This repository has been archived on 2024-06-13. You can view files and clone it, but cannot push or open issues or pull requests.
2020-08-04 13:13:01 -04:00

570 lines
15 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#ifndef COMPRESSED_VECTOR_H
#define COMPRESSED_VECTOR_H
#ifdef _WIN32
#pragma once
#endif
#include <float.h>
#include <math.h>
// For vec_t, put this somewhere else?
#include "../tier0/basetypes.h"
// For rand(). We really need a library!
#include <stdlib.h>
#include "../tier0/dbg.h"
#include "vector.h"
#include "mathlib.h"
#if defined(_X360)
#pragma bitfield_order(push, lsb_to_msb)
#endif
//=========================================================
// fit a 3D vector into 32 bits
//=========================================================
class Vector32 {
public:
// Construction/destruction:
Vector32(void);
Vector32(vec_t X, vec_t Y, vec_t Z);
// assignment
Vector32 &operator=(const Vector &vOther);
operator Vector();
private:
unsigned short x : 10;
unsigned short y : 10;
unsigned short z : 10;
unsigned short exp : 2;
};
inline Vector32 &Vector32::operator=(const Vector &vOther) {
CHECK_VALID(vOther);
static float expScale[4] = {4.0f, 16.0f, 32.f, 64.f};
float fmax = Max(fabs(vOther.x), fabs(vOther.y));
fmax = Max(fmax, (float)fabs(vOther.z));
for (exp = 0; exp < 3; exp++) {
if (fmax < expScale[exp]) break;
}
Assert(fmax < expScale[exp]);
float fexp = 512.0f / expScale[exp];
x = Clamp((int)(vOther.x * fexp) + 512, 0, 1023);
y = Clamp((int)(vOther.y * fexp) + 512, 0, 1023);
z = Clamp((int)(vOther.z * fexp) + 512, 0, 1023);
return *this;
}
inline Vector32::operator Vector() {
Vector tmp;
static float expScale[4] = {4.0f, 16.0f, 32.f, 64.f};
float fexp = expScale[exp] / 512.0f;
tmp.x = (((int)x) - 512) * fexp;
tmp.y = (((int)y) - 512) * fexp;
tmp.z = (((int)z) - 512) * fexp;
return tmp;
}
//=========================================================
// Fit a unit vector into 32 bits
//=========================================================
class Normal32 {
public:
// Construction/destruction:
Normal32(void);
Normal32(vec_t X, vec_t Y, vec_t Z);
// assignment
Normal32 &operator=(const Vector &vOther);
operator Vector();
private:
unsigned short x : 15;
unsigned short y : 15;
unsigned short zneg : 1;
};
inline Normal32 &Normal32::operator=(const Vector &vOther) {
CHECK_VALID(vOther);
x = Clamp((int)(vOther.x * 16384) + 16384, 0, 32767);
y = Clamp((int)(vOther.y * 16384) + 16384, 0, 32767);
zneg = (vOther.z < 0);
// x = vOther.x;
// y = vOther.y;
// z = vOther.z;
return *this;
}
inline Normal32::operator Vector() {
Vector tmp;
tmp.x = ((int)x - 16384) * (1 / 16384.0);
tmp.y = ((int)y - 16384) * (1 / 16384.0);
tmp.z = sqrt(1 - tmp.x * tmp.x - tmp.y * tmp.y);
if (zneg) tmp.z = -tmp.z;
return tmp;
}
//=========================================================
// 64 bit Quaternion
//=========================================================
class Quaternion64 {
public:
// Construction/destruction:
Quaternion64(void);
Quaternion64(vec_t X, vec_t Y, vec_t Z);
// assignment
// Quaternion& operator=(const Quaternion64 &vOther);
Quaternion64 &operator=(const Quaternion &vOther);
operator Quaternion();
private:
uint64 x : 21;
uint64 y : 21;
uint64 z : 21;
uint64 wneg : 1;
};
inline Quaternion64::operator Quaternion() {
Quaternion tmp;
// shift to -1048576, + 1048575, then round down slightly to -1.0 < x < 1.0
tmp.x = ((int)x - 1048576) * (1 / 1048576.5f);
tmp.y = ((int)y - 1048576) * (1 / 1048576.5f);
tmp.z = ((int)z - 1048576) * (1 / 1048576.5f);
tmp.w = sqrt(1 - tmp.x * tmp.x - tmp.y * tmp.y - tmp.z * tmp.z);
if (wneg) tmp.w = -tmp.w;
return tmp;
}
inline Quaternion64 &Quaternion64::operator=(const Quaternion &vOther) {
CHECK_VALID(vOther);
x = Clamp((int)(vOther.x * 1048576) + 1048576, 0, 2097151);
y = Clamp((int)(vOther.y * 1048576) + 1048576, 0, 2097151);
z = Clamp((int)(vOther.z * 1048576) + 1048576, 0, 2097151);
wneg = (vOther.w < 0);
return *this;
}
//=========================================================
// 48 bit Quaternion
//=========================================================
class Quaternion48 {
public:
// Construction/destruction:
Quaternion48(void);
Quaternion48(vec_t X, vec_t Y, vec_t Z);
// assignment
// Quaternion& operator=(const Quaternion48 &vOther);
Quaternion48 &operator=(const Quaternion &vOther);
operator Quaternion();
private:
unsigned short x : 16;
unsigned short y : 16;
unsigned short z : 15;
unsigned short wneg : 1;
};
inline Quaternion48::operator Quaternion() {
Quaternion tmp;
tmp.x = ((int)x - 32768) * (1 / 32768.0);
tmp.y = ((int)y - 32768) * (1 / 32768.0);
tmp.z = ((int)z - 16384) * (1 / 16384.0);
tmp.w = sqrt(1 - tmp.x * tmp.x - tmp.y * tmp.y - tmp.z * tmp.z);
if (wneg) tmp.w = -tmp.w;
return tmp;
}
inline Quaternion48 &Quaternion48::operator=(const Quaternion &vOther) {
CHECK_VALID(vOther);
x = Clamp((int)(vOther.x * 32768) + 32768, 0, 65535);
y = Clamp((int)(vOther.y * 32768) + 32768, 0, 65535);
z = Clamp((int)(vOther.z * 16384) + 16384, 0, 32767);
wneg = (vOther.w < 0);
return *this;
}
//=========================================================
// 32 bit Quaternion
//=========================================================
class Quaternion32 {
public:
// Construction/destruction:
Quaternion32(void);
Quaternion32(vec_t X, vec_t Y, vec_t Z);
// assignment
// Quaternion& operator=(const Quaternion48 &vOther);
Quaternion32 &operator=(const Quaternion &vOther);
operator Quaternion();
private:
unsigned int x : 11;
unsigned int y : 10;
unsigned int z : 10;
unsigned int wneg : 1;
};
inline Quaternion32::operator Quaternion() {
Quaternion tmp;
tmp.x = ((int)x - 1024) * (1 / 1024.0);
tmp.y = ((int)y - 512) * (1 / 512.0);
tmp.z = ((int)z - 512) * (1 / 512.0);
tmp.w = sqrt(1 - tmp.x * tmp.x - tmp.y * tmp.y - tmp.z * tmp.z);
if (wneg) tmp.w = -tmp.w;
return tmp;
}
inline Quaternion32 &Quaternion32::operator=(const Quaternion &vOther) {
CHECK_VALID(vOther);
x = Clamp((int)(vOther.x * 1024) + 1024, 0, 2047);
y = Clamp((int)(vOther.y * 512) + 512, 0, 1023);
z = Clamp((int)(vOther.z * 512) + 512, 0, 1023);
wneg = (vOther.w < 0);
return *this;
}
//=========================================================
// 16 bit float
//=========================================================
const int float32bias = 127;
const int float16bias = 15;
const float maxfloat16bits = 65504.0f;
class float16 {
public:
// float16() {}
// float16( float f ) { m_storage.rawWord = ConvertFloatTo16bits(f); }
void Init() { m_storage.rawWord = 0; }
// float16& operator=(const float16 &other) { m_storage.rawWord =
//other.m_storage.rawWord; return *this; } float16& operator=(const float
//&other) { m_storage.rawWord = ConvertFloatTo16bits(other); return *this; }
// operator unsigned short () { return m_storage.rawWord; }
// operator float () { return Convert16bitFloatTo32bits( m_storage.rawWord
//); }
unsigned short GetBits() const { return m_storage.rawWord; }
float GetFloat() const {
return Convert16bitFloatTo32bits(m_storage.rawWord);
}
void SetFloat(float in) { m_storage.rawWord = ConvertFloatTo16bits(in); }
bool IsInfinity() const {
return m_storage.bits.biased_exponent == 31 &&
m_storage.bits.mantissa == 0;
}
bool IsNaN() const {
return m_storage.bits.biased_exponent == 31 &&
m_storage.bits.mantissa != 0;
}
bool operator==(const float16 other) const {
return m_storage.rawWord == other.m_storage.rawWord;
}
bool operator!=(const float16 other) const {
return m_storage.rawWord != other.m_storage.rawWord;
}
// bool operator< (const float other) const { return GetFloat() <
//other; } bool operator> (const float other) const { return GetFloat() >
//other; }
protected:
union float32bits {
float rawFloat;
struct {
unsigned int mantissa : 23;
unsigned int biased_exponent : 8;
unsigned int sign : 1;
} bits;
};
union float16bits {
unsigned short rawWord;
struct {
unsigned short mantissa : 10;
unsigned short biased_exponent : 5;
unsigned short sign : 1;
} bits;
};
static bool IsNaN(float16bits in) {
return in.bits.biased_exponent == 31 && in.bits.mantissa != 0;
}
static bool IsInfinity(float16bits in) {
return in.bits.biased_exponent == 31 && in.bits.mantissa == 0;
}
// 0x0001 - 0x03ff
static unsigned short ConvertFloatTo16bits(float input) {
if (input > maxfloat16bits)
input = maxfloat16bits;
else if (input < -maxfloat16bits)
input = -maxfloat16bits;
float16bits output;
float32bits inFloat;
inFloat.rawFloat = input;
output.bits.sign = inFloat.bits.sign;
if ((inFloat.bits.biased_exponent == 0) &&
(inFloat.bits.mantissa == 0)) {
// zero
output.bits.mantissa = 0;
output.bits.biased_exponent = 0;
} else if ((inFloat.bits.biased_exponent == 0) &&
(inFloat.bits.mantissa != 0)) {
// denorm -- denorm float maps to 0 half
output.bits.mantissa = 0;
output.bits.biased_exponent = 0;
} else if ((inFloat.bits.biased_exponent == 0xff) &&
(inFloat.bits.mantissa == 0)) {
#if 0
// infinity
output.bits.mantissa = 0;
output.bits.biased_exponent = 31;
#else
// infinity maps to maxfloat
output.bits.mantissa = 0x3ff;
output.bits.biased_exponent = 0x1e;
#endif
} else if ((inFloat.bits.biased_exponent == 0xff) &&
(inFloat.bits.mantissa != 0)) {
#if 0
// NaN
output.bits.mantissa = 1;
output.bits.biased_exponent = 31;
#else
// NaN maps to zero
output.bits.mantissa = 0;
output.bits.biased_exponent = 0;
#endif
} else {
// regular number
int new_exp = inFloat.bits.biased_exponent - 127;
if (new_exp < -24) {
// this maps to 0
output.bits.mantissa = 0;
output.bits.biased_exponent = 0;
}
if (new_exp < -14) {
// this maps to a denorm
output.bits.biased_exponent = 0;
unsigned int exp_val =
(unsigned int)(-14 - (inFloat.bits.biased_exponent -
float32bias));
if (exp_val > 0 && exp_val < 11) {
output.bits.mantissa =
(1 << (10 - exp_val)) +
(inFloat.bits.mantissa >> (13 + exp_val));
}
} else if (new_exp > 15) {
#if 0
// map this value to infinity
output.bits.mantissa = 0;
output.bits.biased_exponent = 31;
#else
// to big. . . maps to maxfloat
output.bits.mantissa = 0x3ff;
output.bits.biased_exponent = 0x1e;
#endif
} else {
output.bits.biased_exponent = new_exp + 15;
output.bits.mantissa = (inFloat.bits.mantissa >> 13);
}
}
return output.rawWord;
}
static float Convert16bitFloatTo32bits(unsigned short input) {
float32bits output;
const float16bits &inFloat = *((float16bits *)&input);
if (IsInfinity(inFloat)) {
return maxfloat16bits * ((inFloat.bits.sign == 1) ? -1.0f : 1.0f);
}
if (IsNaN(inFloat)) {
return 0.0;
}
if (inFloat.bits.biased_exponent == 0 && inFloat.bits.mantissa != 0) {
// denorm
const float half_denorm = (1.0f / 16384.0f); // 2^-14
float mantissa = ((float)(inFloat.bits.mantissa)) / 1024.0f;
float sgn = (inFloat.bits.sign) ? -1.0f : 1.0f;
output.rawFloat = sgn * mantissa * half_denorm;
} else {
// regular number
unsigned mantissa = inFloat.bits.mantissa;
unsigned biased_exponent = inFloat.bits.biased_exponent;
unsigned sign = ((unsigned)inFloat.bits.sign) << 31;
biased_exponent = ((biased_exponent - float16bias + float32bias) *
(biased_exponent != 0))
<< 23;
mantissa <<= (23 - 10);
*((unsigned *)&output) = (mantissa | biased_exponent | sign);
}
return output.rawFloat;
}
float16bits m_storage;
};
class float16_with_assign : public float16 {
public:
float16_with_assign() {}
float16_with_assign(float f) {
m_storage.rawWord = ConvertFloatTo16bits(f);
}
float16 &operator=(const float16 &other) {
m_storage.rawWord = ((float16_with_assign &)other).m_storage.rawWord;
return *this;
}
float16 &operator=(const float &other) {
m_storage.rawWord = ConvertFloatTo16bits(other);
return *this;
}
// operator unsigned short () const { return m_storage.rawWord; }
operator float() const {
return Convert16bitFloatTo32bits(m_storage.rawWord);
}
};
//=========================================================
// Fit a 3D vector in 48 bits
//=========================================================
class Vector48 {
public:
// Construction/destruction:
Vector48(void) {}
Vector48(vec_t X, vec_t Y, vec_t Z) {
x.SetFloat(X);
y.SetFloat(Y);
z.SetFloat(Z);
}
// assignment
Vector48 &operator=(const Vector &vOther);
operator Vector();
const float operator[](int i) const {
return (((float16 *)this)[i]).GetFloat();
}
float16 x;
float16 y;
float16 z;
};
inline Vector48 &Vector48::operator=(const Vector &vOther) {
CHECK_VALID(vOther);
x.SetFloat(vOther.x);
y.SetFloat(vOther.y);
z.SetFloat(vOther.z);
return *this;
}
inline Vector48::operator Vector() {
Vector tmp;
tmp.x = x.GetFloat();
tmp.y = y.GetFloat();
tmp.z = z.GetFloat();
return tmp;
}
//=========================================================
// Fit a 2D vector in 32 bits
//=========================================================
class Vector2d32 {
public:
// Construction/destruction:
Vector2d32(void) {}
Vector2d32(vec_t X, vec_t Y) {
x.SetFloat(X);
y.SetFloat(Y);
}
// assignment
Vector2d32 &operator=(const Vector &vOther);
Vector2d32 &operator=(const Vector2D &vOther);
operator Vector2D();
void Init(vec_t ix = 0.f, vec_t iy = 0.f);
float16_with_assign x;
float16_with_assign y;
};
inline Vector2d32 &Vector2d32::operator=(const Vector2D &vOther) {
x.SetFloat(vOther.x);
y.SetFloat(vOther.y);
return *this;
}
inline Vector2d32::operator Vector2D() {
Vector2D tmp;
tmp.x = x.GetFloat();
tmp.y = y.GetFloat();
return tmp;
}
inline void Vector2d32::Init(vec_t ix, vec_t iy) {
x.SetFloat(ix);
y.SetFloat(iy);
}
#if defined(_X360)
#pragma bitfield_order(pop)
#endif
#endif