//========= Copyright Valve Corporation, All rights reserved. ============// // // Purpose: A collection of utility classes to simplify thread handling, and // as much as possible contain portability problems. Here //avoiding including windows.h. // //============================================================================= #ifndef THREADTOOLS_H #define THREADTOOLS_H #include #include "dbg.h" #include "platform.h" #include "vcrmode.h" #ifdef PLATFORM_WINDOWS_PC #if !defined(__MINGW32__) #include #endif #endif #ifdef POSIX #include #include #define WAIT_OBJECT_0 0 #define WAIT_TIMEOUT 0x00000102 #define WAIT_FAILED -1 #define THREAD_PRIORITY_HIGHEST 2 #endif #if defined(_WIN32) #pragma once #pragma warning(push) #pragma warning(disable : 4251) #endif // #define THREAD_PROFILER 1 #ifndef _RETAIL #define THREAD_MUTEX_TRACING_SUPPORTED #if defined(_WIN32) && defined(_DEBUG) #define THREAD_MUTEX_TRACING_ENABLED #endif #endif #ifdef _WIN32 typedef void *HANDLE; #endif //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- const unsigned TT_INFINITE = 0xffffffff; #ifndef NO_THREAD_LOCAL #ifndef THREAD_LOCAL #ifdef _WIN32 #define THREAD_LOCAL __declspec(thread) #elif POSIX #define THREAD_LOCAL __thread #endif #endif #endif // NO_THREAD_LOCAL typedef unsigned long ThreadId_t; //----------------------------------------------------------------------------- // // Simple thread creation. Differs from VCR mode/CreateThread/_beginthreadex // in that it accepts a standard C function rather than compiler specific one. // //----------------------------------------------------------------------------- FORWARD_DECLARE_HANDLE(ThreadHandle_t); typedef unsigned (*ThreadFunc_t)(void *pParam); PLATFORM_OVERLOAD ThreadHandle_t CreateSimpleThread(ThreadFunc_t, void *pParam, ThreadId_t *pID, unsigned stackSize = 0); PLATFORM_INTERFACE ThreadHandle_t CreateSimpleThread(ThreadFunc_t, void *pParam, unsigned stackSize = 0); PLATFORM_INTERFACE bool ReleaseThreadHandle(ThreadHandle_t); //----------------------------------------------------------------------------- PLATFORM_INTERFACE void ThreadSleep(unsigned duration = 0); PLATFORM_INTERFACE uint ThreadGetCurrentId(); PLATFORM_INTERFACE ThreadHandle_t ThreadGetCurrentHandle(); PLATFORM_INTERFACE int ThreadGetPriority(ThreadHandle_t hThread = NULL); PLATFORM_INTERFACE bool ThreadSetPriority(ThreadHandle_t hThread, int priority); inline bool ThreadSetPriority(int priority) { return ThreadSetPriority(NULL, priority); } PLATFORM_INTERFACE bool ThreadInMainThread(); PLATFORM_INTERFACE void DeclareCurrentThreadIsMainThread(); // NOTE: ThreadedLoadLibraryFunc_t needs to return the sleep time in // milliseconds or TT_INFINITE typedef int (*ThreadedLoadLibraryFunc_t)(); PLATFORM_INTERFACE void SetThreadedLoadLibraryFunc( ThreadedLoadLibraryFunc_t func); PLATFORM_INTERFACE ThreadedLoadLibraryFunc_t GetThreadedLoadLibraryFunc(); #if defined(_WIN32) && !defined(_WIN64) && !defined(_X360) extern "C" unsigned long __declspec(dllimport) __stdcall GetCurrentThreadId(); #define ThreadGetCurrentId GetCurrentThreadId #endif inline void ThreadPause() { #if defined(PLATFORM_WINDOWS_PC) // Intrinsic for __asm pause; from _mm_pause(); #elif POSIX __asm __volatile("pause"); #elif defined(_X360) #else #error "implement me" #endif } PLATFORM_INTERFACE bool ThreadJoin(ThreadHandle_t, unsigned timeout = TT_INFINITE); // If you're not calling ThreadJoin, you need to call ThreadDetach so pthreads // on Linux knows it can // free the memory for this thread. Otherwise you wind up leaking threads //until you run out and CreateSimpleThread() will fail. PLATFORM_INTERFACE void ThreadDetach(ThreadHandle_t); PLATFORM_INTERFACE void ThreadSetDebugName(ThreadId_t id, const char *pszName); inline void ThreadSetDebugName(const char *pszName) { ThreadSetDebugName((ThreadId_t)-1, pszName); } PLATFORM_INTERFACE void ThreadSetAffinity(ThreadHandle_t hThread, int nAffinityMask); //----------------------------------------------------------------------------- enum ThreadWaitResult_t { TW_FAILED = 0xffffffff, // WAIT_FAILED TW_TIMEOUT = 0x00000102, // WAIT_TIMEOUT }; #ifdef _WIN32 PLATFORM_INTERFACE int ThreadWaitForObjects(int nEvents, const HANDLE *pHandles, bool bWaitAll = true, unsigned timeout = TT_INFINITE); inline int ThreadWaitForObject(HANDLE handle, bool bWaitAll = true, unsigned timeout = TT_INFINITE) { return ThreadWaitForObjects(1, &handle, bWaitAll, timeout); } #endif //----------------------------------------------------------------------------- // // Interlock methods. These perform very fast atomic thread // safe operations. These are especially relevant in a multi-core setting. // //----------------------------------------------------------------------------- #ifdef _WIN32 #define NOINLINE #elif POSIX #define NOINLINE __attribute__((noinline)) #endif // ThreadMemoryBarrier is a fence/barrier sufficient for most uses. It prevents // reads from moving past reads, and writes moving past writes. It is sufficient // for read-acquire and write-release barriers. It is not a full barrier and it // does not prevent reads from moving past writes -- that would require a full // __sync() on PPC and is significantly more expensive. #if defined(_X360) || defined(_PS3) #define ThreadMemoryBarrier() __lwsync() #elif defined(_MSC_VER) // Prevent compiler reordering across this barrier. This is // sufficient for most purposes on x86/x64. #if _MSC_VER < 1500 // !KLUDGE! For VC 2005 // http://connect.microsoft.com/VisualStudio/feedback/details/100051 #pragma intrinsic(_ReadWriteBarrier) #endif #define ThreadMemoryBarrier() _ReadWriteBarrier() #elif defined(GNUC) // Prevent compiler reordering across this barrier. This is // sufficient for most purposes on x86/x64. // http://preshing.com/20120625/memory-ordering-at-compile-time #define ThreadMemoryBarrier() asm volatile("" ::: "memory") #else #error Every platform needs to define ThreadMemoryBarrier to at least prevent compiler reordering #endif #if defined(_WIN32) && !defined(_X360) #if (_MSC_VER >= 1310) #define USE_INTRINSIC_INTERLOCKED #endif #endif #ifdef USE_INTRINSIC_INTERLOCKED extern "C" { long __cdecl _InterlockedIncrement(volatile long *); long __cdecl _InterlockedDecrement(volatile long *); long __cdecl _InterlockedExchange(volatile long *, long); long __cdecl _InterlockedExchangeAdd(volatile long *, long); long __cdecl _InterlockedCompareExchange(volatile long *, long, long); } #pragma intrinsic(_InterlockedCompareExchange) #pragma intrinsic(_InterlockedDecrement) #pragma intrinsic(_InterlockedExchange) #pragma intrinsic(_InterlockedExchangeAdd) #pragma intrinsic(_InterlockedIncrement) inline long ThreadInterlockedIncrement(long volatile *p) { Assert((size_t)p % 4 == 0); return _InterlockedIncrement(p); } inline long ThreadInterlockedDecrement(long volatile *p) { Assert((size_t)p % 4 == 0); return _InterlockedDecrement(p); } inline long ThreadInterlockedExchange(long volatile *p, long value) { Assert((size_t)p % 4 == 0); return _InterlockedExchange(p, value); } inline long ThreadInterlockedExchangeAdd(long volatile *p, long value) { Assert((size_t)p % 4 == 0); return _InterlockedExchangeAdd(p, value); } inline long ThreadInterlockedCompareExchange(long volatile *p, long value, long comperand) { Assert((size_t)p % 4 == 0); return _InterlockedCompareExchange(p, value, comperand); } inline bool ThreadInterlockedAssignIf(long volatile *p, long value, long comperand) { Assert((size_t)p % 4 == 0); return (_InterlockedCompareExchange(p, value, comperand) == comperand); } #else PLATFORM_INTERFACE long ThreadInterlockedIncrement(long volatile *); PLATFORM_INTERFACE long ThreadInterlockedDecrement(long volatile *); PLATFORM_INTERFACE long ThreadInterlockedExchange(long volatile *, long value); PLATFORM_INTERFACE long ThreadInterlockedExchangeAdd(long volatile *, long value); PLATFORM_INTERFACE long ThreadInterlockedCompareExchange(long volatile *, long value, long comperand); PLATFORM_INTERFACE bool ThreadInterlockedAssignIf(long volatile *, long value, long comperand); #endif inline unsigned ThreadInterlockedExchangeSubtract(long volatile *p, long value) { return ThreadInterlockedExchangeAdd((long volatile *)p, -value); } #if defined(USE_INTRINSIC_INTERLOCKED) && !defined(_WIN64) #define TIPTR() inline void *ThreadInterlockedExchangePointer(void *volatile *p, void *value) { return (void *)_InterlockedExchange(reinterpret_cast(p), reinterpret_cast(value)); } inline void *ThreadInterlockedCompareExchangePointer(void *volatile *p, void *value, void *comperand) { return (void *)_InterlockedCompareExchange( reinterpret_cast(p), reinterpret_cast(value), reinterpret_cast(comperand)); } inline bool ThreadInterlockedAssignPointerIf(void *volatile *p, void *value, void *comperand) { return (_InterlockedCompareExchange(reinterpret_cast(p), reinterpret_cast(value), reinterpret_cast(comperand)) == reinterpret_cast(comperand)); } #else PLATFORM_INTERFACE void *ThreadInterlockedExchangePointer(void *volatile *, void *value) NOINLINE; PLATFORM_INTERFACE void *ThreadInterlockedCompareExchangePointer( void *volatile *, void *value, void *comperand) NOINLINE; PLATFORM_INTERFACE bool ThreadInterlockedAssignPointerIf( void *volatile *, void *value, void *comperand) NOINLINE; #endif inline void const *ThreadInterlockedExchangePointerToConst( void const *volatile *p, void const *value) { return ThreadInterlockedExchangePointer(const_cast(p), const_cast(value)); } inline void const *ThreadInterlockedCompareExchangePointerToConst( void const *volatile *p, void const *value, void const *comperand) { return ThreadInterlockedCompareExchangePointer( const_cast(p), const_cast(value), const_cast(comperand)); } inline bool ThreadInterlockedAssignPointerToConstIf(void const *volatile *p, void const *value, void const *comperand) { return ThreadInterlockedAssignPointerIf(const_cast(p), const_cast(value), const_cast(comperand)); } #if defined(PLATFORM_64BITS) #if defined(_WIN32) typedef __m128i int128; inline int128 int128_zero() { return _mm_setzero_si128(); } #else typedef __int128_t int128; #define int128_zero() 0 #endif PLATFORM_INTERFACE bool ThreadInterlockedAssignIf128( volatile int128 *pDest, const int128 &value, const int128 &comperand) NOINLINE; #endif PLATFORM_INTERFACE int64 ThreadInterlockedIncrement64(int64 volatile *) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedDecrement64(int64 volatile *) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedCompareExchange64( int64 volatile *, int64 value, int64 comperand) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedExchange64(int64 volatile *, int64 value) NOINLINE; PLATFORM_INTERFACE int64 ThreadInterlockedExchangeAdd64(int64 volatile *, int64 value) NOINLINE; PLATFORM_INTERFACE bool ThreadInterlockedAssignIf64(volatile int64 *pDest, int64 value, int64 comperand) NOINLINE; inline unsigned ThreadInterlockedExchangeSubtract(unsigned volatile *p, unsigned value) { return ThreadInterlockedExchangeAdd((long volatile *)p, value); } inline unsigned ThreadInterlockedIncrement(unsigned volatile *p) { return ThreadInterlockedIncrement((long volatile *)p); } inline unsigned ThreadInterlockedDecrement(unsigned volatile *p) { return ThreadInterlockedDecrement((long volatile *)p); } inline unsigned ThreadInterlockedExchange(unsigned volatile *p, unsigned value) { return ThreadInterlockedExchange((long volatile *)p, value); } inline unsigned ThreadInterlockedExchangeAdd(unsigned volatile *p, unsigned value) { return ThreadInterlockedExchangeAdd((long volatile *)p, value); } inline unsigned ThreadInterlockedCompareExchange(unsigned volatile *p, unsigned value, unsigned comperand) { return ThreadInterlockedCompareExchange((long volatile *)p, value, comperand); } inline bool ThreadInterlockedAssignIf(unsigned volatile *p, unsigned value, unsigned comperand) { return ThreadInterlockedAssignIf((long volatile *)p, value, comperand); } inline int ThreadInterlockedExchangeSubtract(int volatile *p, int value) { return ThreadInterlockedExchangeAdd((long volatile *)p, value); } inline int ThreadInterlockedIncrement(int volatile *p) { return ThreadInterlockedIncrement((long volatile *)p); } inline int ThreadInterlockedDecrement(int volatile *p) { return ThreadInterlockedDecrement((long volatile *)p); } inline int ThreadInterlockedExchange(int volatile *p, int value) { return ThreadInterlockedExchange((long volatile *)p, value); } inline int ThreadInterlockedExchangeAdd(int volatile *p, int value) { return ThreadInterlockedExchangeAdd((long volatile *)p, value); } inline int ThreadInterlockedCompareExchange(int volatile *p, int value, int comperand) { return ThreadInterlockedCompareExchange((long volatile *)p, value, comperand); } inline bool ThreadInterlockedAssignIf(int volatile *p, int value, int comperand) { return ThreadInterlockedAssignIf((long volatile *)p, value, comperand); } //----------------------------------------------------------------------------- // Access to VTune thread profiling //----------------------------------------------------------------------------- #if defined(_WIN32) && defined(THREAD_PROFILER) PLATFORM_INTERFACE void ThreadNotifySyncPrepare(void *p); PLATFORM_INTERFACE void ThreadNotifySyncCancel(void *p); PLATFORM_INTERFACE void ThreadNotifySyncAcquired(void *p); PLATFORM_INTERFACE void ThreadNotifySyncReleasing(void *p); #else #define ThreadNotifySyncPrepare(p) ((void)0) #define ThreadNotifySyncCancel(p) ((void)0) #define ThreadNotifySyncAcquired(p) ((void)0) #define ThreadNotifySyncReleasing(p) ((void)0) #endif //----------------------------------------------------------------------------- // Encapsulation of a thread local datum (needed because THREAD_LOCAL doesn't // work in a DLL loaded with LoadLibrary() //----------------------------------------------------------------------------- #ifndef NO_THREAD_LOCAL #if defined(_LINUX) && !defined(OSX) // linux totally supports compiler thread locals, even across dll's. #define PLAT_COMPILER_SUPPORTED_THREADLOCALS 1 #define CTHREADLOCALINTEGER(typ) __thread int #define CTHREADLOCALINT __thread int #define CTHREADLOCALPTR(typ) __thread typ * #define CTHREADLOCAL(typ) __thread typ #define GETLOCAL(x) (x) #endif // _LINUX && !OSX #if defined(WIN32) || defined(OSX) #ifndef __AFXTLS_H__ // not compatible with some Windows headers #define CTHREADLOCALINT CThreadLocalInt #define CTHREADLOCALINTEGER(typ) CThreadLocalInt #define CTHREADLOCALPTR(typ) CThreadLocalPtr #define CTHREADLOCAL(typ) CThreadLocal #define GETLOCAL(x) (x.Get()) #endif #endif // WIN32 || OSX #endif // NO_THREAD_LOCALS #ifndef __AFXTLS_H__ // not compatible with some Windows headers #ifndef NO_THREAD_LOCAL class PLATFORM_CLASS CThreadLocalBase { public: CThreadLocalBase(); ~CThreadLocalBase(); void *Get() const; void Set(void *); private: #ifdef _WIN32 uint32 m_index; #elif POSIX pthread_key_t m_index; #endif }; //--------------------------------------------------------- #ifndef __AFXTLS_H__ template class CThreadLocal : public CThreadLocalBase { public: CThreadLocal() { COMPILE_TIME_ASSERT(sizeof(T) == sizeof(void *)); } T Get() const { return reinterpret_cast(CThreadLocalBase::Get()); } void Set(T val) { CThreadLocalBase::Set(reinterpret_cast(val)); } }; #endif //--------------------------------------------------------- template class CThreadLocalInt : public CThreadLocal { public: CThreadLocalInt() { COMPILE_TIME_ASSERT(sizeof(T) >= sizeof(int)); } operator int() const { return (int)this->Get(); } int operator=(int i) { this->Set((intp)i); return i; } int operator++() { T i = this->Get(); this->Set(++i); return (int)i; } int operator++(int) { T i = this->Get(); this->Set(i + 1); return (int)i; } int operator--() { T i = this->Get(); this->Set(--i); return (int)i; } int operator--(int) { T i = this->Get(); this->Set(i - 1); return (int)i; } }; //--------------------------------------------------------- template class CThreadLocalPtr : private CThreadLocalBase { public: CThreadLocalPtr() {} operator const void *() const { return (T *)Get(); } operator void *() { return (T *)Get(); } operator const T *() const { return (T *)Get(); } operator const T *() { return (T *)Get(); } operator T *() { return (T *)Get(); } int operator=(int i) { AssertMsg(i == 0, "Only NULL allowed on integer assign"); Set(NULL); return 0; } T *operator=(T *p) { Set(p); return p; } bool operator!() const { return (!Get()); } bool operator!=(int i) const { AssertMsg(i == 0, "Only NULL allowed on integer compare"); return (Get() != NULL); } bool operator==(int i) const { AssertMsg(i == 0, "Only NULL allowed on integer compare"); return (Get() == NULL); } bool operator==(const void *p) const { return (Get() == p); } bool operator!=(const void *p) const { return (Get() != p); } bool operator==(const T *p) const { return operator==((void *)p); } bool operator!=(const T *p) const { return operator!=((void *)p); } T *operator->() { return (T *)Get(); } T &operator*() { return *((T *)Get()); } const T *operator->() const { return (T *)Get(); } const T &operator*() const { return *((T *)Get()); } const T &operator[](int i) const { return *((T *)Get() + i); } T &operator[](int i) { return *((T *)Get() + i); } private: // Disallowed operations CThreadLocalPtr(T *pFrom); CThreadLocalPtr(const CThreadLocalPtr &from); T **operator&(); T *const *operator&() const; void operator=(const CThreadLocalPtr &from); bool operator==(const CThreadLocalPtr &p) const; bool operator!=(const CThreadLocalPtr &p) const; }; #endif // NO_THREAD_LOCAL #endif // !__AFXTLS_H__ //----------------------------------------------------------------------------- // // A super-fast thread-safe integer A simple class encapsulating the notion of // an atomic integer used across threads that uses the built in and faster // "interlocked" functionality rather than a full-blown mutex. Useful for simple // things like reference counts, etc. // //----------------------------------------------------------------------------- template class CInterlockedIntT { public: CInterlockedIntT() : m_value(0) { COMPILE_TIME_ASSERT(sizeof(T) == sizeof(long)); } CInterlockedIntT(T value) : m_value(value) {} T GetRaw() const { return m_value; } operator T() const { return m_value; } bool operator!() const { return (m_value == 0); } bool operator==(T rhs) const { return (m_value == rhs); } bool operator!=(T rhs) const { return (m_value != rhs); } T operator++() { return (T)ThreadInterlockedIncrement((long *)&m_value); } T operator++(int) { return operator++() - 1; } T operator--() { return (T)ThreadInterlockedDecrement((long *)&m_value); } T operator--(int) { return operator--() + 1; } bool AssignIf(T conditionValue, T newValue) { return ThreadInterlockedAssignIf((long *)&m_value, (long)newValue, (long)conditionValue); } T operator=(T newValue) { ThreadInterlockedExchange((long *)&m_value, newValue); return m_value; } void operator+=(T add) { ThreadInterlockedExchangeAdd((long *)&m_value, (long)add); } void operator-=(T subtract) { operator+=(-subtract); } void operator*=(T multiplier) { T original, result; do { original = m_value; result = original * multiplier; } while (!AssignIf(original, result)); } void operator/=(T divisor) { T original, result; do { original = m_value; result = original / divisor; } while (!AssignIf(original, result)); } T operator+(T rhs) const { return m_value + rhs; } T operator-(T rhs) const { return m_value - rhs; } private: volatile T m_value; }; typedef CInterlockedIntT CInterlockedInt; typedef CInterlockedIntT CInterlockedUInt; //----------------------------------------------------------------------------- template class CInterlockedPtr { public: CInterlockedPtr() : m_value(0) {} CInterlockedPtr(T *value) : m_value(value) {} operator T *() const { return m_value; } bool operator!() const { return (m_value == 0); } bool operator==(T *rhs) const { return (m_value == rhs); } bool operator!=(T *rhs) const { return (m_value != rhs); } #if defined(PLATFORM_64BITS) T *operator++() { return ((T *)ThreadInterlockedExchangeAdd64((int64 *)&m_value, sizeof(T))) + 1; } T *operator++(int) { return (T *)ThreadInterlockedExchangeAdd64((int64 *)&m_value, sizeof(T)); } T *operator--() { return ((T *)ThreadInterlockedExchangeAdd64((int64 *)&m_value, -sizeof(T))) - 1; } T *operator--(int) { return (T *)ThreadInterlockedExchangeAdd64((int64 *)&m_value, -sizeof(T)); } bool AssignIf(T *conditionValue, T *newValue) { return ThreadInterlockedAssignPointerToConstIf( (void const **)&m_value, (void const *)newValue, (void const *)conditionValue); } T *operator=(T *newValue) { ThreadInterlockedExchangePointerToConst((void const **)&m_value, (void const *)newValue); return newValue; } void operator+=(int add) { ThreadInterlockedExchangeAdd64((int64 *)&m_value, add * sizeof(T)); } #else T *operator++() { return ((T *)ThreadInterlockedExchangeAdd((long *)&m_value, sizeof(T))) + 1; } T *operator++(int) { return (T *)ThreadInterlockedExchangeAdd((long *)&m_value, sizeof(T)); } T *operator--() { return ((T *)ThreadInterlockedExchangeAdd((long *)&m_value, -sizeof(T))) - 1; } T *operator--(int) { return (T *)ThreadInterlockedExchangeAdd((long *)&m_value, -sizeof(T)); } bool AssignIf(T *conditionValue, T *newValue) { return ThreadInterlockedAssignPointerToConstIf( (void const **)&m_value, (void const *)newValue, (void const *)conditionValue); } T *operator=(T *newValue) { ThreadInterlockedExchangePointerToConst((void const **)&m_value, (void const *)newValue); return newValue; } void operator+=(int add) { ThreadInterlockedExchangeAdd((long *)&m_value, add * sizeof(T)); } #endif void operator-=(int subtract) { operator+=(-subtract); } T *operator+(int rhs) const { return m_value + rhs; } T *operator-(int rhs) const { return m_value - rhs; } T *operator+(unsigned rhs) const { return m_value + rhs; } T *operator-(unsigned rhs) const { return m_value - rhs; } size_t operator-(T *p) const { return m_value - p; } size_t operator-(const CInterlockedPtr &p) const { return m_value - p.m_value; } private: T *volatile m_value; }; //----------------------------------------------------------------------------- // // Platform independent verification that multiple threads aren't getting into // the same code at the same time. Note: This is intended for use to identify // problems, it doesn't provide any sort of thread safety. // //----------------------------------------------------------------------------- class ReentrancyVerifier { public: inline ReentrancyVerifier(CInterlockedInt *counter, int sleepTimeMS) : mCounter(counter) { Assert(mCounter != NULL); if (++(*mCounter) != 1) { DebuggerBreakIfDebugging_StagingOnly(); } if (sleepTimeMS > 0) { ThreadSleep(sleepTimeMS); } } inline ~ReentrancyVerifier() { if (--(*mCounter) != 0) { DebuggerBreakIfDebugging_StagingOnly(); } } private: CInterlockedInt *mCounter; }; //----------------------------------------------------------------------------- // // Platform independent for critical sections management // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadMutex { public: CThreadMutex(); ~CThreadMutex(); //------------------------------------------------------ // Mutex acquisition/release. Const intentionally defeated. //------------------------------------------------------ void Lock(); void Lock() const { (const_cast(this))->Lock(); } void Unlock(); void Unlock() const { (const_cast(this))->Unlock(); } bool TryLock(); bool TryLock() const { return (const_cast(this))->TryLock(); } //------------------------------------------------------ // Use this to make deadlocks easier to track by asserting // when it is expected that the current thread owns the mutex //------------------------------------------------------ bool AssertOwnedByCurrentThread(); //------------------------------------------------------ // Enable tracing to track deadlock problems //------------------------------------------------------ void SetTrace(bool); private: // Disallow copying CThreadMutex(const CThreadMutex &); CThreadMutex &operator=(const CThreadMutex &); #if defined(_WIN32) // Efficient solution to breaking the windows.h dependency, invariant is // tested. #ifdef _WIN64 #define TT_SIZEOF_CRITICALSECTION 40 #else #ifndef _X360 #define TT_SIZEOF_CRITICALSECTION 24 #else #define TT_SIZEOF_CRITICALSECTION 28 #endif // !_XBOX #endif // _WIN64 byte m_CriticalSection[TT_SIZEOF_CRITICALSECTION]; #elif defined(POSIX) pthread_mutex_t m_Mutex; pthread_mutexattr_t m_Attr; #else #error #endif #ifdef THREAD_MUTEX_TRACING_SUPPORTED // Debugging (always here to allow mixed debug/release builds w/o changing // size) uint m_currentOwnerID; uint16 m_lockCount; bool m_bTrace; #endif }; //----------------------------------------------------------------------------- // // An alternative mutex that is useful for cases when thread contention is // rare, but a mutex is required. Instances should be declared volatile. // Sleep of 0 may not be sufficient to keep high priority threads from starving // lesser threads. This class is not a suitable replacement for a critical // section if the resource contention is high. // //----------------------------------------------------------------------------- #if !defined(THREAD_PROFILER) class CThreadFastMutex { public: CThreadFastMutex() : m_ownerID(0), m_depth(0) {} private: FORCEINLINE bool TryLockInline(const uint32 threadId) volatile { if (threadId != m_ownerID && !ThreadInterlockedAssignIf((volatile long *)&m_ownerID, (long)threadId, 0)) return false; ThreadMemoryBarrier(); ++m_depth; return true; } bool TryLock(const uint32 threadId) volatile { return TryLockInline(threadId); } PLATFORM_CLASS void Lock(const uint32 threadId, unsigned nSpinSleepTime) volatile; public: bool TryLock() volatile { #ifdef _DEBUG if (m_depth == INT_MAX) DebuggerBreak(); if (m_depth < 0) DebuggerBreak(); #endif return TryLockInline(ThreadGetCurrentId()); } #ifndef _DEBUG FORCEINLINE #endif void Lock(unsigned int nSpinSleepTime = 0) volatile { const uint32 threadId = ThreadGetCurrentId(); if (!TryLockInline(threadId)) { ThreadPause(); Lock(threadId, nSpinSleepTime); } #ifdef _DEBUG if (m_ownerID != ThreadGetCurrentId()) DebuggerBreak(); if (m_depth == INT_MAX) DebuggerBreak(); if (m_depth < 0) DebuggerBreak(); #endif } #ifndef _DEBUG FORCEINLINE #endif void Unlock() volatile { #ifdef _DEBUG if (m_ownerID != ThreadGetCurrentId()) DebuggerBreak(); if (m_depth <= 0) DebuggerBreak(); #endif --m_depth; if (!m_depth) { ThreadMemoryBarrier(); ThreadInterlockedExchange(&m_ownerID, 0); } } #ifdef WIN32 bool TryLock() const volatile { return (const_cast(this))->TryLock(); } void Lock(unsigned nSpinSleepTime = 1) const volatile { (const_cast(this))->Lock(nSpinSleepTime); } void Unlock() const volatile { (const_cast(this))->Unlock(); } #endif // To match regular CThreadMutex: bool AssertOwnedByCurrentThread() { return true; } void SetTrace(bool) {} uint32 GetOwnerId() const { return m_ownerID; } int GetDepth() const { return m_depth; } private: volatile uint32 m_ownerID; int m_depth; }; class ALIGN128 CAlignedThreadFastMutex : public CThreadFastMutex { public: CAlignedThreadFastMutex() { Assert((size_t)this % 128 == 0 && sizeof(*this) == 128); } private: uint8 pad[128 - sizeof(CThreadFastMutex)]; } ALIGN128_POST; #else typedef CThreadMutex CThreadFastMutex; #endif //----------------------------------------------------------------------------- // //----------------------------------------------------------------------------- class CThreadNullMutex { public: static void Lock() {} static void Unlock() {} static bool TryLock() { return true; } static bool AssertOwnedByCurrentThread() { return true; } static void SetTrace(bool b) {} static uint32 GetOwnerId() { return 0; } static int GetDepth() { return 0; } }; //----------------------------------------------------------------------------- // // A mutex decorator class used to control the use of a mutex, to make it // less expensive when not multithreading // //----------------------------------------------------------------------------- template class CThreadConditionalMutex : public BaseClass { public: void Lock() { if (*pCondition) BaseClass::Lock(); } void Lock() const { if (*pCondition) BaseClass::Lock(); } void Unlock() { if (*pCondition) BaseClass::Unlock(); } void Unlock() const { if (*pCondition) BaseClass::Unlock(); } bool TryLock() { if (*pCondition) return BaseClass::TryLock(); else return true; } bool TryLock() const { if (*pCondition) return BaseClass::TryLock(); else return true; } bool AssertOwnedByCurrentThread() { if (*pCondition) return BaseClass::AssertOwnedByCurrentThread(); else return true; } void SetTrace(bool b) { if (*pCondition) BaseClass::SetTrace(b); } }; //----------------------------------------------------------------------------- // Mutex decorator that blows up if another thread enters //----------------------------------------------------------------------------- template class CThreadTerminalMutex : public BaseClass { public: bool TryLock() { if (!BaseClass::TryLock()) { DebuggerBreak(); return false; } return true; } bool TryLock() const { if (!BaseClass::TryLock()) { DebuggerBreak(); return false; } return true; } void Lock() { if (!TryLock()) BaseClass::Lock(); } void Lock() const { if (!TryLock()) BaseClass::Lock(); } }; //----------------------------------------------------------------------------- // // Class to Lock a critical section, and unlock it automatically // when the lock goes out of scope // //----------------------------------------------------------------------------- template class CAutoLockT { public: FORCEINLINE CAutoLockT(MUTEX_TYPE &lock) : m_lock(lock) { m_lock.Lock(); } FORCEINLINE CAutoLockT(const MUTEX_TYPE &lock) : m_lock(const_cast(lock)) { m_lock.Lock(); } FORCEINLINE ~CAutoLockT() { m_lock.Unlock(); } private: MUTEX_TYPE &m_lock; // Disallow copying CAutoLockT(const CAutoLockT &); CAutoLockT &operator=(const CAutoLockT &); }; typedef CAutoLockT CAutoLock; //--------------------------------------------------------- template struct CAutoLockTypeDeducer {}; template <> struct CAutoLockTypeDeducer { typedef CThreadMutex Type_t; }; template <> struct CAutoLockTypeDeducer { typedef CThreadNullMutex Type_t; }; #if !defined(THREAD_PROFILER) template <> struct CAutoLockTypeDeducer { typedef CThreadFastMutex Type_t; }; template <> struct CAutoLockTypeDeducer { typedef CAlignedThreadFastMutex Type_t; }; #endif #define AUTO_LOCK_(type, mutex) \ CAutoLockT UNIQUE_ID(static_cast(mutex)) #if defined(GNUC) template T strip_cv_quals_for_mutex(T &); template T strip_cv_quals_for_mutex(const T &); template T strip_cv_quals_for_mutex(volatile T &); template T strip_cv_quals_for_mutex(const volatile T &); #define AUTO_LOCK(mutex) \ AUTO_LOCK_(typeof(::strip_cv_quals_for_mutex(mutex)), mutex) #else // GNUC #define AUTO_LOCK(mutex) \ AUTO_LOCK_(CAutoLockTypeDeducer::Type_t, mutex) #endif #define AUTO_LOCK_FM(mutex) AUTO_LOCK_(CThreadFastMutex, mutex) #define LOCAL_THREAD_LOCK_(tag) \ ; \ static CThreadFastMutex autoMutex_##tag; \ AUTO_LOCK(autoMutex_##tag) #define LOCAL_THREAD_LOCK() LOCAL_THREAD_LOCK_(_) //----------------------------------------------------------------------------- // // Base class for event, semaphore and mutex objects. // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadSyncObject { public: ~CThreadSyncObject(); //----------------------------------------------------- // Query if object is useful //----------------------------------------------------- bool operator!() const; //----------------------------------------------------- // Access handle //----------------------------------------------------- #ifdef _WIN32 operator HANDLE() { return GetHandle(); } const HANDLE GetHandle() const { return m_hSyncObject; } #endif //----------------------------------------------------- // Wait for a signal from the object //----------------------------------------------------- bool Wait(uint32 dwTimeout = TT_INFINITE); protected: CThreadSyncObject(); void AssertUseable(); #ifdef _WIN32 HANDLE m_hSyncObject; bool m_bCreatedHandle; #elif defined(POSIX) pthread_mutex_t m_Mutex; pthread_cond_t m_Condition; bool m_bInitalized; int m_cSet; bool m_bManualReset; bool m_bWakeForEvent; #else #error "Implement me" #endif private: CThreadSyncObject(const CThreadSyncObject &); CThreadSyncObject &operator=(const CThreadSyncObject &); }; //----------------------------------------------------------------------------- // // Wrapper for unnamed event objects // //----------------------------------------------------------------------------- #if defined(_WIN32) //----------------------------------------------------------------------------- // // CThreadSemaphore // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadSemaphore : public CThreadSyncObject { public: CThreadSemaphore(long initialValue, long maxValue); //----------------------------------------------------- // Increases the count of the semaphore object by a specified // amount. Wait() decreases the count by one on return. //----------------------------------------------------- bool Release(long releaseCount = 1, long *pPreviousCount = NULL); private: CThreadSemaphore(const CThreadSemaphore &); CThreadSemaphore &operator=(const CThreadSemaphore &); }; //----------------------------------------------------------------------------- // // A mutex suitable for out-of-process, multi-processor usage // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadFullMutex : public CThreadSyncObject { public: CThreadFullMutex(bool bEstablishInitialOwnership = false, const char *pszName = NULL); //----------------------------------------------------- // Release ownership of the mutex //----------------------------------------------------- bool Release(); // To match regular CThreadMutex: void Lock() { Wait(); } void Lock(unsigned timeout) { Wait(timeout); } void Unlock() { Release(); } bool AssertOwnedByCurrentThread() { return true; } void SetTrace(bool) {} private: CThreadFullMutex(const CThreadFullMutex &); CThreadFullMutex &operator=(const CThreadFullMutex &); }; #endif class PLATFORM_CLASS CThreadEvent : public CThreadSyncObject { public: CThreadEvent(bool fManualReset = false); #ifdef WIN32 CThreadEvent(HANDLE hHandle); #endif //----------------------------------------------------- // Set the state to signaled //----------------------------------------------------- bool Set(); //----------------------------------------------------- // Set the state to nonsignaled //----------------------------------------------------- bool Reset(); //----------------------------------------------------- // Check if the event is signaled //----------------------------------------------------- bool Check(); bool Wait(uint32 dwTimeout = TT_INFINITE); private: CThreadEvent(const CThreadEvent &); CThreadEvent &operator=(const CThreadEvent &); }; // Hard-wired manual event for use in array declarations class CThreadManualEvent : public CThreadEvent { public: CThreadManualEvent() : CThreadEvent(true) {} }; inline int ThreadWaitForEvents(int nEvents, CThreadEvent *const *pEvents, bool bWaitAll = true, unsigned timeout = TT_INFINITE) { #ifdef POSIX Assert(nEvents == 1); if (pEvents[0]->Wait(timeout)) return WAIT_OBJECT_0; else return WAIT_TIMEOUT; #else HANDLE handles[64]; for (unsigned int i = 0; i < min(nEvents, ARRAYSIZE(handles)); i++) handles[i] = pEvents[i]->GetHandle(); return ThreadWaitForObjects(nEvents, handles, bWaitAll, timeout); #endif } //----------------------------------------------------------------------------- // // CThreadRWLock // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThreadRWLock { public: CThreadRWLock(); void LockForRead(); void UnlockRead(); void LockForWrite(); void UnlockWrite(); void LockForRead() const { const_cast(this)->LockForRead(); } void UnlockRead() const { const_cast(this)->UnlockRead(); } void LockForWrite() const { const_cast(this)->LockForWrite(); } void UnlockWrite() const { const_cast(this)->UnlockWrite(); } private: void WaitForRead(); #ifdef WIN32 CThreadFastMutex m_mutex; #else CThreadMutex m_mutex; #endif CThreadEvent m_CanWrite; CThreadEvent m_CanRead; int m_nWriters; int m_nActiveReaders; int m_nPendingReaders; }; //----------------------------------------------------------------------------- // // CThreadSpinRWLock // //----------------------------------------------------------------------------- class ALIGN8 PLATFORM_CLASS CThreadSpinRWLock { public: CThreadSpinRWLock() { COMPILE_TIME_ASSERT(sizeof(LockInfo_t) == sizeof(int64)); Assert((intp)this % 8 == 0); memset(this, 0, sizeof(*this)); } bool TryLockForWrite(); bool TryLockForRead(); void LockForRead(); void UnlockRead(); void LockForWrite(); void UnlockWrite(); bool TryLockForWrite() const { return const_cast(this)->TryLockForWrite(); } bool TryLockForRead() const { return const_cast(this)->TryLockForRead(); } void LockForRead() const { const_cast(this)->LockForRead(); } void UnlockRead() const { const_cast(this)->UnlockRead(); } void LockForWrite() const { const_cast(this)->LockForWrite(); } void UnlockWrite() const { const_cast(this)->UnlockWrite(); } private: struct LockInfo_t { uint32 m_writerId; int m_nReaders; }; bool AssignIf(const LockInfo_t &newValue, const LockInfo_t &comperand); bool TryLockForWrite(const uint32 threadId); void SpinLockForWrite(const uint32 threadId); volatile LockInfo_t m_lockInfo; CInterlockedInt m_nWriters; } ALIGN8_POST; //----------------------------------------------------------------------------- // // A thread wrapper similar to a Java thread. // //----------------------------------------------------------------------------- class PLATFORM_CLASS CThread { public: CThread(); virtual ~CThread(); //----------------------------------------------------- const char *GetName(); void SetName(const char *); size_t CalcStackDepth(void *pStackVariable) { return ((byte *)m_pStackBase - (byte *)pStackVariable); } //----------------------------------------------------- // Functions for the other threads //----------------------------------------------------- // Start thread running - error if already running virtual bool Start(unsigned nBytesStack = 0); // Returns true if thread has been created and hasn't yet exited bool IsAlive(); // This method causes the current thread to wait until this thread // is no longer alive. bool Join(unsigned timeout = TT_INFINITE); #ifdef _WIN32 // Access the thread handle directly HANDLE GetThreadHandle(); uint GetThreadId(); #elif defined(LINUX) uint GetThreadId(); #endif //----------------------------------------------------- int GetResult(); //----------------------------------------------------- // Functions for both this, and maybe, and other threads //----------------------------------------------------- // Forcibly, abnormally, but relatively cleanly stop the thread void Stop(int exitCode = 0); // Get the priority int GetPriority() const; // Set the priority bool SetPriority(int); // Request a thread to suspend, this must ONLY be called from the thread // itself, not the main thread This suspend variant causes the thread in // question to suspend at a known point in its execution which means you // don't risk the global deadlocks/hangs potentially caused by the raw // Suspend() call void SuspendCooperative(); // Resume a previously suspended thread from the Cooperative call void ResumeCooperative(); // wait for a thread to execute its SuspendCooperative call void BWaitForThreadSuspendCooperative(); #ifndef LINUX // forcefully Suspend a thread unsigned int Suspend(); // forcefully Resume a previously suspended thread unsigned int Resume(); #endif // Force hard-termination of thread. Used for critical failures. bool Terminate(int exitCode = 0); //----------------------------------------------------- // Global methods //----------------------------------------------------- // Get the Thread object that represents the current thread, if any. // Can return NULL if the current thread was not created using // CThread static CThread *GetCurrentCThread(); // Offer a context switch. Under Win32, equivalent to Sleep(0) #ifdef Yield #undef Yield #endif static void Yield(); // This method causes the current thread to yield and not to be // scheduled for further execution until a certain amount of real // time has elapsed, more or less. static void Sleep(unsigned duration); protected: // Optional pre-run call, with ability to fail-create. Note Init() // is forced synchronous with Start() virtual bool Init(); // Thread will run this function on startup, must be supplied by // derived class, performs the intended action of the thread. virtual int Run() = 0; // Called when the thread is about to exit, by the about-to-exit thread. virtual void OnExit(); // Called after OnExit when a thread finishes or is killed. Not virtual // because no inherited classes override it and we don't want to change the // vtable from the published SDK version. void Cleanup(); bool WaitForCreateComplete(CThreadEvent *pEvent); // "Virtual static" facility typedef unsigned(__stdcall *ThreadProc_t)(void *); virtual ThreadProc_t GetThreadProc(); virtual bool IsThreadRunning(); CThreadMutex m_Lock; #ifdef WIN32 ThreadHandle_t GetThreadID() const { return (ThreadHandle_t)m_hThread; } #else ThreadId_t GetThreadID() const { return (ThreadId_t)m_threadId; } #endif private: enum Flags { SUPPORT_STOP_PROTOCOL = 1 << 0 }; // Thread initially runs this. param is actually 'this'. function // just gets this and calls ThreadProc struct ThreadInit_t { CThread *pThread; CThreadEvent *pInitCompleteEvent; bool *pfInitSuccess; }; static unsigned __stdcall ThreadProc(void *pv); // make copy constructor and assignment operator inaccessible CThread(const CThread &); CThread &operator=(const CThread &); #ifdef _WIN32 HANDLE m_hThread; ThreadId_t m_threadId; #elif defined(POSIX) pthread_t m_threadId; #endif CInterlockedInt m_nSuspendCount; CThreadEvent m_SuspendEvent; CThreadEvent m_SuspendEventSignal; int m_result; char m_szName[32]; void *m_pStackBase; unsigned m_flags; }; //----------------------------------------------------------------------------- // // A helper class to let you sleep a thread for memory validation, you need to // handle // m_bSleepForValidate in your ::Run() call and set m_bSleepingForValidate //when sleeping // //----------------------------------------------------------------------------- class PLATFORM_CLASS CValidatableThread : public CThread { public: CValidatableThread() { m_bSleepForValidate = false; m_bSleepingForValidate = false; } #ifdef DBGFLAG_VALIDATE virtual void SleepForValidate() { m_bSleepForValidate = true; } bool BSleepingForValidate() { return m_bSleepingForValidate; } virtual void WakeFromValidate() { m_bSleepForValidate = false; } #endif protected: bool m_bSleepForValidate; bool m_bSleepingForValidate; }; //----------------------------------------------------------------------------- // Simple thread class encompasses the notion of a worker thread, handing // synchronized communication. //----------------------------------------------------------------------------- // These are internal reserved error results from a call attempt enum WTCallResult_t { WTCR_FAIL = -1, WTCR_TIMEOUT = -2, WTCR_THREAD_GONE = -3, }; class CFunctor; class PLATFORM_CLASS CWorkerThread : public CThread { public: CWorkerThread(); //----------------------------------------------------- // // Inter-thread communication // // Calls in either direction take place on the same "channel." // Seperate functions are specified to make identities obvious // //----------------------------------------------------- // Master: Signal the thread, and block for a response int CallWorker(unsigned, unsigned timeout = TT_INFINITE, bool fBoostWorkerPriorityToMaster = true, CFunctor *pParamFunctor = NULL); // Worker: Signal the thread, and block for a response int CallMaster(unsigned, unsigned timeout = TT_INFINITE); // Wait for the next request bool WaitForCall(unsigned dwTimeout, unsigned *pResult = NULL); bool WaitForCall(unsigned *pResult = NULL); // Is there a request? bool PeekCall(unsigned *pParam = NULL, CFunctor **ppParamFunctor = NULL); // Reply to the request void Reply(unsigned); // Wait for a reply in the case when CallWorker() with timeout != // TT_INFINITE int WaitForReply(unsigned timeout = TT_INFINITE); // If you want to do WaitForMultipleObjects you'll need to include // this handle in your wait list or you won't be responsive CThreadEvent &GetCallHandle(); // Find out what the request was unsigned GetCallParam(CFunctor **ppParamFunctor = NULL) const; // Boost the worker thread to the master thread, if worker thread is lesser, // return old priority int BoostPriority(); protected: #ifndef _WIN32 #define __stdcall #endif typedef uint32(__stdcall *WaitFunc_t)(int nEvents, CThreadEvent *const *pEvents, int bWaitAll, uint32 timeout); int Call(unsigned, unsigned timeout, bool fBoost, WaitFunc_t = NULL, CFunctor *pParamFunctor = NULL); int WaitForReply(unsigned timeout, WaitFunc_t); private: CWorkerThread(const CWorkerThread &); CWorkerThread &operator=(const CWorkerThread &); CThreadEvent m_EventSend; CThreadEvent m_EventComplete; unsigned m_Param; CFunctor *m_pParamFunctor; int m_ReturnVal; }; // a unidirectional message queue. A queue of type T. Not especially high speed // since each message is malloced/freed. Note that if your message class has // destructors/constructors, they MUST be thread safe! template class CMessageQueue { CThreadEvent SignalEvent; // signals presence of data CThreadMutex QueueAccessMutex; // the parts protected by the mutex struct MsgNode { MsgNode *Next; T Data; }; MsgNode *Head; MsgNode *Tail; public: CMessageQueue(void) { Head = Tail = NULL; } // check for a message. not 100% reliable - someone could grab the message // first bool MessageWaiting(void) { return (Head != NULL); } void WaitMessage(T *pMsg) { for (;;) { while (!MessageWaiting()) SignalEvent.Wait(); QueueAccessMutex.Lock(); if (!Head) { // multiple readers could make this null QueueAccessMutex.Unlock(); continue; } *(pMsg) = Head->Data; MsgNode *remove_this = Head; Head = Head->Next; if (!Head) // if empty, fix tail ptr Tail = NULL; QueueAccessMutex.Unlock(); delete remove_this; break; } } void QueueMessage(T const &Msg) { MsgNode *new1 = new MsgNode; new1->Data = Msg; new1->Next = NULL; QueueAccessMutex.Lock(); if (Tail) { Tail->Next = new1; Tail = new1; } else { Head = new1; Tail = new1; } SignalEvent.Set(); QueueAccessMutex.Unlock(); } }; //----------------------------------------------------------------------------- // // CThreadMutex. Inlining to reduce overhead and to allow client code // to decide debug status (tracing) // //----------------------------------------------------------------------------- #ifdef _WIN32 typedef struct _RTL_CRITICAL_SECTION RTL_CRITICAL_SECTION; typedef RTL_CRITICAL_SECTION CRITICAL_SECTION; #ifndef _X360 extern "C" { void __declspec(dllimport) __stdcall InitializeCriticalSection( CRITICAL_SECTION *); void __declspec(dllimport) __stdcall EnterCriticalSection(CRITICAL_SECTION *); void __declspec(dllimport) __stdcall LeaveCriticalSection(CRITICAL_SECTION *); void __declspec(dllimport) __stdcall DeleteCriticalSection(CRITICAL_SECTION *); }; #endif //--------------------------------------------------------- inline void CThreadMutex::Lock() { #ifdef THREAD_MUTEX_TRACING_ENABLED uint thisThreadID = ThreadGetCurrentId(); if (m_bTrace && m_currentOwnerID && (m_currentOwnerID != thisThreadID)) Msg("Thread %u about to wait for lock %p owned by %u\n", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID); #endif VCRHook_EnterCriticalSection((CRITICAL_SECTION *)&m_CriticalSection); #ifdef THREAD_MUTEX_TRACING_ENABLED if (m_lockCount == 0) { // we now own it for the first time. Set owner information m_currentOwnerID = thisThreadID; if (m_bTrace) Msg("Thread %u now owns lock %p\n", m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection); } m_lockCount++; #endif } //--------------------------------------------------------- inline void CThreadMutex::Unlock() { #ifdef THREAD_MUTEX_TRACING_ENABLED AssertMsg(m_lockCount >= 1, "Invalid unlock of thread lock"); m_lockCount--; if (m_lockCount == 0) { if (m_bTrace) Msg("Thread %u releasing lock %p\n", m_currentOwnerID, (CRITICAL_SECTION *)&m_CriticalSection); m_currentOwnerID = 0; } #endif LeaveCriticalSection((CRITICAL_SECTION *)&m_CriticalSection); } //--------------------------------------------------------- inline bool CThreadMutex::AssertOwnedByCurrentThread() { #ifdef THREAD_MUTEX_TRACING_ENABLED if (ThreadGetCurrentId() == m_currentOwnerID) return true; AssertMsg3(0, "Expected thread %u as owner of lock %p, but %u owns", ThreadGetCurrentId(), (CRITICAL_SECTION *)&m_CriticalSection, m_currentOwnerID); return false; #else return true; #endif } //--------------------------------------------------------- inline void CThreadMutex::SetTrace(bool bTrace) { #ifdef THREAD_MUTEX_TRACING_ENABLED m_bTrace = bTrace; #endif } //--------------------------------------------------------- #elif defined(POSIX) inline CThreadMutex::CThreadMutex() { // enable recursive locks as we need them pthread_mutexattr_init(&m_Attr); pthread_mutexattr_settype(&m_Attr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(&m_Mutex, &m_Attr); } //--------------------------------------------------------- inline CThreadMutex::~CThreadMutex() { pthread_mutex_destroy(&m_Mutex); } //--------------------------------------------------------- inline void CThreadMutex::Lock() { pthread_mutex_lock(&m_Mutex); } //--------------------------------------------------------- inline void CThreadMutex::Unlock() { pthread_mutex_unlock(&m_Mutex); } //--------------------------------------------------------- inline bool CThreadMutex::AssertOwnedByCurrentThread() { return true; } //--------------------------------------------------------- inline void CThreadMutex::SetTrace(bool fTrace) {} #endif // POSIX //----------------------------------------------------------------------------- // // CThreadRWLock inline functions // //----------------------------------------------------------------------------- inline CThreadRWLock::CThreadRWLock() : m_CanRead(true), m_nWriters(0), m_nActiveReaders(0), m_nPendingReaders(0) {} inline void CThreadRWLock::LockForRead() { m_mutex.Lock(); if (m_nWriters) { WaitForRead(); } m_nActiveReaders++; m_mutex.Unlock(); } inline void CThreadRWLock::UnlockRead() { m_mutex.Lock(); m_nActiveReaders--; if (m_nActiveReaders == 0 && m_nWriters != 0) { m_CanWrite.Set(); } m_mutex.Unlock(); } //----------------------------------------------------------------------------- // // CThreadSpinRWLock inline functions // //----------------------------------------------------------------------------- inline bool CThreadSpinRWLock::AssignIf(const LockInfo_t &newValue, const LockInfo_t &comperand) { return ThreadInterlockedAssignIf64( (int64 *)&m_lockInfo, *((int64 *)&newValue), *((int64 *)&comperand)); } inline bool CThreadSpinRWLock::TryLockForWrite(const uint32 threadId) { // In order to grab a write lock, there can be no readers and no owners of // the write lock if (m_lockInfo.m_nReaders > 0 || (m_lockInfo.m_writerId && m_lockInfo.m_writerId != threadId)) { return false; } static const LockInfo_t oldValue = {0, 0}; LockInfo_t newValue = {threadId, 0}; const bool bSuccess = AssignIf(newValue, oldValue); #if defined(_X360) if (bSuccess) { // X360TBD: Serious perf implications. Not Yet. __sync(); } #endif return bSuccess; } inline bool CThreadSpinRWLock::TryLockForWrite() { m_nWriters++; if (!TryLockForWrite(ThreadGetCurrentId())) { m_nWriters--; return false; } return true; } inline bool CThreadSpinRWLock::TryLockForRead() { if (m_nWriters != 0) { return false; } // In order to grab a write lock, the number of readers must not change and // no thread can own the write LockInfo_t oldValue; LockInfo_t newValue; oldValue.m_nReaders = m_lockInfo.m_nReaders; oldValue.m_writerId = 0; newValue.m_nReaders = oldValue.m_nReaders + 1; newValue.m_writerId = 0; const bool bSuccess = AssignIf(newValue, oldValue); #if defined(_X360) if (bSuccess) { // X360TBD: Serious perf implications. Not Yet. __sync(); } #endif return bSuccess; } inline void CThreadSpinRWLock::LockForWrite() { const uint32 threadId = ThreadGetCurrentId(); m_nWriters++; if (!TryLockForWrite(threadId)) { ThreadPause(); SpinLockForWrite(threadId); } } // read data from a memory address template FORCEINLINE T ReadVolatileMemory(T const *pPtr) { volatile const T *pVolatilePtr = (volatile const T *)pPtr; return *pVolatilePtr; } //----------------------------------------------------------------------------- #if defined(_WIN32) #pragma warning(pop) #endif #endif // THREADTOOLS_H