This repository has been archived on 2024-06-13. You can view files and clone it, but cannot push or open issues or pull requests.
2020-08-04 13:13:01 -04:00

58 lines
1.8 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
// $Id$
// halton.h - classes, etc for generating numbers using the Halton pseudo-random
// sequence. See http://halton-sequences.wikiverse.org/.
//
// what this function is useful for is any sort of sampling/integration problem
// where you want to solve it by random sampling. Each call the NextValue()
// generates a random number between 0 and 1, in an unclumped manner, so that
// the space can be more or less evenly sampled with a minimum number of
// samples.
//
// It is NOT useful for generating random numbers dynamically, since the outputs
// aren't particularly random.
//
// To generate multidimensional sample values (points in a plane, etc), use two
// HaltonSequenceGenerator_t's, with different (primes) bases.
#ifndef HALTON_H
#define HALTON_H
#include <mathlib/vector.h>
#include <tier0/platform.h>
class HaltonSequenceGenerator_t {
int seed;
int base;
float fbase; //< base as a float
public:
HaltonSequenceGenerator_t(int base); //< base MUST be prime, >=2
float GetElement(int element);
inline float NextValue(void) { return GetElement(seed++); }
};
class DirectionalSampler_t //< pseudo-random sphere sampling
{
HaltonSequenceGenerator_t zdot;
HaltonSequenceGenerator_t vrot;
public:
DirectionalSampler_t(void) : zdot(2), vrot(3) {}
Vector NextValue(void) {
float zvalue = zdot.NextValue();
zvalue = 2 * zvalue - 1.0; // map from 0..1 to -1..1
float phi = acos(zvalue);
// now, generate a random rotation angle for x/y
float theta = 2.0 * M_PI * vrot.NextValue();
float sin_p = sin(phi);
return Vector(cos(theta) * sin_p, sin(theta) * sin_p, zvalue);
}
};
#endif // halton_h