This repository has been archived on 2024-06-13. You can view files and clone it, but cannot push or open issues or pull requests.
2020-08-04 13:13:01 -04:00

2233 lines
85 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose: particle system definitions
//
//===========================================================================//
#ifndef PARTICLES_H
#define PARTICLES_H
#ifdef _WIN32
#pragma once
#endif
#include "dmxloader/dmxelement.h"
#include "materialsystem/MaterialSystemUtil.h"
#include "materialsystem/imaterialsystem.h"
#include "mathlib/mathlib.h"
#include "mathlib/ssemath.h"
#include "mathlib/vector.h"
#include "tier1/UtlStringMap.h"
#include "tier1/utlintrusivelist.h"
#include "tier1/utlmap.h"
#include "tier1/utlobjectreference.h"
#include "tier1/utlsoacontainer.h"
#include "trace.h"
#include "vstdlib/random.h"
#if defined(CLIENT_DLL)
#include "c_pixel_visibility.h"
#endif
//-----------------------------------------------------------------------------
// Forward declarations
//-----------------------------------------------------------------------------
struct DmxElementUnpackStructure_t;
class CParticleSystemDefinition;
class CParticleCollection;
class CParticleOperatorInstance;
class CParticleSystemDictionary;
class CUtlBuffer;
class IParticleOperatorDefinition;
class CSheet;
class CMeshBuilder;
extern float s_pRandomFloats[];
//-----------------------------------------------------------------------------
// Random numbers
//-----------------------------------------------------------------------------
#define MAX_RANDOM_FLOATS 4096
#define RANDOM_FLOAT_MASK (MAX_RANDOM_FLOATS - 1)
//-----------------------------------------------------------------------------
// Particle attributes
//-----------------------------------------------------------------------------
#define MAX_PARTICLE_ATTRIBUTES 32
#define DEFPARTICLE_ATTRIBUTE(name, bit) \
const int PARTICLE_ATTRIBUTE_##name##_MASK = (1 << bit); \
const int PARTICLE_ATTRIBUTE_##name = bit;
// required
DEFPARTICLE_ATTRIBUTE(XYZ, 0);
// particle lifetime (duration) of particle as a float.
DEFPARTICLE_ATTRIBUTE(LIFE_DURATION, 1);
// prev coordinates for verlet integration
DEFPARTICLE_ATTRIBUTE(PREV_XYZ, 2);
// radius of particle
DEFPARTICLE_ATTRIBUTE(RADIUS, 3);
// rotation angle of particle
DEFPARTICLE_ATTRIBUTE(ROTATION, 4);
// rotation speed of particle
DEFPARTICLE_ATTRIBUTE(ROTATION_SPEED, 5);
// tint of particle
DEFPARTICLE_ATTRIBUTE(TINT_RGB, 6);
// alpha tint of particle
DEFPARTICLE_ATTRIBUTE(ALPHA, 7);
// creation time stamp (relative to particle system creation)
DEFPARTICLE_ATTRIBUTE(CREATION_TIME, 8);
// sequnece # (which animation sequence number this particle uses )
DEFPARTICLE_ATTRIBUTE(SEQUENCE_NUMBER, 9);
// length of the trail
DEFPARTICLE_ATTRIBUTE(TRAIL_LENGTH, 10);
// unique particle identifier
DEFPARTICLE_ATTRIBUTE(PARTICLE_ID, 11);
// unique rotation around up vector
DEFPARTICLE_ATTRIBUTE(YAW, 12);
// second sequnece # (which animation sequence number this particle uses )
DEFPARTICLE_ATTRIBUTE(SEQUENCE_NUMBER1, 13);
// hit box index
DEFPARTICLE_ATTRIBUTE(HITBOX_INDEX, 14);
DEFPARTICLE_ATTRIBUTE(HITBOX_RELATIVE_XYZ, 15);
DEFPARTICLE_ATTRIBUTE(ALPHA2, 16);
// particle trace caching fields
DEFPARTICLE_ATTRIBUTE(TRACE_P0, 17); // start pnt of trace
DEFPARTICLE_ATTRIBUTE(TRACE_P1, 18); // end pnt of trace
DEFPARTICLE_ATTRIBUTE(TRACE_HIT_T, 19); // 0..1 if hit
DEFPARTICLE_ATTRIBUTE(TRACE_HIT_NORMAL, 20); // 0 0 0 if no hit
#define MAX_PARTICLE_CONTROL_POINTS 64
#define ATTRIBUTES_WHICH_ARE_VEC3S_MASK \
(PARTICLE_ATTRIBUTE_TRACE_P0_MASK | PARTICLE_ATTRIBUTE_TRACE_P1_MASK | \
PARTICLE_ATTRIBUTE_TRACE_HIT_NORMAL | PARTICLE_ATTRIBUTE_XYZ_MASK | \
PARTICLE_ATTRIBUTE_PREV_XYZ_MASK | PARTICLE_ATTRIBUTE_TINT_RGB_MASK | \
PARTICLE_ATTRIBUTE_HITBOX_RELATIVE_XYZ_MASK)
#define ATTRIBUTES_WHICH_ARE_0_TO_1 \
(PARTICLE_ATTRIBUTE_ALPHA_MASK | PARTICLE_ATTRIBUTE_ALPHA2_MASK)
#define ATTRIBUTES_WHICH_ARE_ANGLES \
(PARTICLE_ATTRIBUTE_ROTATION_MASK | PARTICLE_ATTRIBUTE_YAW_MASK)
#define ATTRIBUTES_WHICH_ARE_INTS \
(PARTICLE_ATTRIBUTE_PARTICLE_ID_MASK | PARTICLE_ATTRIBUTE_HITBOX_INDEX_MASK)
#if defined(_X360)
#define MAX_PARTICLES_IN_A_SYSTEM 2000
#else
#define MAX_PARTICLES_IN_A_SYSTEM 5000
#endif
// Set this to 1 or 0 to enable or disable particle profiling.
// Note that this profiling is expensive on Linux, and some anti-virus
// products can make this *extremely* expensive on Windows.
#define MEASURE_PARTICLE_PERF 0
//-----------------------------------------------------------------------------
// Particle function types
//-----------------------------------------------------------------------------
enum ParticleFunctionType_t {
FUNCTION_RENDERER = 0,
FUNCTION_OPERATOR,
FUNCTION_INITIALIZER,
FUNCTION_EMITTER,
FUNCTION_CHILDREN, // NOTE: This one is a fake function type, only here to
// help eliminate a ton of duplicated code in the editor
FUNCTION_FORCEGENERATOR,
FUNCTION_CONSTRAINT,
PARTICLE_FUNCTION_COUNT
};
struct CParticleVisibilityInputs {
float m_flCameraBias;
float m_flInputMin;
float m_flInputMax;
float m_flAlphaScaleMin;
float m_flAlphaScaleMax;
float m_flRadiusScaleMin;
float m_flRadiusScaleMax;
float m_flProxyRadius;
float m_flBBoxScale;
bool m_bUseBBox;
int m_nCPin;
};
struct ModelHitBoxInfo_t {
Vector m_vecBoxMins;
Vector m_vecBoxMaxes;
matrix3x4_t m_Transform;
};
class CModelHitBoxesInfo {
public:
float m_flLastUpdateTime;
float m_flPrevLastUpdateTime;
int m_nNumHitBoxes;
int m_nNumPrevHitBoxes;
ModelHitBoxInfo_t *m_pHitBoxes;
ModelHitBoxInfo_t *m_pPrevBoxes;
bool CurAndPrevValid(void) const {
return (m_nNumHitBoxes && (m_nNumPrevHitBoxes == m_nNumHitBoxes));
}
CModelHitBoxesInfo(void) {
m_flLastUpdateTime = -1;
m_nNumHitBoxes = 0;
m_nNumPrevHitBoxes = 0;
m_pHitBoxes = NULL;
m_pPrevBoxes = NULL;
}
~CModelHitBoxesInfo(void) {
if (m_pHitBoxes) delete[] m_pHitBoxes;
if (m_pPrevBoxes) delete[] m_pPrevBoxes;
}
};
//-----------------------------------------------------------------------------
// Interface to allow the particle system to call back into the client
//-----------------------------------------------------------------------------
#define PARTICLE_SYSTEM_QUERY_INTERFACE_VERSION "VParticleSystemQuery001"
class IParticleSystemQuery : public IAppSystem {
public:
virtual void GetLightingAtPoint(const Vector &vecOrigin, Color &tint) = 0;
virtual void TraceLine(const Vector &vecAbsStart, const Vector &vecAbsEnd,
unsigned int mask, const class IHandleEntity *ignore,
int collisionGroup, CBaseTrace *ptr) = 0;
// given a possible spawn point, tries to movie it to be on or in the source
// object. returns true if it succeeded
virtual bool MovePointInsideControllingObject(
CParticleCollection *pParticles, void *pObject, Vector *pPnt) {
return true;
}
virtual bool IsPointInControllingObjectHitBox(
CParticleCollection *pParticles, int nControlPointNumber, Vector vecPos,
bool bBBoxOnly = false) {
return true;
}
virtual int GetCollisionGroupFromName(const char *pszCollisionGroupName) {
return 0; // == COLLISION_GROUP_NONE
}
virtual void GetRandomPointsOnControllingObjectHitBox(
CParticleCollection *pParticles, int nControlPointNumber,
int nNumPtsOut, float flBBoxScale,
int nNumTrysToGetAPointInsideTheModel, Vector *pPntsOut,
Vector vecDirectionBias, Vector *pHitBoxRelativeCoordOut = NULL,
int *pHitBoxIndexOut = NULL) = 0;
virtual int GetControllingObjectHitBoxInfo(
CParticleCollection *pParticles, int nControlPointNumber,
int nBufSize, // # of output slots available
ModelHitBoxInfo_t *pHitBoxOutputBuffer) {
// returns number of hit boxes output
return 0;
}
virtual Vector GetLocalPlayerPos(void) { return vec3_origin; }
virtual void GetLocalPlayerEyeVectors(Vector *pForward,
Vector *pRight = NULL,
Vector *pUp = NULL) {
*pForward = vec3_origin;
*pRight = vec3_origin;
*pUp = vec3_origin;
}
virtual float GetPixelVisibility(int *pQueryHandle, const Vector &vecOrigin,
float flScale) = 0;
virtual void SetUpLightingEnvironment(const Vector &pos) {}
};
//-----------------------------------------------------------------------------
//
// Particle system manager. Using a class because tools need it that way
// so the SFM and PET tools can share managers despite being linked to
// separate particle system .libs
//
//-----------------------------------------------------------------------------
typedef int ParticleSystemHandle_t;
class CParticleSystemMgr {
public:
// Constructor, destructor
CParticleSystemMgr();
~CParticleSystemMgr();
// Initialize the particle system
bool Init(IParticleSystemQuery *pQuery);
// methods to add builtin operators. If you don't call these at startup, you
// won't be able to sim or draw. These are done separately from Init, so
// that the server can omit the code needed for rendering/simulation, if
// desired.
void AddBuiltinSimulationOperators(void);
void AddBuiltinRenderingOperators(void);
// Registration of known operators
void AddParticleOperator(ParticleFunctionType_t nOpType,
IParticleOperatorDefinition *pOpFactory);
// Read a particle config file, add it to the list of particle configs
bool ReadParticleConfigFile(const char *pFileName, bool bPrecache,
bool bDecommitTempMemory = true);
bool ReadParticleConfigFile(CUtlBuffer &buf, bool bPrecache,
bool bDecommitTempMemory = true,
const char *pFileName = NULL);
void DecommitTempMemory();
// For recording, write a specific particle system to a CUtlBuffer in DMX
// format
bool WriteParticleConfigFile(const char *pParticleSystemName,
CUtlBuffer &buf,
bool bPreventNameBasedLookup = false);
bool WriteParticleConfigFile(const DmObjectId_t &id, CUtlBuffer &buf,
bool bPreventNameBasedLookup = false);
// create a particle system by name. returns null if one of that name does
// not exist
CParticleCollection *CreateParticleCollection(
const char *pParticleSystemName, float flDelay = 0.0f,
int nRandomSeed = 0);
// create a particle system given a particle system id
CParticleCollection *CreateParticleCollection(const DmObjectId_t &id,
float flDelay = 0.0f,
int nRandomSeed = 0);
// Is a particular particle system defined?
bool IsParticleSystemDefined(const char *pParticleSystemName);
bool IsParticleSystemDefined(const DmObjectId_t &id);
// Returns the index of the specified particle system.
ParticleSystemHandle_t GetParticleSystemIndex(
const char *pParticleSystemName);
// Returns the name of the specified particle system.
const char *GetParticleSystemNameFromIndex(ParticleSystemHandle_t iIndex);
// Return the number of particle systems in our dictionary
int GetParticleSystemCount(void);
// call to get available particle operator definitions
// NOTE: FUNCTION_CHILDREN will return a faked one, for ease of writing the
// editor
CUtlVector<IParticleOperatorDefinition *> &GetAvailableParticleOperatorList(
ParticleFunctionType_t nWhichList);
// Returns the unpack structure for a particle system definition
const DmxElementUnpackStructure_t *
GetParticleSystemDefinitionUnpackStructure();
// Particle sheet management
void ShouldLoadSheets(bool bLoadSheets);
CSheet *FindOrLoadSheet(char const *pszFname, ITexture *pTexture);
CSheet *FindOrLoadSheet(IMaterial *pMaterial);
void FlushAllSheets(void);
// Render cache used to render opaque particle collections
void ResetRenderCache(void);
void AddToRenderCache(CParticleCollection *pParticles);
void DrawRenderCache(bool bShadowDepth);
IParticleSystemQuery *Query(void) { return m_pQuery; }
// return the particle field name
const char *GetParticleFieldName(int nParticleField) const;
// WARNING: the pointer returned by this function may be invalidated
// *at any time* by the editor, so do not ever cache it.
CParticleSystemDefinition *FindParticleSystem(const char *pName);
CParticleSystemDefinition *FindParticleSystem(const DmObjectId_t &id);
void CommitProfileInformation(
bool bCommit); // call after simulation, if you want
// sim time recorded. if oyu pass
// flase, info will be thrown away and
// uncomitted time reset. Having this
// function lets you only record
// profile data for slow frames if
// desired.
void DumpProfileInformation(void); // write particle_profile.csv
// Cache/uncache materials used by particle systems
void PrecacheParticleSystem(const char *pName);
void UncacheAllParticleSystems();
// Sets the last simulation time, used for particle system sleeping logic
void SetLastSimulationTime(float flTime);
float GetLastSimulationTime() const;
int Debug_GetTotalParticleCount() const;
bool Debug_FrameWarningNeededTestAndReset();
float ParticleThrottleScaling()
const; // Returns 1.0 = not restricted, 0.0 = fully restricted (i.e.
// don't draw!)
bool ParticleThrottleRandomEnable()
const; // Retruns a randomish bool to say if you should draw this
// particle.
void TallyParticlesRendered(int nVertexCount, int nIndexCount = 0);
private:
struct RenderCache_t {
IMaterial *m_pMaterial;
CUtlVector<CParticleCollection *> m_ParticleCollections;
};
struct BatchStep_t {
CParticleCollection *m_pParticles;
CParticleOperatorInstance *m_pRenderer;
void *m_pContext;
int m_nFirstParticle;
int m_nParticleCount;
int m_nVertCount;
};
struct Batch_t {
int m_nVertCount;
int m_nIndexCount;
CUtlVector<BatchStep_t> m_BatchStep;
};
// Unserialization-related methods
bool ReadParticleDefinitions(CUtlBuffer &buf, const char *pFileName,
bool bPrecache, bool bDecommitTempMemory);
void AddParticleSystem(CDmxElement *pParticleSystem);
// Serialization-related methods
CDmxElement *CreateParticleDmxElement(const DmObjectId_t &id);
CDmxElement *CreateParticleDmxElement(const char *pParticleSystemName);
bool WriteParticleConfigFile(CDmxElement *pParticleSystem, CUtlBuffer &buf,
bool bPreventNameBasedLookup);
// Builds a list of batches to render
void BuildBatchList(int iRenderCache, IMatRenderContext *pRenderContext,
CUtlVector<Batch_t> &batches);
// Known operators
CUtlVector<IParticleOperatorDefinition *>
m_ParticleOperators[PARTICLE_FUNCTION_COUNT];
// Particle system dictionary
CParticleSystemDictionary *m_pParticleSystemDictionary;
// typedef CUtlMap< ITexture *, CSheet* > SheetsCache;
typedef CUtlStringMap<CSheet *> SheetsCache_t;
SheetsCache_t m_SheetList;
// attaching and dtaching killlists. when simulating, a particle system gets
// a kill list. after simulating, the memory for that will be used for the
// next particle system. This matters for threaded particles, because we
// don't want to share the same kill list between simultaneously simulating
// particle systems.
void AttachKillList(CParticleCollection *pParticles);
void DetachKillList(CParticleCollection *pParticles);
// For visualization (currently can only visualize one operator at a time)
CParticleCollection *m_pVisualizedParticles;
DmObjectId_t m_VisualizedOperatorId;
IParticleSystemQuery *m_pQuery;
CUtlVector<RenderCache_t> m_RenderCache;
IMaterial *m_pShadowDepthMaterial;
float m_flLastSimulationTime;
bool m_bDidInit;
bool m_bUsingDefaultQuery;
bool m_bShouldLoadSheets;
int m_nNumFramesMeasured;
enum { c_nNumFramesTracked = 10 };
int m_nParticleVertexCountHistory[c_nNumFramesTracked];
float m_fParticleCountScaling;
int m_nParticleIndexCount;
int m_nParticleVertexCount;
bool m_bFrameWarningNeeded;
friend class CParticleSystemDefinition;
friend class CParticleCollection;
};
extern CParticleSystemMgr *g_pParticleSystemMgr;
//-----------------------------------------------------------------------------
// A particle system can only have 1 operator using a particular ID
//-----------------------------------------------------------------------------
enum ParticleOperatorId_t {
// Generic IDs
OPERATOR_GENERIC = -2, // Can have as many of these as you want
OPERATOR_SINGLETON =
-1, // Can only have 1 operator with the same name as this one
// Renderer operator IDs
// Operator IDs
// Initializer operator IDs
OPERATOR_PI_POSITION, // Particle initializer: position (can only have 1
// position setter)
OPERATOR_PI_RADIUS,
OPERATOR_PI_ALPHA,
OPERATOR_PI_TINT_RGB,
OPERATOR_PI_ROTATION,
OPERATOR_PI_YAW,
// Emitter IDs
OPERATOR_ID_COUNT,
};
//-----------------------------------------------------------------------------
// Class factory for particle operators
//-----------------------------------------------------------------------------
class IParticleOperatorDefinition {
public:
virtual const char *GetName() const = 0;
virtual CParticleOperatorInstance *CreateInstance(
const DmObjectId_t &id) const = 0;
// virtual void DestroyInstance( CParticleOperatorInstance *pInstance )
//const = 0;
virtual const DmxElementUnpackStructure_t *GetUnpackStructure() const = 0;
virtual ParticleOperatorId_t GetId() const = 0;
virtual bool IsObsolete() const = 0;
virtual size_t GetClassSize() const = 0;
#if MEASURE_PARTICLE_PERF
// performance monitoring
float m_flMaxExecutionTime;
float m_flTotalExecutionTime;
float m_flUncomittedTime;
FORCEINLINE void RecordExecutionTime(float flETime) {
m_flUncomittedTime += flETime;
m_flMaxExecutionTime = MAX(m_flMaxExecutionTime, flETime);
}
FORCEINLINE float TotalRecordedExecutionTime(void) const {
return m_flTotalExecutionTime;
}
FORCEINLINE float MaximumRecordedExecutionTime(void) const {
return m_flMaxExecutionTime;
}
#endif
};
//-----------------------------------------------------------------------------
// Particle operators
//-----------------------------------------------------------------------------
class CParticleOperatorInstance {
public:
// custom allocators so we can be simd aligned
void *operator new(size_t nSize);
void *operator new(size_t size, int nBlockUse, const char *pFileName,
int nLine);
void operator delete(void *pData);
void operator delete(void *p, int nBlockUse, const char *pFileName,
int nLine);
// unpack structure will be applied by creator. add extra initialization
// needed here
virtual void InitParams(CParticleSystemDefinition *pDef,
CDmxElement *pElement) {}
virtual size_t GetRequiredContextBytes() const { return 0; }
virtual void InitializeContextData(CParticleCollection *pParticles,
void *pContext) const {}
virtual uint32 GetWrittenAttributes(void) const = 0;
virtual uint32 GetReadAttributes(void) const = 0;
virtual uint64 GetReadControlPointMask() const { return 0; }
// Used when an operator needs to read the attributes of a particle at
// spawn time
virtual uint32 GetReadInitialAttributes(void) const { return 0; }
// a particle simulator does this
virtual void Operate(CParticleCollection *pParticles, float flOpStrength,
void *pContext) const {}
// a renderer overrides this
virtual void Render(IMatRenderContext *pRenderContext,
CParticleCollection *pParticles, void *pContext) const {
}
virtual bool IsBatchable() const { return true; }
virtual void RenderUnsorted(CParticleCollection *pParticles, void *pContext,
IMatRenderContext *pRenderContext,
CMeshBuilder &meshBuilder, int nVertexOffset,
int nFirstParticle, int nParticleCount) const {}
// Returns the number of verts + indices to render
virtual int GetParticlesToRender(CParticleCollection *pParticles,
void *pContext, int nFirstParticle,
int nRemainingVertices,
int nRemainingIndices, int *pVertsUsed,
int *pIndicesUsed) const {
*pVertsUsed = 0;
*pIndicesUsed = 0;
return 0;
}
// emitters over-ride this. Return a mask of what fields you initted
virtual uint32 Emit(CParticleCollection *pParticles, float flOpCurStrength,
void *pContext) const {
return 0;
}
// emitters over-ride this.
virtual void StopEmission(CParticleCollection *pParticles, void *pContext,
bool bInfiniteOnly = false) const {}
virtual void StartEmission(CParticleCollection *pParticles, void *pContext,
bool bInfiniteOnly = false) const {}
virtual void Restart(CParticleCollection *pParticles, void *pContext) {}
// initters over-ride this
virtual void InitParticleSystem(CParticleCollection *pParticles,
void *pContext) const {}
// a force generator does this. It accumulates in the force array
virtual void AddForces(FourVectors *AccumulatedForces,
CParticleCollection *pParticles, int nBlocks,
float flCurStrength, void *pContext) const {}
// this is called for each constarint every frame. It can set up data like
// nearby world traces, etc
virtual void SetupConstraintPerFrameData(CParticleCollection *pParticles,
void *pContext) const {}
// a constraint overrides this. It shold return a true if it did anything
virtual bool EnforceConstraint(int nStartBlock, int nNumBlocks,
CParticleCollection *pParticles,
void *pContext,
int nNumValidParticlesInLastChunk) const {
return false;
}
// should the constraint be run only once after all other constraints?
virtual bool IsFinalConstraint(void) const { return false; }
// determines if a mask needs to be initialized multiple times.
virtual bool InitMultipleOverride() { return false; }
// Indicates if this initializer is scrub-safe (initializers don't use
// random numbers, for example)
virtual bool IsScrubSafe() { return false; }
// particle-initters over-ride this
virtual void InitNewParticlesScalar(CParticleCollection *pParticles,
int nFirstParticle, int n_particles,
int attribute_write_mask,
void *pContext) const {}
// init new particles in blocks of 4. initters that have sse smarts should
// over ride this. the scalar particle initter will still be cllaed for
// head/tail.
virtual void InitNewParticlesBlock(CParticleCollection *pParticles,
int start_block, int n_blocks,
int attribute_write_mask,
void *pContext) const {
// default behaviour is to call the scalar one 4x times
InitNewParticlesScalar(pParticles, 4 * start_block, 4 * n_blocks,
attribute_write_mask, pContext);
}
// splits particle initialization up into scalar and block sections,
// callingt he right code
void InitNewParticles(CParticleCollection *pParticles, int nFirstParticle,
int n_particles, int attribute_write_mask,
void *pContext) const;
// this function is queried to determine if a particle system is over and
// doen with. A particle system is done with when it has noparticles and no
// operators intend to create any more
virtual bool MayCreateMoreParticles(CParticleCollection *pParticles,
void *pContext) const {
return false;
}
// Returns the operator definition that spawned this operator
const IParticleOperatorDefinition *GetDefinition() { return m_pDef; }
virtual bool ShouldRunBeforeEmitters(void) const { return false; }
// Does this operator require that particles remain in the order they were
// emitted?
virtual bool RequiresOrderInvariance(void) const { return false; }
// Called when the SFM wants to skip forward in time
virtual void SkipToTime(float flTime, CParticleCollection *pParticles,
void *pContext) const {}
// Returns a unique ID for this definition
const DmObjectId_t &GetId() { return m_Id; }
// Used for editing + debugging to visualize the operator in 3D
virtual void Render(CParticleCollection *pParticles) const {}
// Used as a debugging mechanism to prevent bogus calls to RandomInt or
// RandomFloat inside operators Use
// CParticleCollection::RandomInt/RandomFloat instead
int RandomInt(int nMin, int nMax) {
// NOTE: Use CParticleCollection::RandomInt!
Assert(0);
return 0;
}
float RandomFloat(float flMinVal = 0.0f, float flMaxVal = 1.0f) {
// NOTE: Use CParticleCollection::RandomFloat!
Assert(0);
return 0.0f;
}
float RandomFloatExp(float flMinVal = 0.0f, float flMaxVal = 1.0f,
float flExponent = 1.0f) {
// NOTE: Use CParticleCollection::RandomFloatExp!
Assert(0);
return 0.0f;
}
float m_flOpStartFadeInTime;
float m_flOpEndFadeInTime;
float m_flOpStartFadeOutTime;
float m_flOpEndFadeOutTime;
float m_flOpFadeOscillatePeriod;
virtual ~CParticleOperatorInstance(void) {
// so that sheet references, etc can be cleaned up
}
protected:
// utility function for initting a scalar attribute to a random range in an
// sse fashion
void InitScalarAttributeRandomRangeBlock(int nAttributeId, float fMinValue,
float fMaxValue,
CParticleCollection *pParticles,
int nStartBlock,
int nBlockCount) const;
void InitScalarAttributeRandomRangeExpBlock(int nAttributeId,
float fMinValue,
float fMaxValue, float fExp,
CParticleCollection *pParticles,
int nStartBlock,
int nBlockCount) const;
void AddScalarAttributeRandomRangeBlock(int nAttributeId, float fMinValue,
float fMaxValue, float fExp,
CParticleCollection *pParticles,
int nStartBlock, int nBlockCount,
bool bRandomlyInvert) const;
private:
friend class CParticleCollection;
const IParticleOperatorDefinition *m_pDef;
void SetDefinition(const IParticleOperatorDefinition *pDef,
const DmObjectId_t &id) {
m_pDef = pDef;
CopyUniqueId(id, &m_Id);
}
DmObjectId_t m_Id;
template <typename T>
friend class CParticleOperatorDefinition;
};
class CParticleRenderOperatorInstance : public CParticleOperatorInstance {
public:
CParticleVisibilityInputs VisibilityInputs;
};
//-----------------------------------------------------------------------------
// Helper macro for creating particle operator factories
//-----------------------------------------------------------------------------
template <class T>
class CParticleOperatorDefinition : public IParticleOperatorDefinition {
public:
CParticleOperatorDefinition(const char *pFactoryName,
ParticleOperatorId_t id, bool bIsObsolete)
: m_pFactoryName(pFactoryName), m_Id(id) {
#if MEASURE_PARTICLE_PERF
m_flTotalExecutionTime = 0.0f;
m_flMaxExecutionTime = 0.0f;
m_flUncomittedTime = 0.0f;
#endif
m_bIsObsolete = bIsObsolete;
}
virtual const char *GetName() const { return m_pFactoryName; }
virtual ParticleOperatorId_t GetId() const { return m_Id; }
virtual CParticleOperatorInstance *CreateInstance(
const DmObjectId_t &id) const {
CParticleOperatorInstance *pOp = new T;
pOp->SetDefinition(this, id);
return pOp;
}
virtual const DmxElementUnpackStructure_t *GetUnpackStructure() const {
return m_pUnpackParams;
}
// Editor won't display obsolete operators
virtual bool IsObsolete() const { return m_bIsObsolete; }
virtual size_t GetClassSize() const { return sizeof(T); }
private:
const char *m_pFactoryName;
ParticleOperatorId_t m_Id;
bool m_bIsObsolete;
static DmxElementUnpackStructure_t *m_pUnpackParams;
};
#define DECLARE_PARTICLE_OPERATOR(_className) \
DECLARE_DMXELEMENT_UNPACK() \
friend class CParticleOperatorDefinition<_className>
#define DEFINE_PARTICLE_OPERATOR(_className, _operatorName, _id) \
static CParticleOperatorDefinition<_className> s_##_className##Factory( \
_operatorName, _id, false)
#define DEFINE_PARTICLE_OPERATOR_OBSOLETE(_className, _operatorName, _id) \
static CParticleOperatorDefinition<_className> s_##_className##Factory( \
_operatorName, _id, true)
#define BEGIN_PARTICLE_OPERATOR_UNPACK(_className) \
BEGIN_DMXELEMENT_UNPACK(_className) \
DMXELEMENT_UNPACK_FIELD("operator start fadein", "0", float, \
m_flOpStartFadeInTime) \
DMXELEMENT_UNPACK_FIELD("operator end fadein", "0", float, \
m_flOpEndFadeInTime) \
DMXELEMENT_UNPACK_FIELD("operator start fadeout", "0", float, \
m_flOpStartFadeOutTime) \
DMXELEMENT_UNPACK_FIELD("operator end fadeout", "0", float, \
m_flOpEndFadeOutTime) \
DMXELEMENT_UNPACK_FIELD("operator fade oscillate", "0", float, \
m_flOpFadeOscillatePeriod)
#define END_PARTICLE_OPERATOR_UNPACK(_className) \
END_DMXELEMENT_UNPACK_TEMPLATE( \
_className, CParticleOperatorDefinition<_className>::m_pUnpackParams)
#define BEGIN_PARTICLE_RENDER_OPERATOR_UNPACK(_className) \
BEGIN_PARTICLE_OPERATOR_UNPACK(_className) \
DMXELEMENT_UNPACK_FIELD("Visibility Proxy Input Control Point Number", \
"-1", int, VisibilityInputs.m_nCPin) \
DMXELEMENT_UNPACK_FIELD("Visibility Proxy Radius", "1.0", float, \
VisibilityInputs.m_flProxyRadius) \
DMXELEMENT_UNPACK_FIELD("Visibility input minimum", "0", float, \
VisibilityInputs.m_flInputMin) \
DMXELEMENT_UNPACK_FIELD("Visibility input maximum", "1", float, \
VisibilityInputs.m_flInputMax) \
DMXELEMENT_UNPACK_FIELD("Visibility Alpha Scale minimum", "0", float, \
VisibilityInputs.m_flAlphaScaleMin) \
DMXELEMENT_UNPACK_FIELD("Visibility Alpha Scale maximum", "1", float, \
VisibilityInputs.m_flAlphaScaleMax) \
DMXELEMENT_UNPACK_FIELD("Visibility Radius Scale minimum", "1", float, \
VisibilityInputs.m_flRadiusScaleMin) \
DMXELEMENT_UNPACK_FIELD("Visibility Radius Scale maximum", "1", float, \
VisibilityInputs.m_flRadiusScaleMax) \
DMXELEMENT_UNPACK_FIELD("Visibility Camera Depth Bias", "0", float, \
VisibilityInputs.m_flCameraBias)
// DMXELEMENT_UNPACK_FIELD( "Visibility Use Bounding Box for Proxy", "0",
//bool, VisibilityInputs.m_bUseBBox ) DMXELEMENT_UNPACK_FIELD( "Visibility
//Bounding Box Scale", "1.0", float, VisibilityInputs.m_flBBoxScale )
#define REGISTER_PARTICLE_OPERATOR(_type, _className) \
g_pParticleSystemMgr->AddParticleOperator(_type, &s_##_className##Factory)
// need to think about particle constraints in terms of segregating affected
// particles so as to run multi-pass constraints on only a subset
//-----------------------------------------------------------------------------
// flags for particle systems
//-----------------------------------------------------------------------------
enum {
PCFLAGS_FIRST_FRAME = 0x1,
PCFLAGS_PREV_CONTROL_POINTS_INITIALIZED = 0x2,
};
#define DEBUG_PARTICLE_SORT 0
// sorting functionality for rendering. Call GetRenderList( bool bSorted ) to
// get the list of particles to render (sorted or not, including children).
// **do not casually change this structure**. The sorting code treats it
// interchangably as an SOA and accesses it using sse. Any changes to this
// struct need the sort code updated.**
struct ParticleRenderData_t {
float m_flSortKey; // what we sort by
int m_nIndex; // index or fudged index (for child particles)
float m_flRadius; // effective radius, using visibility
#if VALVE_LITTLE_ENDIAN
uint8 m_nAlpha; // effective alpha, combining alpha and alpha2 and vis. 0 -
// 255
uint8 m_nAlphaPad[3]; // this will be written to
#else
uint8 m_nAlphaPad[3]; // this will be written to
uint8 m_nAlpha; // effective alpha, combining alpha and alpha2 and vis. 0 -
// 255
#endif
};
struct ExtendedParticleRenderData_t : ParticleRenderData_t {
float m_flX;
float m_flY;
float m_flZ;
float m_flPad;
};
typedef struct ALIGN16 _FourInts {
int32 m_nValue[4];
} ALIGN16_POST FourInts;
// structure describing the parameter block used by operators which use the path
// between two points to control particles.
struct CPathParameters {
int m_nStartControlPointNumber;
int m_nEndControlPointNumber;
int m_nBulgeControl;
float m_flBulge;
float m_flMidPoint;
void ClampControlPointIndices(void) {
m_nStartControlPointNumber = MAX(0, MIN(MAX_PARTICLE_CONTROL_POINTS - 1,
m_nStartControlPointNumber));
m_nEndControlPointNumber = MAX(
0, MIN(MAX_PARTICLE_CONTROL_POINTS - 1, m_nEndControlPointNumber));
}
};
struct CParticleVisibilityData {
float m_flAlphaVisibility;
float m_flRadiusVisibility;
float m_flCameraBias;
bool m_bUseVisibility;
};
struct CParticleControlPoint {
Vector m_Position;
Vector m_PrevPosition;
// orientation
Vector m_ForwardVector;
Vector m_UpVector;
Vector m_RightVector;
// reference to entity or whatever this control point comes from
void *m_pObject;
// parent for hierarchies
int m_nParent;
};
// struct for simd xform to transform a point from an identitiy coordinate
// system to that of the control point
struct CParticleSIMDTransformation {
FourVectors m_v4Origin;
FourVectors m_v4Fwd;
FourVectors m_v4Up;
FourVectors m_v4Right;
FORCEINLINE void VectorRotate(FourVectors &InPnt) {
fltx4 fl4OutX = SubSIMD(
AddSIMD(MulSIMD(InPnt.x, m_v4Fwd.x), MulSIMD(InPnt.z, m_v4Up.x)),
MulSIMD(InPnt.y, m_v4Right.x));
fltx4 fl4OutY = SubSIMD(
AddSIMD(MulSIMD(InPnt.x, m_v4Fwd.y), MulSIMD(InPnt.z, m_v4Up.y)),
MulSIMD(InPnt.y, m_v4Right.y));
InPnt.z = SubSIMD(
AddSIMD(MulSIMD(InPnt.x, m_v4Fwd.z), MulSIMD(InPnt.z, m_v4Up.z)),
MulSIMD(InPnt.y, m_v4Right.z));
InPnt.x = fl4OutX;
InPnt.y = fl4OutY;
}
FORCEINLINE void VectorTransform(FourVectors &InPnt) {
VectorRotate(InPnt);
InPnt.x = AddSIMD(InPnt.x, m_v4Origin.x);
InPnt.y = AddSIMD(InPnt.y, m_v4Origin.y);
InPnt.z = AddSIMD(InPnt.z, m_v4Origin.z);
}
};
#define NUM_COLLISION_CACHE_MODES 4
//-----------------------------------------------------------------------------
//
// CParticleCollection
//
//-----------------------------------------------------------------------------
class CParticleCollection {
public:
~CParticleCollection(void);
// Restarts the particle collection, stopping all non-continuous emitters
void Restart();
// compute bounds from particle list
void RecomputeBounds(void);
void SetControlPoint(int nWhichPoint, const Vector &v);
void SetControlPointObject(int nWhichPoint, void *pObject);
void SetControlPointOrientation(int nWhichPoint, const Vector &forward,
const Vector &right, const Vector &up);
void SetControlPointOrientation(int nWhichPoint, const Quaternion &q);
void SetControlPointForwardVector(int nWhichPoint, const Vector &v);
void SetControlPointUpVector(int nWhichPoint, const Vector &v);
void SetControlPointRightVector(int nWhichPoint, const Vector &v);
void SetControlPointParent(int nWhichPoint, int n);
// get the pointer to an attribute for a given particle.
// !!speed!! if you find yourself calling this anywhere that matters,
// you're not handling the simd-ness of the particle system well
// and will have bad perf.
const float *GetFloatAttributePtr(int nAttribute,
int nParticleNumber) const;
const int *GetIntAttributePtr(int nAttribute, int nParticleNumber) const;
const fltx4 *GetM128AttributePtr(int nAttribute, size_t *pStrideOut) const;
const FourVectors *Get4VAttributePtr(int nAttribute,
size_t *pStrideOut) const;
const FourInts *Get4IAttributePtr(int nAttribute, size_t *pStrideOut) const;
const int *GetIntAttributePtr(int nAttribute, size_t *pStrideOut) const;
int *GetIntAttributePtrForWrite(int nAttribute, int nParticleNumber);
float *GetFloatAttributePtrForWrite(int nAttribute, int nParticleNumber);
fltx4 *GetM128AttributePtrForWrite(int nAttribute, size_t *pStrideOut);
FourVectors *Get4VAttributePtrForWrite(int nAttribute, size_t *pStrideOut);
const float *GetInitialFloatAttributePtr(int nAttribute,
int nParticleNumber) const;
const fltx4 *GetInitialM128AttributePtr(int nAttribute,
size_t *pStrideOut) const;
const FourVectors *GetInitial4VAttributePtr(int nAttribute,
size_t *pStrideOut) const;
float *GetInitialFloatAttributePtrForWrite(int nAttribute,
int nParticleNumber);
fltx4 *GetInitialM128AttributePtrForWrite(int nAttribute,
size_t *pStrideOut);
void Simulate(float dt, bool updateBboxOnly);
void SkipToTime(float t);
// the camera objetc may be compared for equality against control point
// objects
void Render(IMatRenderContext *pRenderContext,
bool bTranslucentOnly = false, void *pCameraObject = NULL);
bool IsValid(void) const;
const char *GetName() const;
// IsFinished returns true when a system has no particles and won't be
// creating any more
bool IsFinished(void);
// Used to make sure we're accessing valid memory
bool IsValidAttributePtr(int nAttribute, const void *pPtr) const;
void SwapPosAndPrevPos(void);
void SetNActiveParticles(int nCount);
void KillParticle(int nPidx);
void StopEmission(bool bInfiniteOnly = false,
bool bRemoveAllParticles = false,
bool bWakeOnStop = false);
void StartEmission(bool bInfiniteOnly = false);
void SetDormant(bool bDormant);
const Vector &GetControlPointAtCurrentTime(int nControlPoint) const;
void GetControlPointOrientationAtCurrentTime(int nControlPoint,
Vector *pForward,
Vector *pRight,
Vector *pUp) const;
void GetControlPointTransformAtCurrentTime(int nControlPoint,
matrix3x4_t *pMat);
void GetControlPointTransformAtCurrentTime(int nControlPoint,
VMatrix *pMat);
int GetControlPointParent(int nControlPoint) const;
// Used to retrieve the position of a control point
// somewhere between m_fCurTime and m_fCurTime - m_fPreviousDT
void GetControlPointAtTime(int nControlPoint, float flTime,
Vector *pControlPoint) const;
void GetControlPointAtPrevTime(int nControlPoint,
Vector *pControlPoint) const;
void GetControlPointOrientationAtTime(int nControlPoint, float flTime,
Vector *pForward, Vector *pRight,
Vector *pUp);
void GetControlPointTransformAtTime(int nControlPoint, float flTime,
matrix3x4_t *pMat);
void GetControlPointTransformAtTime(int nControlPoint, float flTime,
VMatrix *pMat);
void GetControlPointTransformAtTime(int nControlPoint, float flTime,
CParticleSIMDTransformation *pXForm);
int GetHighestControlPoint(void) const;
// Has this particle moved recently (since the last simulation?)
bool HasMoved() const;
// Control point accessed:
// NOTE: Unlike the definition's version of these methods,
// these OR-in the masks of their children.
bool ReadsControlPoint(int nPoint) const;
// Used by particle systems to generate random numbers. Do not call these
// methods - use sse code
int RandomInt(int nMin, int nMax);
float RandomFloat(float flMin, float flMax);
float RandomFloatExp(float flMin, float flMax, float flExponent);
void RandomVector(float flMin, float flMax, Vector *pVector);
void RandomVector(const Vector &vecMin, const Vector &vecMax,
Vector *pVector);
float RandomVectorInUnitSphere(
Vector *pVector); // Returns the length sqr of the vector
// NOTE: These versions will produce the *same random numbers* if you give
// it the same random sample id. do not use these methods.
int RandomInt(int nRandomSampleId, int nMin, int nMax);
float RandomFloat(int nRandomSampleId, float flMin, float flMax);
float RandomFloatExp(int nRandomSampleId, float flMin, float flMax,
float flExponent);
void RandomVector(int nRandomSampleId, float flMin, float flMax,
Vector *pVector);
void RandomVector(int nRandomSampleId, const Vector &vecMin,
const Vector &vecMax, Vector *pVector);
float RandomVectorInUnitSphere(
int nRandomSampleId,
Vector *pVector); // Returns the length sqr of the vector
fltx4 RandomFloat(const FourInts &ParticleID, int nRandomSampleOffset);
// Random number offset (for use in getting Random #s in operators)
int OperatorRandomSampleOffset() const;
// Returns the render bounds
void GetBounds(Vector *pMin, Vector *pMax);
// Visualize operators (for editing/debugging)
void VisualizeOperator(const DmObjectId_t *pOpId = NULL);
// Does the particle system use the power of two frame buffer texture
// (refraction?)
bool UsesPowerOfTwoFrameBufferTexture(bool bThisFrame) const;
// Does the particle system use the full frame buffer texture (soft
// particles)
bool UsesFullFrameBufferTexture(bool bThisFrame) const;
// Is the particle system translucent?
bool IsTranslucent() const;
// Is the particle system two-pass?
bool IsTwoPass() const;
// Is the particle system batchable?
bool IsBatchable() const;
// Renderer iteration
int GetRendererCount() const;
CParticleOperatorInstance *GetRenderer(int i);
void *GetRendererContext(int i);
bool CheckIfOperatorShouldRun(CParticleOperatorInstance const *op,
float *pflCurStrength = NULL);
Vector TransformAxis(const Vector &SrcAxis, bool bLocalSpace,
int nControlPointNumber = 0);
// return backwards-sorted particle list. use --addressing
const ParticleRenderData_t *GetRenderList(
IMatRenderContext *pRenderContext, bool bSorted, int *pNparticles,
CParticleVisibilityData *pVisibilityData);
// calculate the points of a curve for a path
void CalculatePathValues(CPathParameters const &PathIn, float flTimeStamp,
Vector *pStartPnt, Vector *pMidPnt,
Vector *pEndPnt);
int GetGroupID() const;
void InitializeNewParticles(int nFirstParticle, int nParticleCount,
uint32 nInittedMask);
// update hit boxes for control point if not updated yet for this sim step
void UpdateHitBoxInfo(int nControlPointNumber);
// Used by particle system definitions to manage particle collection lists
void UnlinkFromDefList();
CParticleCollection *GetNextCollectionUsingSameDef() { return m_pNextDef; }
CUtlReference<CSheet> m_Sheet;
protected:
CParticleCollection();
// Used by client code
bool Init(const char *pParticleSystemName);
bool Init(CParticleSystemDefinition *pDef);
// Bloat the bounding box by bounds around the control point
void BloatBoundsUsingControlPoint();
private:
void GenerateSortedIndexList(Vector vecCameraPos,
CParticleVisibilityData *pVisibilityData,
bool bSorted);
void Init(CParticleSystemDefinition *pDef, float flDelay, int nRandomSeed);
void InitStorage(CParticleSystemDefinition *pDef);
void InitParticleCreationTime(int nFirstParticle, int nNumToInit);
void CopyInitialAttributeValues(int nStartParticle, int nNumParticles);
void ApplyKillList(void);
void SetAttributeToConstant(int nAttribute, float fValue);
void SetAttributeToConstant(int nAttribute, float fValueX, float fValueY,
float fValueZ);
void InitParticleAttributes(int nStartParticle, int nNumParticles,
int nAttrsLeftToInit);
// initialize this attribute for all active particles
void FillAttributeWithConstant(int nAttribute, float fValue);
// Updates the previous control points
void UpdatePrevControlPoints(float dt);
// Returns the memory for a particular constant attribute
float *GetConstantAttributeMemory(int nAttribute);
// Swaps two particles in the particle list
void SwapAdjacentParticles(int hParticle);
// Unlinks a particle from the list
void UnlinkParticle(int hParticle);
// Inserts a particle before another particle in the list
void InsertParticleBefore(int hParticle, int hBefore);
// Move a particle from one index to another
void MoveParticle(int nInitialIndex, int nNewIndex);
// Computes the sq distance to a particle position
float ComputeSqrDistanceToParticle(int hParticle,
const Vector &vecPosition) const;
// Grows the dist sq range for all particles
void GrowDistSqrBounds(float flDistSqr);
// Simulates the first frame
void SimulateFirstFrame();
bool SystemContainsParticlesWithBoolSet(
bool CParticleCollection::*pField) const;
// Does the particle collection contain opaque particle systems
bool ContainsOpaqueCollections();
bool ComputeUsesPowerOfTwoFrameBufferTexture();
bool ComputeUsesFullFrameBufferTexture();
bool ComputeIsTranslucent();
bool ComputeIsTwoPass();
bool ComputeIsBatchable();
bool ComputeRequiresOrderInvariance();
void LabelTextureUsage(void);
void LinkIntoDefList();
public:
fltx4 m_fl4CurTime; // accumulated time
int m_nPaddedActiveParticles; // # of groups of 4 particles
float m_flCurTime; // accumulated time
int m_nActiveParticles; // # of active particles
float m_flDt;
float m_flPreviousDt;
float m_flNextSleepTime; // time to go to sleep if not drawn
CUtlReference<CParticleSystemDefinition> m_pDef;
int m_nAllocatedParticles;
int m_nMaxAllowedParticles;
bool m_bDormant;
bool m_bEmissionStopped;
bool m_bRequiresOrderInvariance;
int m_LocalLightingCP;
Color m_LocalLighting;
// control point data. Don't set these directly, or they won't propagate
// down to children particle control points can act as emitter centers,
// repulsions points, etc. what they are used for depends on what operators
// and parameters your system has.
CParticleControlPoint m_ControlPoints[MAX_PARTICLE_CONTROL_POINTS];
CModelHitBoxesInfo m_ControlPointHitBoxes[MAX_PARTICLE_CONTROL_POINTS];
// public so people can call methods
uint8 *m_pOperatorContextData;
CParticleCollection *m_pNext; // for linking children together
CParticleCollection *m_pPrev; // for linking children together
struct CWorldCollideContextData
*m_pCollisionCacheData[NUM_COLLISION_CACHE_MODES]; // children can
// share collision
// caches w/ parent
CParticleCollection *m_pParent;
CUtlIntrusiveDList<CParticleCollection>
m_Children; // list for all child particle systems
void *operator new(size_t nSize);
void *operator new(size_t size, int nBlockUse, const char *pFileName,
int nLine);
void operator delete(void *pData);
void operator delete(void *p, int nBlockUse, const char *pFileName,
int nLine);
protected:
// current bounds for the particle system
bool m_bBoundsValid;
Vector m_MinBounds;
Vector m_MaxBounds;
int m_nHighestCP; // Highest CP set externally. Needs to assert if a
// system calls to an unassigned CP.
private:
unsigned char *m_pParticleMemory; // fixed size at initialization. Must be
// aligned for SSE
unsigned char *m_pParticleInitialMemory; // fixed size at initialization.
// Must be aligned for SSE
unsigned char *m_pConstantMemory;
int m_nPerParticleInitializedAttributeMask;
int m_nPerParticleUpdatedAttributeMask;
int m_nPerParticleReadInitialAttributeMask; // What fields do operators
// want to see initial
// attribute values for?
float *m_pParticleAttributes[MAX_PARTICLE_ATTRIBUTES];
float *m_pParticleInitialAttributes[MAX_PARTICLE_ATTRIBUTES];
size_t m_nParticleFloatStrides[MAX_PARTICLE_ATTRIBUTES];
size_t m_nParticleInitialFloatStrides[MAX_PARTICLE_ATTRIBUTES];
float *m_pConstantAttributes;
uint64 m_nControlPointReadMask; // Mask indicating which control points
// have been accessed
int m_nParticleFlags; // PCFLAGS_xxx
bool m_bIsScrubbable : 1;
bool m_bIsRunningInitializers : 1;
bool m_bIsRunningOperators : 1;
bool m_bIsTranslucent : 1;
bool m_bIsTwoPass : 1;
bool m_bAnyUsesPowerOfTwoFrameBufferTexture : 1; // whether or not we or
// any children use this
bool m_bAnyUsesFullFrameBufferTexture : 1;
bool m_bIsBatchable : 1;
bool m_bUsesPowerOfTwoFrameBufferTexture; // whether or not we use this,
// _not_ our children
bool m_bUsesFullFrameBufferTexture;
// How many frames have we drawn?
int m_nDrawnFrames;
int m_nSimulatedFrames;
Vector m_Center; // average of particle centers
// Used to assign unique ids to each particle
int m_nUniqueParticleId;
// Used to generate random numbers
int m_nRandomQueryCount;
int m_nRandomSeed;
int m_nOperatorRandomSampleOffset;
float m_flMinDistSqr;
float m_flMaxDistSqr;
float m_flOOMaxDistSqr;
Vector m_vecLastCameraPos;
float m_flLastMinDistSqr;
float m_flLastMaxDistSqr;
// Particle collection kill list. set up by particle system mgr
int m_nNumParticlesToKill;
int *m_pParticleKillList;
// Used to build a list of all particle collections that have the same
// particle def
CParticleCollection *m_pNextDef;
CParticleCollection *m_pPrevDef;
void LoanKillListTo(CParticleCollection *pBorrower) const;
bool HasAttachedKillList(void) const;
// For debugging
CParticleOperatorInstance *m_pRenderOp;
friend class CParticleSystemMgr;
friend class CParticleOperatorInstance;
};
class CM128InitialAttributeIterator : public CStridedConstPtr<fltx4> {
public:
FORCEINLINE CM128InitialAttributeIterator(int nAttribute,
CParticleCollection *pParticles) {
m_pData =
pParticles->GetInitialM128AttributePtr(nAttribute, &m_nStride);
}
};
class CM128AttributeIterator : public CStridedConstPtr<fltx4> {
public:
FORCEINLINE CM128AttributeIterator(int nAttribute,
CParticleCollection *pParticles) {
m_pData = pParticles->GetM128AttributePtr(nAttribute, &m_nStride);
}
};
class C4IAttributeIterator : public CStridedConstPtr<FourInts> {
public:
FORCEINLINE C4IAttributeIterator(int nAttribute,
CParticleCollection *pParticles) {
m_pData = pParticles->Get4IAttributePtr(nAttribute, &m_nStride);
}
};
class CM128AttributeWriteIterator : public CStridedPtr<fltx4> {
public:
FORCEINLINE CM128AttributeWriteIterator(void) {}
FORCEINLINE void Init(int nAttribute, CParticleCollection *pParticles) {
m_pData =
pParticles->GetM128AttributePtrForWrite(nAttribute, &m_nStride);
}
FORCEINLINE CM128AttributeWriteIterator(int nAttribute,
CParticleCollection *pParticles) {
Init(nAttribute, pParticles);
}
};
class C4VAttributeIterator : public CStridedConstPtr<FourVectors> {
public:
FORCEINLINE C4VAttributeIterator(int nAttribute,
CParticleCollection *pParticles) {
m_pData = pParticles->Get4VAttributePtr(nAttribute, &m_nStride);
}
};
class C4VInitialAttributeIterator : public CStridedConstPtr<FourVectors> {
public:
FORCEINLINE C4VInitialAttributeIterator(int nAttribute,
CParticleCollection *pParticles) {
m_pData = pParticles->GetInitial4VAttributePtr(nAttribute, &m_nStride);
}
};
class C4VAttributeWriteIterator : public CStridedPtr<FourVectors> {
public:
FORCEINLINE C4VAttributeWriteIterator(int nAttribute,
CParticleCollection *pParticles) {
m_pData = pParticles->Get4VAttributePtrForWrite(nAttribute, &m_nStride);
}
};
//-----------------------------------------------------------------------------
// Inline methods of CParticleCollection
//-----------------------------------------------------------------------------
inline bool CParticleCollection::HasAttachedKillList(void) const {
return m_pParticleKillList != NULL;
}
inline bool CParticleCollection::ReadsControlPoint(int nPoint) const {
return (m_nControlPointReadMask & (1ULL << nPoint)) != 0;
}
inline void CParticleCollection::SetNActiveParticles(int nCount) {
Assert(nCount <= m_nMaxAllowedParticles);
m_nActiveParticles = nCount;
m_nPaddedActiveParticles = (nCount + 3) / 4;
}
inline void CParticleCollection::SwapPosAndPrevPos(void) {
// strides better be the same!
Assert(m_nParticleFloatStrides[PARTICLE_ATTRIBUTE_XYZ] ==
m_nParticleFloatStrides[PARTICLE_ATTRIBUTE_PREV_XYZ]);
V_swap(m_pParticleAttributes[PARTICLE_ATTRIBUTE_XYZ],
m_pParticleAttributes[PARTICLE_ATTRIBUTE_PREV_XYZ]);
}
inline void CParticleCollection::LoanKillListTo(
CParticleCollection *pBorrower) const {
Assert(!pBorrower->m_pParticleKillList);
pBorrower->m_nNumParticlesToKill = 0;
pBorrower->m_pParticleKillList = m_pParticleKillList;
}
inline void CParticleCollection::SetAttributeToConstant(int nAttribute,
float fValue) {
float *fconst = m_pConstantAttributes + 4 * 3 * nAttribute;
fconst[0] = fconst[1] = fconst[2] = fconst[3] = fValue;
}
inline void CParticleCollection::SetAttributeToConstant(int nAttribute,
float fValueX,
float fValueY,
float fValueZ) {
float *fconst = m_pConstantAttributes + 4 * 3 * nAttribute;
fconst[0] = fconst[1] = fconst[2] = fconst[3] = fValueX;
fconst[4] = fconst[5] = fconst[6] = fconst[7] = fValueY;
fconst[8] = fconst[9] = fconst[10] = fconst[11] = fValueZ;
}
inline void CParticleCollection::SetControlPoint(int nWhichPoint,
const Vector &v) {
Assert((nWhichPoint >= 0) && (nWhichPoint < MAX_PARTICLE_CONTROL_POINTS));
m_nHighestCP = MAX(m_nHighestCP, nWhichPoint);
m_ControlPoints[nWhichPoint].m_Position = v;
for (CParticleCollection *i = m_Children.m_pHead; i; i = i->m_pNext) {
i->SetControlPoint(nWhichPoint, v);
}
}
inline void CParticleCollection::SetControlPointObject(int nWhichPoint,
void *pObject) {
Assert((nWhichPoint >= 0) && (nWhichPoint < MAX_PARTICLE_CONTROL_POINTS));
m_ControlPoints[nWhichPoint].m_pObject = pObject;
for (CParticleCollection *i = m_Children.m_pHead; i; i = i->m_pNext) {
i->SetControlPointObject(nWhichPoint, pObject);
}
}
inline void CParticleCollection::SetControlPointOrientation(
int nWhichPoint, const Vector &forward, const Vector &right,
const Vector &up) {
Assert((nWhichPoint >= 0) && (nWhichPoint < MAX_PARTICLE_CONTROL_POINTS));
// check perpendicular
if (fabs(DotProduct(forward, up)) <= 0.1f &&
fabs(DotProduct(forward, right)) <= 0.1f &&
fabs(DotProduct(right, up)) <= 0.1f) {
m_ControlPoints[nWhichPoint].m_ForwardVector = forward;
m_ControlPoints[nWhichPoint].m_UpVector = up;
m_ControlPoints[nWhichPoint].m_RightVector = right;
// make sure all children are finished
for (CParticleCollection *i = m_Children.m_pHead; i; i = i->m_pNext) {
i->SetControlPointOrientation(nWhichPoint, forward, right, up);
}
} else {
Warning(
"Attempt to set particle collection %s to invalid orientation "
"matrix\n",
GetName());
}
}
inline Vector CParticleCollection::TransformAxis(const Vector &SrcAxis,
bool bLocalSpace,
int nControlPointNumber) {
if (bLocalSpace) {
return // mxmul
(SrcAxis.x * m_ControlPoints[nControlPointNumber].m_RightVector) +
(SrcAxis.y * m_ControlPoints[nControlPointNumber].m_ForwardVector) +
(SrcAxis.z * m_ControlPoints[nControlPointNumber].m_UpVector);
} else
return SrcAxis;
}
inline void CParticleCollection::SetControlPointOrientation(
int nWhichPoint, const Quaternion &q) {
matrix3x4_t mat;
Vector vecForward, vecUp, vecRight;
QuaternionMatrix(q, mat);
MatrixVectors(mat, &vecForward, &vecRight, &vecUp);
SetControlPointOrientation(nWhichPoint, vecForward, vecRight, vecUp);
}
inline void CParticleCollection::SetControlPointForwardVector(int nWhichPoint,
const Vector &v) {
Assert((nWhichPoint >= 0) && (nWhichPoint < MAX_PARTICLE_CONTROL_POINTS));
m_ControlPoints[nWhichPoint].m_ForwardVector = v;
for (CParticleCollection *i = m_Children.m_pHead; i; i = i->m_pNext) {
i->SetControlPointForwardVector(nWhichPoint, v);
}
}
inline void CParticleCollection::SetControlPointUpVector(int nWhichPoint,
const Vector &v) {
Assert((nWhichPoint >= 0) && (nWhichPoint < MAX_PARTICLE_CONTROL_POINTS));
m_ControlPoints[nWhichPoint].m_UpVector = v;
for (CParticleCollection *i = m_Children.m_pHead; i; i = i->m_pNext) {
i->SetControlPointUpVector(nWhichPoint, v);
}
}
inline void CParticleCollection::SetControlPointRightVector(int nWhichPoint,
const Vector &v) {
Assert((nWhichPoint >= 0) && (nWhichPoint < MAX_PARTICLE_CONTROL_POINTS));
m_ControlPoints[nWhichPoint].m_RightVector = v;
for (CParticleCollection *i = m_Children.m_pHead; i; i = i->m_pNext) {
i->SetControlPointRightVector(nWhichPoint, v);
}
}
inline void CParticleCollection::SetControlPointParent(int nWhichPoint, int n) {
Assert((nWhichPoint >= 0) && (nWhichPoint < MAX_PARTICLE_CONTROL_POINTS));
m_ControlPoints[nWhichPoint].m_nParent = n;
for (CParticleCollection *i = m_Children.m_pHead; i; i = i->m_pNext) {
i->SetControlPointParent(nWhichPoint, n);
}
}
// Returns the memory for a particular constant attribute
inline float *CParticleCollection::GetConstantAttributeMemory(int nAttribute) {
return m_pConstantAttributes + 3 * 4 * nAttribute;
}
// Random number offset (for use in getting Random #s in operators)
inline int CParticleCollection::OperatorRandomSampleOffset() const {
return m_nOperatorRandomSampleOffset;
}
// Used by particle systems to generate random numbers
inline int CParticleCollection::RandomInt(int nRandomSampleId, int nMin,
int nMax) {
// do not call
float flRand =
s_pRandomFloats[(m_nRandomSeed + nRandomSampleId) & RANDOM_FLOAT_MASK];
flRand *= (nMax + 1 - nMin);
int nRand = (int)flRand + nMin;
return nRand;
}
inline float CParticleCollection::RandomFloat(int nRandomSampleId, float flMin,
float flMax) {
// do not call
float flRand =
s_pRandomFloats[(m_nRandomSeed + nRandomSampleId) & RANDOM_FLOAT_MASK];
flRand *= (flMax - flMin);
flRand += flMin;
return flRand;
}
inline fltx4 CParticleCollection::RandomFloat(const FourInts &ParticleID,
int nRandomSampleOffset) {
fltx4 Retval;
int nOfs = m_nRandomSeed + nRandomSampleOffset;
SubFloat(Retval, 0) =
s_pRandomFloats[(nOfs + ParticleID.m_nValue[0]) & RANDOM_FLOAT_MASK];
SubFloat(Retval, 1) =
s_pRandomFloats[(nOfs + ParticleID.m_nValue[1]) & RANDOM_FLOAT_MASK];
SubFloat(Retval, 2) =
s_pRandomFloats[(nOfs + ParticleID.m_nValue[2]) & RANDOM_FLOAT_MASK];
SubFloat(Retval, 3) =
s_pRandomFloats[(nOfs + ParticleID.m_nValue[3]) & RANDOM_FLOAT_MASK];
return Retval;
}
inline float CParticleCollection::RandomFloatExp(int nRandomSampleId,
float flMin, float flMax,
float flExponent) {
// do not call
float flRand =
s_pRandomFloats[(m_nRandomSeed + nRandomSampleId) & RANDOM_FLOAT_MASK];
flRand = powf(flRand, flExponent);
flRand *= (flMax - flMin);
flRand += flMin;
return flRand;
}
inline void CParticleCollection::RandomVector(int nRandomSampleId, float flMin,
float flMax, Vector *pVector) {
// do not call
float flDelta = flMax - flMin;
int nBaseId = m_nRandomSeed + nRandomSampleId;
pVector->x = s_pRandomFloats[nBaseId & RANDOM_FLOAT_MASK];
pVector->x *= flDelta;
pVector->x += flMin;
pVector->y = s_pRandomFloats[(nBaseId + 1) & RANDOM_FLOAT_MASK];
pVector->y *= flDelta;
pVector->y += flMin;
pVector->z = s_pRandomFloats[(nBaseId + 2) & RANDOM_FLOAT_MASK];
pVector->z *= flDelta;
pVector->z += flMin;
}
inline void CParticleCollection::RandomVector(int nRandomSampleId,
const Vector &vecMin,
const Vector &vecMax,
Vector *pVector) {
// do not call
int nBaseId = m_nRandomSeed + nRandomSampleId;
pVector->x = RandomFloat(nBaseId, vecMin.x, vecMax.x);
pVector->y = RandomFloat(nBaseId + 1, vecMin.y, vecMax.y);
pVector->z = RandomFloat(nBaseId + 2, vecMin.z, vecMax.z);
}
// Used by particle systems to generate random numbers
inline int CParticleCollection::RandomInt(int nMin, int nMax) {
// do not call
return RandomInt(m_nRandomQueryCount++, nMin, nMax);
}
inline float CParticleCollection::RandomFloat(float flMin, float flMax) {
// do not call
return RandomFloat(m_nRandomQueryCount++, flMin, flMax);
}
inline float CParticleCollection::RandomFloatExp(float flMin, float flMax,
float flExponent) {
// do not call
return RandomFloatExp(m_nRandomQueryCount++, flMin, flMax, flExponent);
}
inline void CParticleCollection::RandomVector(float flMin, float flMax,
Vector *pVector) {
// do not call
RandomVector(m_nRandomQueryCount++, flMin, flMax, pVector);
}
inline void CParticleCollection::RandomVector(const Vector &vecMin,
const Vector &vecMax,
Vector *pVector) {
// do not call
RandomVector(m_nRandomQueryCount++, vecMin, vecMax, pVector);
}
inline float CParticleCollection::RandomVectorInUnitSphere(Vector *pVector) {
// do not call
return RandomVectorInUnitSphere(m_nRandomQueryCount++, pVector);
}
// get the pointer to an attribute for a given particle. !!speed!! if you find
// yourself calling this anywhere that matters, you're not handling the
// simd-ness of the particle system well and will have bad perf.
inline const float *CParticleCollection::GetFloatAttributePtr(
int nAttribute, int nParticleNumber) const {
Assert(nParticleNumber < m_nAllocatedParticles);
int block_ofs = nParticleNumber / 4;
return m_pParticleAttributes[nAttribute] +
m_nParticleFloatStrides[nAttribute] * block_ofs +
(nParticleNumber & 3);
}
inline int *CParticleCollection::GetIntAttributePtrForWrite(
int nAttribute, int nParticleNumber) {
return reinterpret_cast<int *>(
GetFloatAttributePtrForWrite(nAttribute, nParticleNumber));
}
inline const int *CParticleCollection::GetIntAttributePtr(
int nAttribute, int nParticleNumber) const {
return (int *)GetFloatAttributePtr(nAttribute, nParticleNumber);
}
inline const fltx4 *CParticleCollection::GetM128AttributePtr(
int nAttribute, size_t *pStrideOut) const {
*(pStrideOut) = m_nParticleFloatStrides[nAttribute] / 4;
return reinterpret_cast<fltx4 *>(m_pParticleAttributes[nAttribute]);
}
inline const FourInts *CParticleCollection::Get4IAttributePtr(
int nAttribute, size_t *pStrideOut) const {
*(pStrideOut) = m_nParticleFloatStrides[nAttribute] / 4;
return reinterpret_cast<FourInts *>(m_pParticleAttributes[nAttribute]);
}
inline const int32 *CParticleCollection::GetIntAttributePtr(
int nAttribute, size_t *pStrideOut) const {
*(pStrideOut) = m_nParticleFloatStrides[nAttribute];
return reinterpret_cast<int32 *>(m_pParticleAttributes[nAttribute]);
}
inline const FourVectors *CParticleCollection::Get4VAttributePtr(
int nAttribute, size_t *pStrideOut) const {
*(pStrideOut) = m_nParticleFloatStrides[nAttribute] / 12;
return reinterpret_cast<const FourVectors *>(
m_pParticleAttributes[nAttribute]);
}
inline FourVectors *CParticleCollection::Get4VAttributePtrForWrite(
int nAttribute, size_t *pStrideOut) {
*(pStrideOut) = m_nParticleFloatStrides[nAttribute] / 12;
return reinterpret_cast<FourVectors *>(m_pParticleAttributes[nAttribute]);
}
inline const FourVectors *CParticleCollection::GetInitial4VAttributePtr(
int nAttribute, size_t *pStrideOut) const {
*(pStrideOut) = m_nParticleInitialFloatStrides[nAttribute] / 12;
return reinterpret_cast<FourVectors *>(
m_pParticleInitialAttributes[nAttribute]);
}
inline float *CParticleCollection::GetFloatAttributePtrForWrite(
int nAttribute, int nParticleNumber) {
// NOTE: If you hit this assertion, it means your particle operator isn't
// returning the appropriate fields in the RequiredAttributesMask call
Assert(!m_bIsRunningInitializers ||
(m_nPerParticleInitializedAttributeMask & (1 << nAttribute)));
Assert(!m_bIsRunningOperators ||
(m_nPerParticleUpdatedAttributeMask & (1 << nAttribute)));
Assert(m_nParticleFloatStrides[nAttribute] != 0);
Assert(nParticleNumber < m_nAllocatedParticles);
int block_ofs = nParticleNumber / 4;
return m_pParticleAttributes[nAttribute] +
m_nParticleFloatStrides[nAttribute] * block_ofs +
(nParticleNumber & 3);
}
inline fltx4 *CParticleCollection::GetM128AttributePtrForWrite(
int nAttribute, size_t *pStrideOut) {
// NOTE: If you hit this assertion, it means your particle operator isn't
// returning the appropriate fields in the RequiredAttributesMask call
if (!HushAsserts()) {
Assert(!m_bIsRunningInitializers ||
(m_nPerParticleInitializedAttributeMask & (1 << nAttribute)));
Assert(!m_bIsRunningOperators ||
(m_nPerParticleUpdatedAttributeMask & (1 << nAttribute)));
Assert(m_nParticleFloatStrides[nAttribute] != 0);
}
*(pStrideOut) = m_nParticleFloatStrides[nAttribute] / 4;
return reinterpret_cast<fltx4 *>(m_pParticleAttributes[nAttribute]);
}
inline const float *CParticleCollection::GetInitialFloatAttributePtr(
int nAttribute, int nParticleNumber) const {
Assert(nParticleNumber < m_nAllocatedParticles);
int block_ofs = nParticleNumber / 4;
return m_pParticleInitialAttributes[nAttribute] +
m_nParticleInitialFloatStrides[nAttribute] * block_ofs +
(nParticleNumber & 3);
}
inline const fltx4 *CParticleCollection::GetInitialM128AttributePtr(
int nAttribute, size_t *pStrideOut) const {
*(pStrideOut) = m_nParticleInitialFloatStrides[nAttribute] / 4;
return reinterpret_cast<fltx4 *>(m_pParticleInitialAttributes[nAttribute]);
}
inline float *CParticleCollection::GetInitialFloatAttributePtrForWrite(
int nAttribute, int nParticleNumber) {
Assert(nParticleNumber < m_nAllocatedParticles);
Assert(m_nPerParticleReadInitialAttributeMask & (1 << nAttribute));
int block_ofs = nParticleNumber / 4;
return m_pParticleInitialAttributes[nAttribute] +
m_nParticleInitialFloatStrides[nAttribute] * block_ofs +
(nParticleNumber & 3);
}
inline fltx4 *CParticleCollection::GetInitialM128AttributePtrForWrite(
int nAttribute, size_t *pStrideOut) {
Assert(m_nPerParticleReadInitialAttributeMask & (1 << nAttribute));
*(pStrideOut) = m_nParticleInitialFloatStrides[nAttribute] / 4;
return reinterpret_cast<fltx4 *>(m_pParticleInitialAttributes[nAttribute]);
}
// Used to make sure we're accessing valid memory
inline bool CParticleCollection::IsValidAttributePtr(int nAttribute,
const void *pPtr) const {
if (pPtr < m_pParticleAttributes[nAttribute]) return false;
size_t nArraySize =
m_nParticleFloatStrides[nAttribute] * m_nAllocatedParticles / 4;
void *pMaxPtr = m_pParticleAttributes[nAttribute] + nArraySize;
return (pPtr <= pMaxPtr);
}
FORCEINLINE void CParticleCollection::KillParticle(int nPidx) {
// add a particle to the sorted kill list. entries must be added in sorted
// order. within a particle operator, this is safe to call. Outside of one,
// you have to call the ApplyKillList() method yourself. The storage for the
// kill list is global between all particle systems, so you can't kill a
// particle in 2 different CParticleCollections w/o calling ApplyKillList
// That said, we only expect the particle index to be at most more than 3
// larger than the particle count
Assert(nPidx < m_nActiveParticles + 4);
// note that it is permissible to kill particles with indices>the number of
// active particles, in order to faciliate easy sse coding
Assert(m_nNumParticlesToKill < MAX_PARTICLES_IN_A_SYSTEM);
m_pParticleKillList[m_nNumParticlesToKill++] = nPidx;
}
// initialize this attribute for all active particles
inline void CParticleCollection::FillAttributeWithConstant(int nAttribute,
float fValue) {
size_t stride;
fltx4 *pAttr = GetM128AttributePtrForWrite(nAttribute, &stride);
fltx4 fill = ReplicateX4(fValue);
for (int i = 0; i < m_nPaddedActiveParticles; i++) {
*(pAttr) = fill;
pAttr += stride;
}
}
//-----------------------------------------------------------------------------
// Helper to set vector attribute values
//-----------------------------------------------------------------------------
FORCEINLINE void SetVectorAttribute(float *pAttribute, float x, float y,
float z) {
pAttribute[0] = x;
pAttribute[4] = y;
pAttribute[8] = z;
}
FORCEINLINE void SetVectorAttribute(float *pAttribute, const Vector &v) {
pAttribute[0] = v.x;
pAttribute[4] = v.y;
pAttribute[8] = v.z;
}
FORCEINLINE void SetVectorFromAttribute(Vector &v, const float *pAttribute) {
v.x = pAttribute[0];
v.y = pAttribute[4];
v.z = pAttribute[8];
}
//-----------------------------------------------------------------------------
// Computes the sq distance to a particle position
//-----------------------------------------------------------------------------
FORCEINLINE float CParticleCollection::ComputeSqrDistanceToParticle(
int hParticle, const Vector &vecPosition) const {
const float *xyz = GetFloatAttributePtr(PARTICLE_ATTRIBUTE_XYZ, hParticle);
Vector vecParticlePosition(xyz[0], xyz[4], xyz[8]);
return vecParticlePosition.DistToSqr(vecPosition);
}
//-----------------------------------------------------------------------------
// Grows the dist sq range for all particles
//-----------------------------------------------------------------------------
FORCEINLINE void CParticleCollection::GrowDistSqrBounds(float flDistSqr) {
if (m_flLastMinDistSqr > flDistSqr) {
m_flLastMinDistSqr = flDistSqr;
} else if (m_flLastMaxDistSqr < flDistSqr) {
m_flLastMaxDistSqr = flDistSqr;
}
}
//-----------------------------------------------------------------------------
// Data associated with children particle systems
//-----------------------------------------------------------------------------
struct ParticleChildrenInfo_t {
DmObjectId_t m_Id;
CUtlString m_Name;
bool m_bUseNameBasedLookup;
float m_flDelay; // How much to delay this system after the parent starts
};
//-----------------------------------------------------------------------------
// A template describing how a particle system will function
//-----------------------------------------------------------------------------
class CParticleSystemDefinition {
DECLARE_DMXELEMENT_UNPACK();
DECLARE_REFERENCED_CLASS(CParticleSystemDefinition);
public:
CParticleSystemDefinition(void);
~CParticleSystemDefinition(void);
// Serialization, unserialization
void Read(CDmxElement *pElement);
CDmxElement *Write();
const char *MaterialName() const;
IMaterial *GetMaterial() const;
const char *GetName() const;
const DmObjectId_t &GetId() const;
// Does the particle system use the power of two frame buffer texture
// (refraction?)
bool UsesPowerOfTwoFrameBufferTexture();
// Does the particle system use the full frame buffer texture (soft
// particles)
bool UsesFullFrameBufferTexture();
// Should we always precache this?
bool ShouldAlwaysPrecache() const;
// Should we batch particle collections using this definition up?
bool ShouldBatch() const;
// Is the particle system rendered on the viewmodel?
bool IsViewModelEffect() const;
// Used to iterate over all particle collections using the same def
CParticleCollection *FirstCollection();
// What's the effective cull size + fill cost?
// Used for early retirement
float GetCullRadius() const;
float GetCullFillCost() const;
int GetCullControlPoint() const;
const char *GetCullReplacementDefinition() const;
// Retirement
bool HasRetirementBeenChecked(int nFrame) const;
void MarkRetirementCheck(int nFrame);
// Control point read
void MarkReadsControlPoint(int nPoint);
bool ReadsControlPoint(int nPoint) const;
private:
void Precache();
void Uncache();
bool IsPrecached() const;
void UnlinkAllCollections();
void SetupContextData();
void ParseChildren(CDmxElement *pElement);
void ParseOperators(const char *pszName,
ParticleFunctionType_t nFunctionType,
CDmxElement *pElement,
CUtlVector<CParticleOperatorInstance *> &out_list);
void WriteChildren(CDmxElement *pElement);
void WriteOperators(CDmxElement *pElement, const char *pOpKeyName,
const CUtlVector<CParticleOperatorInstance *> &inList);
CUtlVector<CParticleOperatorInstance *> *GetOperatorList(
ParticleFunctionType_t type);
CParticleOperatorInstance *FindOperatorById(ParticleFunctionType_t type,
const DmObjectId_t &id);
private:
int m_nInitialParticles;
int m_nPerParticleUpdatedAttributeMask;
int m_nPerParticleInitializedAttributeMask;
int m_nInitialAttributeReadMask;
int m_nAttributeReadMask;
uint64 m_nControlPointReadMask;
Vector m_BoundingBoxMin;
Vector m_BoundingBoxMax;
char m_pszMaterialName[MAX_PATH];
CMaterialReference m_Material;
CParticleCollection *m_pFirstCollection;
char m_pszCullReplacementName[128];
float m_flCullRadius;
float m_flCullFillCost;
int m_nCullControlPoint;
int m_nRetireCheckFrame;
// Default attribute values
Color m_ConstantColor;
float m_flConstantRadius;
float m_flConstantRotation;
float m_flConstantRotationSpeed;
int m_nConstantSequenceNumber;
int m_nConstantSequenceNumber1;
int m_nGroupID;
float m_flMaximumTimeStep;
float
m_flMaximumSimTime; // maximum time to sim before drawing first frame.
float m_flMinimumSimTime; // minimum time to sim before drawing first frame
// - prevents all capped particles from drawing
// at 0 time.
int m_nMinimumFrames; // number of frames to apply max/min simulation times
// Is the particle system rendered on the viewmodel?
bool m_bViewModelEffect;
size_t m_nContextDataSize;
DmObjectId_t m_Id;
public:
float m_flMaxDrawDistance; // distance at which to not draw.
float m_flNoDrawTimeToGoToSleep; // after not beeing seen for this long,
// the system will sleep
int m_nMaxParticles;
int m_nSkipRenderControlPoint; // if the camera is attached to the
// object associated with this control
// point, don't render the system
CUtlString m_Name;
CUtlVector<CParticleOperatorInstance *> m_Operators;
CUtlVector<CParticleOperatorInstance *> m_Renderers;
CUtlVector<CParticleOperatorInstance *> m_Initializers;
CUtlVector<CParticleOperatorInstance *> m_Emitters;
CUtlVector<CParticleOperatorInstance *> m_ForceGenerators;
CUtlVector<CParticleOperatorInstance *> m_Constraints;
CUtlVector<ParticleChildrenInfo_t> m_Children;
CUtlVector<size_t> m_nOperatorsCtxOffsets;
CUtlVector<size_t> m_nRenderersCtxOffsets;
CUtlVector<size_t> m_nInitializersCtxOffsets;
CUtlVector<size_t> m_nEmittersCtxOffsets;
CUtlVector<size_t> m_nForceGeneratorsCtxOffsets;
CUtlVector<size_t> m_nConstraintsCtxOffsets;
// profiling information
float m_flTotalSimTime;
float m_flUncomittedTotalSimTime;
float m_flMaxMeasuredSimTime;
int m_nMaximumActiveParticles;
bool m_bShouldSort;
bool m_bShouldBatch;
bool m_bIsPrecached : 1;
bool m_bAlwaysPrecache : 1;
friend class CParticleCollection;
friend class CParticleSystemMgr;
};
//-----------------------------------------------------------------------------
// Inline methods
//-----------------------------------------------------------------------------
inline CParticleSystemDefinition::CParticleSystemDefinition(void) {
m_nControlPointReadMask = 0;
m_nInitialAttributeReadMask = 0;
m_nPerParticleInitializedAttributeMask = 0;
m_nPerParticleUpdatedAttributeMask = 0;
m_nAttributeReadMask = 0;
m_flTotalSimTime = 0.0;
m_flMaxMeasuredSimTime = 0.0;
m_nMaximumActiveParticles = 0;
m_bIsPrecached = false;
m_bAlwaysPrecache = false;
m_bShouldBatch = false;
m_bShouldSort = true;
m_pFirstCollection = NULL;
m_flCullRadius = 0.0f;
m_flCullFillCost = 1.0f;
m_nRetireCheckFrame = 0;
}
inline CParticleSystemDefinition::~CParticleSystemDefinition(void) {
UnlinkAllCollections();
m_Operators.PurgeAndDeleteElements();
m_Renderers.PurgeAndDeleteElements();
m_Initializers.PurgeAndDeleteElements();
m_Emitters.PurgeAndDeleteElements();
m_ForceGenerators.PurgeAndDeleteElements();
m_Constraints.PurgeAndDeleteElements();
}
// Used to iterate over all particle collections using the same def
inline CParticleCollection *CParticleSystemDefinition::FirstCollection() {
return m_pFirstCollection;
}
inline float CParticleSystemDefinition::GetCullRadius() const {
return m_flCullRadius;
}
inline float CParticleSystemDefinition::GetCullFillCost() const {
return m_flCullFillCost;
}
inline const char *CParticleSystemDefinition::GetCullReplacementDefinition()
const {
return m_pszCullReplacementName;
}
inline int CParticleSystemDefinition::GetCullControlPoint() const {
return m_nCullControlPoint;
}
inline void CParticleSystemDefinition::MarkReadsControlPoint(int nPoint) {
m_nControlPointReadMask |= (1ULL << nPoint);
}
inline bool CParticleSystemDefinition::ReadsControlPoint(int nPoint) const {
return (m_nControlPointReadMask & (1ULL << nPoint)) != 0;
}
// Retirement
inline bool CParticleSystemDefinition::HasRetirementBeenChecked(
int nFrame) const {
return m_nRetireCheckFrame == nFrame;
}
inline void CParticleSystemDefinition::MarkRetirementCheck(int nFrame) {
m_nRetireCheckFrame = nFrame;
}
inline bool CParticleSystemDefinition::ShouldBatch() const {
return m_bShouldBatch;
}
inline bool CParticleSystemDefinition::IsViewModelEffect() const {
return m_bViewModelEffect;
}
inline const char *CParticleSystemDefinition::MaterialName() const {
return m_pszMaterialName;
}
inline const DmObjectId_t &CParticleSystemDefinition::GetId() const {
return m_Id;
}
inline int CParticleCollection::GetGroupID(void) const {
return m_pDef->m_nGroupID;
}
FORCEINLINE const Vector &CParticleCollection::GetControlPointAtCurrentTime(
int nControlPoint) const {
Assert(nControlPoint <= GetHighestControlPoint());
Assert(m_pDef->ReadsControlPoint(nControlPoint));
return m_ControlPoints[nControlPoint].m_Position;
}
FORCEINLINE void CParticleCollection::GetControlPointOrientationAtCurrentTime(
int nControlPoint, Vector *pForward, Vector *pRight, Vector *pUp) const {
Assert(nControlPoint <= GetHighestControlPoint());
Assert(m_pDef->ReadsControlPoint(nControlPoint));
// FIXME: Use quaternion lerp to get control point transform at time
*pForward = m_ControlPoints[nControlPoint].m_ForwardVector;
*pRight = m_ControlPoints[nControlPoint].m_RightVector;
*pUp = m_ControlPoints[nControlPoint].m_UpVector;
}
FORCEINLINE int CParticleCollection::GetControlPointParent(
int nControlPoint) const {
Assert(nControlPoint <= GetHighestControlPoint());
Assert(m_pDef->ReadsControlPoint(nControlPoint));
return m_ControlPoints[nControlPoint].m_nParent;
}
FORCEINLINE bool CParticleCollection::IsValid(void) const {
return (m_pDef != NULL && m_pDef->GetMaterial());
}
#endif // PARTICLES_H