &key, IndexType_t i) { m_Tree[i].key = key; m_Tree.Reinsert(i); } IndexType_t InsertOrReplace(const KeyType_t &key, const ElemType_t &insert) { IndexType_t i = Find(key); if (i != InvalidIndex()) { Element(i) = insert; return i; } return Insert(key, insert); } void Swap(CUtlMap &that) { m_Tree.Swap(that.m_Tree); } struct Node_t { Node_t() {} Node_t(const Node_t &from) : key(from.key), elem(from.elem) {} KeyType_t key; ElemType_t elem; }; class CKeyLess { public: CKeyLess(LessFunc_t lessFunc) : m_LessFunc(lessFunc) {} bool operator!() const { return !m_LessFunc; } bool operator()(const Node_t &left, const Node_t &right) const { return m_LessFunc(left.key, right.key); } LessFunc_t m_LessFunc; }; typedef CUtlRBTree CTree; CTree *AccessTree() { return &m_Tree; } protected: CTree m_Tree; }; //----------------------------------------------------------------------------- // Purges the list and calls delete on each element in it. template inline void CUtlMap::PurgeAndDeleteElements() { for (I i = 0; i < MaxElement(); ++i) { if (!IsValidIndex(i)) continue; delete Element(i); } Purge(); } //----------------------------------------------------------------------------- // This is horrible and slow and meant to be used only when you're dealing with // really non-time/memory-critical code and desperately want to copy a whole map // element-by-element for whatever reason. template void DeepCopyMap(const CUtlMap &pmapIn, CUtlMap *out_pmapOut) { Assert(out_pmapOut); out_pmapOut->Purge(); FOR_EACH_MAP_FAST(pmapIn, i) { out_pmapOut->Insert(pmapIn.Key(i), pmapIn.Element(i)); } } #endif // UTLMAP_H