This repository has been archived on 2024-06-13. You can view files and clone it, but cannot push or open issues or pull requests.
2020-08-04 13:13:01 -04:00

1256 lines
49 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#ifndef TIER1_STRTOOLS_H
#define TIER1_STRTOOLS_H
#include "../tier0/platform.h"
#include <ctype.h>
#include <stdarg.h>
#ifdef _WIN32
#pragma once
#elif POSIX
#include <math.h>
#include <wchar.h>
#include <wctype.h>
#endif
#include <stdlib.h>
#include <cstring>
#ifdef _WIN64
#define str_size unsigned int
#else
#define str_size size_t
#endif
template <class T, class I>
class CUtlMemory;
template <class T, class A>
class CUtlVector;
//-----------------------------------------------------------------------------
// Portable versions of standard string functions
//-----------------------------------------------------------------------------
void _V_memset(const char *file, int line, void *dest, int fill, int count);
void _V_memcpy(const char *file, int line, void *dest, const void *src,
int count);
void _V_memmove(const char *file, int line, void *dest, const void *src,
int count);
int _V_memcmp(const char *file, int line, const void *m1, const void *m2,
int count);
int _V_strlen(const char *file, int line, const char *str);
void _V_strcpy(const char *file, int line, char *dest, const char *src);
char *_V_strrchr(const char *file, int line, const char *s, char c);
int _V_strcmp(const char *file, int line, const char *s1, const char *s2);
int _V_wcscmp(const char *file, int line, const wchar_t *s1, const wchar_t *s2);
char *_V_strstr(const char *file, int line, const char *s1, const char *search);
int _V_wcslen(const char *file, int line, const wchar_t *pwch);
wchar_t *_V_wcslower(const char *file, int line, wchar_t *start);
wchar_t *_V_wcsupr(const char *file, int line, wchar_t *start);
// ASCII-optimized functions which fall back to CRT only when necessary
char *V_strupr(char *start);
char *V_strlower(char *start);
int V_stricmp(const char *s1, const char *s2);
// int V_strncmp( const char *s1, const char *s2, int count );
#define V_strncmp strncmp
int V_strnicmp(const char *s1, const char *s2, int n);
#ifdef POSIX
inline char *strupr(char *start) { return V_strupr(start); }
inline char *strlwr(char *start) { return V_strlower(start); }
inline wchar_t *_wcslwr(wchar_t *start) {
wchar_t *str = start;
while (str && *str) {
*str = (wchar_t)towlower(static_cast<wint_t>(*str));
str++;
}
return start;
};
inline wchar_t *_wcsupr(wchar_t *start) {
wchar_t *str = start;
while (str && *str) {
*str = (wchar_t)towupper(static_cast<wint_t>(*str));
str++;
}
return start;
};
#endif // POSIX
#ifdef _DEBUG
#define V_memset(dest, fill, count) \
_V_memset(__FILE__, __LINE__, (dest), (fill), (count))
#define V_memcpy(dest, src, count) \
_V_memcpy(__FILE__, __LINE__, (dest), (src), (count))
#define V_memmove(dest, src, count) \
_V_memmove(__FILE__, __LINE__, (dest), (src), (count))
#define V_memcmp(m1, m2, count) \
_V_memcmp(__FILE__, __LINE__, (m1), (m2), (count))
#define V_strlen(str) _V_strlen(__FILE__, __LINE__, (str))
#define V_strcpy(dest, src) _V_strcpy(__FILE__, __LINE__, (dest), (src))
#define V_strrchr(s, c) _V_strrchr(__FILE__, __LINE__, (s), (c))
#define V_strcmp(s1, s2) _V_strcmp(__FILE__, __LINE__, (s1), (s2))
#define V_wcscmp(s1, s2) _V_wcscmp(__FILE__, __LINE__, (s1), (s2))
#define V_strstr(s1, search) _V_strstr(__FILE__, __LINE__, (s1), (search))
#define V_wcslen(pwch) _V_wcslen(__FILE__, __LINE__, (pwch))
#define V_wcslower(start) _V_wcslower(__FILE__, __LINE__, (start))
#define V_wcsupr(start) _V_wcsupr(__FILE__, __LINE__, (start))
#else
inline void V_memset(void *dest, int fill, int count) {
memset(dest, fill, count);
}
inline void V_memcpy(void *dest, const void *src, int count) {
memcpy(dest, src, count);
}
inline void V_memmove(void *dest, const void *src, int count) {
memmove(dest, src, count);
}
inline int V_memcmp(const void *m1, const void *m2, int count) {
return memcmp(m1, m2, count);
}
inline int V_strlen(const char *str) { return (int)strlen(str); }
inline void V_strcpy(char *dest, const char *src) { strcpy(dest, src); }
inline int V_wcslen(const wchar_t *pwch) { return (int)wcslen(pwch); }
inline char *V_strrchr(const char *s, char c) { return (char *)strrchr(s, c); }
inline int V_strcmp(const char *s1, const char *s2) { return strcmp(s1, s2); }
inline int V_wcscmp(const wchar_t *s1, const wchar_t *s2) {
return wcscmp(s1, s2);
}
inline char *V_strstr(const char *s1, const char *search) {
return (char *)strstr(s1, search);
}
inline wchar_t *V_wcslower(wchar_t *start) { return _wcslwr(start); }
inline wchar_t *V_wcsupr(wchar_t *start) { return _wcsupr(start); }
#endif
int V_atoi(const char *str);
int64 V_atoi64(const char *str);
uint64 V_atoui64(const char *str);
float V_atof(const char *str);
char *V_stristr(char *pStr, const char *pSearch);
const char *V_stristr(const char *pStr, const char *pSearch);
// const char* V_strnistr( const char* pStr, const char* pSearch, int n );
#define V_strnistr 0
const char *V_strnchr(const char *pStr, char c, int n);
inline int V_strcasecmp(const char *s1, const char *s2) {
return V_stricmp(s1, s2);
}
inline int V_strncasecmp(const char *s1, const char *s2, int n) {
return V_strnicmp(s1, s2, n);
}
void V_qsort_s(void *base, size_t num, size_t width,
int(__cdecl *compare)(void *, const void *, const void *),
void *context);
// returns string immediately following prefix, (ie str+strlen(prefix)) or NULL
// if prefix not found
const char *StringAfterPrefix(const char *str, const char *prefix);
const char *StringAfterPrefixCaseSensitive(const char *str, const char *prefix);
inline bool StringHasPrefix(const char *str, const char *prefix) {
return StringAfterPrefix(str, prefix) != NULL;
}
inline bool StringHasPrefixCaseSensitive(const char *str, const char *prefix) {
return StringAfterPrefixCaseSensitive(str, prefix) != NULL;
}
template <bool CASE_SENSITIVE>
inline bool _V_strEndsWithInner(const char *pStr, const char *pSuffix) {
int nSuffixLen = V_strlen(pSuffix);
int nStringLen = V_strlen(pStr);
if (nSuffixLen == 0)
return true; // All strings end with the empty string (matches Java &
// .NET behaviour)
if (nStringLen < nSuffixLen) return false;
pStr += nStringLen - nSuffixLen;
if (CASE_SENSITIVE)
return !V_strcmp(pStr, pSuffix);
else
return !V_stricmp(pStr, pSuffix);
}
// Does 'pStr' end with 'pSuffix'? (case sensitive/insensitive variants)
inline bool V_strEndsWith(const char *pStr, const char *pSuffix) {
return _V_strEndsWithInner<TRUE>(pStr, pSuffix);
}
inline bool V_striEndsWith(const char *pStr, const char *pSuffix) {
return _V_strEndsWithInner<FALSE>(pStr, pSuffix);
}
// Normalizes a float string in place.
// (removes leading zeros, trailing zeros after the decimal point, and the
// decimal point itself where possible)
void V_normalizeFloatString(char *pFloat);
// this is locale-unaware and therefore faster version of standard isdigit()
// It also avoids sign-extension errors.
inline bool V_isdigit(char c) { return c >= '0' && c <= '9'; }
// The islower/isdigit/etc. functions all expect a parameter that is either
// 0-0xFF or EOF. It is easy to violate this constraint simply by passing
// 'char' to these functions instead of unsigned char.
// The V_ functions handle the char/unsigned char mismatch by taking a
// char parameter and casting it to unsigned char so that chars with the
// sign bit set will be zero extended instead of sign extended.
// Not that EOF cannot be passed to these functions.
//
// These functions could also be used for optimizations if locale
// considerations make some of the CRT functions slow.
//#undef isdigit // In case this is implemented as a macro
//#define isdigit use_V_isdigit_instead_of_isdigit
inline bool V_isalpha(char c) { return isalpha((unsigned char)c) != 0; }
//#undef isalpha
//#define isalpha use_V_isalpha_instead_of_isalpha
inline bool V_isalnum(char c) { return isalnum((unsigned char)c) != 0; }
//#undef isalnum
//#define isalnum use_V_isalnum_instead_of_isalnum
inline bool V_isprint(char c) { return isprint((unsigned char)c) != 0; }
//#undef isprint
//#define isprint use_V_isprint_instead_of_isprint
inline bool V_isxdigit(char c) { return isxdigit((unsigned char)c) != 0; }
//#undef isxdigit
//#define isxdigit use_V_isxdigit_instead_of_isxdigit
inline bool V_ispunct(char c) { return ispunct((unsigned char)c) != 0; }
//#undef ispunct
//#define ispunct use_V_ispunct_instead_of_ispunct
inline bool V_isgraph(char c) { return isgraph((unsigned char)c) != 0; }
//#undef isgraph
//#define isgraph use_V_isgraph_instead_of_isgraph
inline bool V_isupper(char c) { return isupper((unsigned char)c) != 0; }
//#undef isupper
//#define isupper use_V_isupper_instead_of_isupper
inline bool V_islower(char c) { return islower((unsigned char)c) != 0; }
//#undef islower
//#define islower use_V_islower_instead_of_islower
inline bool V_iscntrl(char c) { return iscntrl((unsigned char)c) != 0; }
//#undef iscntrl
//#define iscntrl use_V_iscntrl_instead_of_iscntrl
inline bool V_isspace(char c) { return isspace((unsigned char)c) != 0; }
//#undef isspace
//#define isspace use_V_isspace_instead_of_isspace
// These are versions of functions that guarantee NULL termination.
//
// maxLen is the maximum number of bytes in the destination string.
// pDest[maxLen-1] is always NULL terminated if pSrc's length is >= maxLen.
//
// This means the last parameter can usually be a sizeof() of a string.
#define V_strncpy strncpy
// Ultimate safe strcpy function, for arrays only -- buffer size is inferred by
// the compiler
template <size_t maxLenInChars>
void V_strcpy_safe(OUT_Z_ARRAY char (&pDest)[maxLenInChars], const char *pSrc) {
V_strncpy(pDest, pSrc, (int)maxLenInChars);
}
// A function which duplicates a string using new[] to allocate the new string.
inline char *V_strdup(const char *pSrc) {
int nLen = V_strlen(pSrc);
char *pResult = new char[nLen + 1];
V_memcpy(pResult, pSrc, nLen + 1);
return pResult;
}
void V_wcsncpy(OUT_Z_BYTECAP(maxLenInBytes) wchar_t *pDest, wchar_t const *pSrc,
int maxLenInBytes);
template <size_t maxLenInChars>
void V_wcscpy_safe(OUT_Z_ARRAY wchar_t (&pDest)[maxLenInChars],
wchar_t const *pSrc) {
V_wcsncpy(pDest, pSrc, maxLenInChars * sizeof(*pDest));
}
#define COPY_ALL_CHARACTERS -1
char *V_strncat(INOUT_Z_CAP(cchDest) char *pDest, const char *pSrc,
size_t cchDest, int max_chars_to_copy = COPY_ALL_CHARACTERS);
template <size_t cchDest>
char *V_strcat_safe(INOUT_Z_ARRAY char (&pDest)[cchDest], const char *pSrc,
int nMaxCharsToCopy = COPY_ALL_CHARACTERS) {
return V_strncat(pDest, pSrc, (int)cchDest, nMaxCharsToCopy);
}
wchar_t *V_wcsncat(INOUT_Z_CAP(cchDest) wchar_t *pDest, const wchar_t *pSrc,
size_t cchDest, int nMaxCharsToCopy = COPY_ALL_CHARACTERS);
template <size_t cchDest>
wchar_t *V_wcscat_safe(INOUT_Z_ARRAY wchar_t (&pDest)[cchDest],
const wchar_t *pSrc,
int nMaxCharsToCopy = COPY_ALL_CHARACTERS) {
return V_wcsncat(pDest, pSrc, (int)cchDest, nMaxCharsToCopy);
}
char *V_strnlwr(INOUT_Z_CAP(cchBuf) char *pBuf, size_t cchBuf);
template <size_t cchDest>
char *V_strlwr_safe(INOUT_Z_ARRAY char (&pBuf)[cchDest]) {
return _V_strnlwr(pBuf, (int)cchDest);
}
// Unicode string conversion policies - what to do if an illegal sequence is
// encountered
enum EStringConvertErrorPolicy {
_STRINGCONVERTFLAG_SKIP = 1,
_STRINGCONVERTFLAG_FAIL = 2,
_STRINGCONVERTFLAG_ASSERT = 4,
STRINGCONVERT_REPLACE = 0,
STRINGCONVERT_SKIP = _STRINGCONVERTFLAG_SKIP,
STRINGCONVERT_FAIL = _STRINGCONVERTFLAG_FAIL,
STRINGCONVERT_ASSERT_REPLACE =
_STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_REPLACE,
STRINGCONVERT_ASSERT_SKIP = _STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_SKIP,
STRINGCONVERT_ASSERT_FAIL = _STRINGCONVERTFLAG_ASSERT + STRINGCONVERT_FAIL,
};
// Unicode (UTF-8, UTF-16, UTF-32) fundamental conversion functions.
bool Q_IsValidUChar32(uchar32 uValue);
int Q_UChar32ToUTF8Len(uchar32 uValue);
int Q_UChar32ToUTF8(uchar32 uValue, char *pOut);
int Q_UChar32ToUTF16Len(uchar32 uValue);
int Q_UChar32ToUTF16(uchar32 uValue, uchar16 *pOut);
// Validate that a Unicode string is well-formed and contains only valid code
// points
bool Q_UnicodeValidate(const char *pUTF8);
bool Q_UnicodeValidate(const uchar16 *pUTF16);
bool Q_UnicodeValidate(const uchar32 *pUTF32);
// Returns length of string in Unicode code points (printed glyphs or
// non-printing characters)
int Q_UnicodeLength(const char *pUTF8);
int Q_UnicodeLength(const uchar16 *pUTF16);
int Q_UnicodeLength(const uchar32 *pUTF32);
// Returns length of string in elements, not characters! These are analogous to
// Q_strlen and Q_wcslen
inline int Q_strlen16(const uchar16 *puc16) {
int nElems = 0;
while (puc16[nElems]) ++nElems;
return nElems;
}
inline int Q_strlen32(const uchar32 *puc32) {
int nElems = 0;
while (puc32[nElems]) ++nElems;
return nElems;
}
// Repair invalid Unicode strings by dropping truncated characters and fixing
// improperly-double-encoded UTF-16 sequences. Unlike conversion functions which
// replace with '?' by default, a repair operation assumes that you know that
// something is wrong with the string (eg, mid-sequence truncation) and you just
// want to do the best possible job of cleaning it up. You can pass a REPLACE or
// FAIL policy if you would prefer to replace characters with '?' or clear the
// entire string. Returns nonzero on success, or 0 if the policy is FAIL and an
// invalid sequence was found.
int Q_UnicodeRepair(char *pUTF8,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP);
int Q_UnicodeRepair(uchar16 *pUTF16,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP);
int Q_UnicodeRepair(uchar32 *pUTF32,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_SKIP);
// Advance pointer forward by N Unicode code points (printed glyphs or
// non-printing characters), stopping at terminating null if encountered.
char *Q_UnicodeAdvance(char *pUTF8, int nCharacters);
uchar16 *Q_UnicodeAdvance(uchar16 *pUTF16, int nCharactersnCharacters);
uchar32 *Q_UnicodeAdvance(uchar32 *pUTF32, int nChars);
inline const char *Q_UnicodeAdvance(const char *pUTF8, int nCharacters) {
return Q_UnicodeAdvance((char *)pUTF8, nCharacters);
}
inline const uchar16 *Q_UnicodeAdvance(const uchar16 *pUTF16, int nCharacters) {
return Q_UnicodeAdvance((uchar16 *)pUTF16, nCharacters);
}
inline const uchar32 *Q_UnicodeAdvance(const uchar32 *pUTF32, int nCharacters) {
return Q_UnicodeAdvance((uchar32 *)pUTF32, nCharacters);
}
// Truncate to maximum of N Unicode code points (printed glyphs or non-printing
// characters)
inline void Q_UnicodeTruncate(char *pUTF8, int nCharacters) {
*Q_UnicodeAdvance(pUTF8, nCharacters) = 0;
}
inline void Q_UnicodeTruncate(uchar16 *pUTF16, int nCharacters) {
*Q_UnicodeAdvance(pUTF16, nCharacters) = 0;
}
inline void Q_UnicodeTruncate(uchar32 *pUTF32, int nCharacters) {
*Q_UnicodeAdvance(pUTF32, nCharacters) = 0;
}
// Conversion between Unicode string types (UTF-8, UTF-16, UTF-32). Deals with
// bytes, not element counts, to minimize harm from the programmer mistakes
// which continue to plague our wide-character string code. Returns the number
// of bytes written to the output, or if output is NULL, the number of bytes
// required.
int Q_UTF8ToUTF16(
const char *pUTF8, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16,
int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
int Q_UTF8ToUTF32(
const char *pUTF8, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32,
int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
int Q_UTF16ToUTF8(
const uchar16 *pUTF16, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8,
int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
int Q_UTF16ToUTF32(
const uchar16 *pUTF16, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32,
int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
int Q_UTF32ToUTF8(
const uchar32 *pUTF32, OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8,
int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
int Q_UTF32ToUTF16(
const uchar32 *pUTF32, OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16,
int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
// This is disgusting and exist only easily to facilitate having 16-bit and
// 32-bit wchar_t's on different platforms
int Q_UTF32ToUTF32(
const uchar32 *pUTF32Source,
OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32Dest,
int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
// Conversion between count-limited UTF-n character arrays, including any
// potential NULL characters. Output has a terminating NULL for safety; strip
// the last character if you want an unterminated string. Returns the number of
// bytes written to the output, or if output is NULL, the number of bytes
// required.
int Q_UTF8CharsToUTF16(
const char *pUTF8, int nElements,
OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
int Q_UTF8CharsToUTF32(
const char *pUTF8, int nElements,
OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
int Q_UTF16CharsToUTF8(
const uchar16 *pUTF16, int nElements,
OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
int Q_UTF16CharsToUTF32(
const uchar16 *pUTF16, int nElements,
OUT_Z_BYTECAP(cubDestSizeInBytes) uchar32 *pUTF32, int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
int Q_UTF32CharsToUTF8(
const uchar32 *pUTF32, int nElements,
OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8, int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
int Q_UTF32CharsToUTF16(
const uchar32 *pUTF32, int nElements,
OUT_Z_BYTECAP(cubDestSizeInBytes) uchar16 *pUTF16, int cubDestSizeInBytes,
EStringConvertErrorPolicy ePolicy = STRINGCONVERT_ASSERT_REPLACE);
// Decode a single UTF-8 character to a uchar32, returns number of UTF-8 bytes
// parsed
int Q_UTF8ToUChar32(const char *pUTF8_, uchar32 &uValueOut, bool &bErrorOut);
// Decode a single UTF-16 character to a uchar32, returns number of UTF-16
// characters (NOT BYTES) consumed
int Q_UTF16ToUChar32(const uchar16 *pUTF16, uchar32 &uValueOut,
bool &bErrorOut);
// NOTE: WString means either UTF32 or UTF16 depending on the platform and
// compiler settings.
#if defined(_MSC_VER) || defined(_WIN32)
#define Q_UTF8ToWString Q_UTF8ToUTF16
#define Q_UTF8CharsToWString Q_UTF8CharsToUTF16
#define Q_UTF32ToWString Q_UTF32ToUTF16
#define Q_WStringToUTF8 Q_UTF16ToUTF8
#define Q_WStringCharsToUTF8 Q_UTF16CharsToUTF8
#define Q_WStringToUTF32 Q_UTF16ToUTF32
#else
#define Q_UTF8ToWString Q_UTF8ToUTF32
#define Q_UTF8CharsToWString Q_UTF8CharsToUTF32
#define Q_UTF32ToWString Q_UTF32ToUTF32
#define Q_WStringToUTF8 Q_UTF32ToUTF8
#define Q_WStringCharsToUTF8 Q_UTF32CharsToUTF8
#define Q_WStringToUTF32 Q_UTF32ToUTF32
#endif
// These are legacy names which don't make a lot of sense but are used
// everywhere. Prefer the WString convention wherever possible
#define V_UTF8ToUnicode Q_UTF8ToWString
#define V_UnicodeToUTF8 Q_WStringToUTF8
#ifdef WIN32
// This function is ill-defined as it relies on the current ANSI code page.
// Currently Win32 only for tools.
int Q_LocaleSpecificANSIToUTF8(const char *pANSI, int cubSrcInBytes,
OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8,
int cubDestSizeInBytes);
#endif
// Windows-1252 is mostly the same as ISO Latin-1, and probably what you want if
// you are saddled with an 8-bit ANSI string that originated on a Windows
// system.
int Q_Windows1252CharsToUTF8(const char *pchSrc, int cchSrc,
OUT_Z_BYTECAP(cchDestUTF8) char *pchDestUTF8,
int cchDestUTF8);
// CP 437 is used for VGA console text and some old-school file formats such as
// ZIP. It is also known as the "IBM PC OEM code page" and various related
// names. You probably don't want to use this function unless you know for a
// fact that you're dealing with old-school OEM code pages. Otherwise try the
// Windows-1252 function above.
int Q_CP437CharsToUTF8(const char *pchSrc, int cchSrc,
OUT_Z_BYTECAP(cchDestUTF8) char *pchDestUTF8,
int cchDestUTF8);
// replaces characters in a UTF8 string with their identical-looking equivalent
// (non-roundtrippable)
//
// older version of API uses a small homoglyph table; newer version uses a
// larger one
//
// strings using old version are baked into the database, so we won't toss it
// quite yet, but don't use it for new features.
int Q_NormalizeUTF8Old(const char *pchSrc, OUT_Z_CAP(cchDest) char *pchDest,
int cchDest);
int Q_NormalizeUTF8(const char *pchSrc, OUT_Z_CAP(cchDest) char *pchDest,
int cchDest);
//-----------------------------------------------------------------------------
// Purpose: replaces characters in a UTF8 string with similar-looking
// equivalents. Only replaces with ASCII characters.. non-recognized characters
// will be replaced with ? This operation is destructive (i.e. you can't
// roundtrip through the normalized form).
//-----------------------------------------------------------------------------
template <size_t maxLenInChars>
int Q_NormalizeUTF8ToASCII(OUT_Z_ARRAY char (&pchDest)[maxLenInChars],
const char *pchSrc) {
int nResult = Q_NormalizeUTF8(pchSrc, pchDest, maxLenInChars);
// replace non ASCII characters with ?
for (int i = 0; i < nResult; i++) {
if (pchDest[i] > 127 || pchDest[i] < 0) {
pchDest[i] = '?';
}
}
return nResult;
}
// UNDONE: Find a non-compiler-specific way to do this
#ifdef _WIN32
#ifndef _VA_LIST_DEFINED
#ifdef _M_ALPHA
struct va_list {
char *a0; /* pointer to first homed integer argument */
int offset; /* byte offset of next parameter */
};
#else // !_M_ALPHA
typedef char *va_list;
#endif // !_M_ALPHA
#define _VA_LIST_DEFINED
#endif // _VA_LIST_DEFINED
#elif POSIX
#include <stdarg.h>
#endif
#ifdef _WIN32
#define CORRECT_PATH_SEPARATOR '\\'
#define CORRECT_PATH_SEPARATOR_S "\\"
#define INCORRECT_PATH_SEPARATOR '/'
#define INCORRECT_PATH_SEPARATOR_S "/"
#elif POSIX
#define CORRECT_PATH_SEPARATOR '/'
#define CORRECT_PATH_SEPARATOR_S "/"
#define INCORRECT_PATH_SEPARATOR '\\'
#define INCORRECT_PATH_SEPARATOR_S "\\"
#endif
int V_vsnprintf(OUT_Z_CAP(maxLenInCharacters) char *pDest,
int maxLenInCharacters,
PRINTF_FORMAT_STRING const char *pFormat, va_list params);
template <size_t maxLenInCharacters>
int V_vsprintf_safe(OUT_Z_ARRAY char (&pDest)[maxLenInCharacters],
PRINTF_FORMAT_STRING const char *pFormat, va_list params) {
return V_vsnprintf(pDest, maxLenInCharacters, pFormat, params);
}
#define V_snprintf snprintf
// int V_snprintf( OUT_Z_CAP(maxLenInChars) char *pDest, int maxLenInChars,
// PRINTF_FORMAT_STRING const char *pFormat, ... ) FMTFUNCTION( 3, 4 );
// gcc insists on only having format annotations on declarations, not
// definitions, which is why I have both.
template <size_t maxLenInChars>
int V_sprintf_safe(OUT_Z_ARRAY char (&pDest)[maxLenInChars],
PRINTF_FORMAT_STRING const char *pFormat, ...)
FMTFUNCTION(2, 3);
template <size_t maxLenInChars>
int V_sprintf_safe(OUT_Z_ARRAY char (&pDest)[maxLenInChars],
PRINTF_FORMAT_STRING const char *pFormat, ...) {
va_list params;
va_start(params, pFormat);
int result = V_vsnprintf(pDest, maxLenInChars, pFormat, params);
va_end(params);
return result;
}
int V_vsnwprintf(OUT_Z_CAP(maxLenInCharacters) wchar_t *pDest,
int maxLenInCharacters,
PRINTF_FORMAT_STRING const wchar_t *pFormat, va_list params);
template <size_t maxLenInCharacters>
int V_vswprintf_safe(OUT_Z_ARRAY wchar_t (&pDest)[maxLenInCharacters],
PRINTF_FORMAT_STRING const wchar_t *pFormat,
va_list params) {
return V_vsnwprintf(pDest, maxLenInCharacters, pFormat, params);
}
int V_vsnprintfRet(OUT_Z_CAP(maxLenInCharacters) char *pDest,
int maxLenInCharacters,
PRINTF_FORMAT_STRING const char *pFormat, va_list params,
bool *pbTruncated);
template <size_t maxLenInCharacters>
int V_vsprintfRet_safe(OUT_Z_ARRAY char (&pDest)[maxLenInCharacters],
PRINTF_FORMAT_STRING const char *pFormat, va_list params,
bool *pbTruncated) {
return V_vsnprintfRet(pDest, maxLenInCharacters, pFormat, params,
pbTruncated);
}
// FMTFUNCTION can only be used on ASCII functions, not wide-char functions.
int V_snwprintf(OUT_Z_CAP(maxLenInCharacters) wchar_t *pDest,
int maxLenInCharacters,
PRINTF_FORMAT_STRING const wchar_t *pFormat, ...);
template <size_t maxLenInChars>
int V_swprintf_safe(OUT_Z_ARRAY wchar_t (&pDest)[maxLenInChars],
PRINTF_FORMAT_STRING const wchar_t *pFormat, ...) {
va_list params;
va_start(params, pFormat);
int result = V_vsnwprintf(pDest, maxLenInChars, pFormat, params);
va_end(params);
return result;
}
// Prints out a pretified memory counter string value ( e.g., 7,233.27 Mb,
// 1,298.003 Kb, 127 bytes )
char *V_pretifymem(float value, int digitsafterdecimal = 2,
bool usebinaryonek = false);
// Prints out a pretified integer with comma separators (eg, 7,233,270,000)
char *V_pretifynum(int64 value);
int _V_UCS2ToUnicode(const ucs2 *pUCS2,
OUT_Z_BYTECAP(cubDestSizeInBytes) wchar_t *pUnicode,
int cubDestSizeInBytes);
template <typename T>
inline int V_UCS2ToUnicode(const ucs2 *pUCS2,
OUT_Z_BYTECAP(cubDestSizeInBytes) wchar_t *pUnicode,
T cubDestSizeInBytes) {
return _V_UCS2ToUnicode(pUCS2, pUnicode,
static_cast<int>(cubDestSizeInBytes));
}
int _V_UCS2ToUTF8(const ucs2 *pUCS2,
OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8,
int cubDestSizeInBytes);
template <typename T>
inline int V_UCS2ToUTF8(const ucs2 *pUCS2,
OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUTF8,
T cubDestSizeInBytes) {
return _V_UCS2ToUTF8(pUCS2, pUTF8, static_cast<int>(cubDestSizeInBytes));
}
int _V_UnicodeToUCS2(const wchar_t *pUnicode, int cubSrcInBytes,
OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUCS2,
int cubDestSizeInBytes);
template <typename T, typename U>
inline int V_UnicodeToUCS2(const wchar_t *pUnicode, T cubSrcInBytes,
OUT_Z_BYTECAP(cubDestSizeInBytes) char *pUCS2,
U cubDestSizeInBytes) {
return _V_UnicodeToUCS2(pUnicode, static_cast<int>(cubSrcInBytes), pUCS2,
static_cast<int>(cubDestSizeInBytes));
}
int _V_UTF8ToUCS2(const char *pUTF8, int cubSrcInBytes,
OUT_Z_BYTECAP(cubDestSizeInBytes) ucs2 *pUCS2,
int cubDestSizeInBytes);
template <typename T, typename U>
inline int V_UTF8ToUCS2(const char *pUTF8, T cubSrcInBytes,
OUT_Z_BYTECAP(cubDestSizeInBytes) ucs2 *pUCS2,
U cubDestSizeInBytes) {
return _V_UTF8ToUCS2(pUTF8, static_cast<int>(cubSrcInBytes), pUCS2,
static_cast<int>(cubDestSizeInBytes));
}
// strips leading and trailing whitespace; returns true if any characters were
// removed. UTF-8 and UTF-16 versions.
bool Q_StripPrecedingAndTrailingWhitespace(char *pch);
bool Q_StripPrecedingAndTrailingWhitespaceW(wchar_t *pwch);
// strips leading and trailing whitespace, also taking "aggressive" characters
// like punctuation spaces, non-breaking spaces, composing characters, and so on
bool Q_AggressiveStripPrecedingAndTrailingWhitespace(char *pch);
bool Q_AggressiveStripPrecedingAndTrailingWhitespaceW(wchar_t *pwch);
bool Q_RemoveAllEvilCharacters(char *pch);
// Functions for converting hexidecimal character strings back into binary data
// etc.
//
// e.g.,
// int output;
// V_hextobinary( "ffffffff", 8, &output, sizeof( output ) );
// would make output == 0xfffffff or -1
// Similarly,
// char buffer[ 9 ];
// V_binarytohex( &output, sizeof( output ), buffer, sizeof( buffer ) );
// would put "ffffffff" into buffer (note null terminator!!!)
unsigned char V_nibble(char c);
void V_hextobinary(char const *in, int numchars, byte *out, int maxoutputbytes);
void V_binarytohex(const byte *in, int inputbytes, char *out, int outsize);
// Tools for working with filenames
// Extracts the base name of a file (no path, no extension, assumes '/' or '\'
// as path separator)
void V_FileBase(const char *in, char *out, int maxlen);
// Remove the final characters of ppath if it's '\' or '/'.
void V_StripTrailingSlash(char *ppath);
// Remove any extension from in and return resulting string in out
void V_StripExtension(const char *in, char *out, int outLen);
// Make path end with extension if it doesn't already have an extension
void V_DefaultExtension(char *path, const char *extension,
int pathStringLength);
// Strips any current extension from path and ensures that extension is the new
// extension
void V_SetExtension(char *path, const char *extension, int pathStringLength);
// Removes any filename from path ( strips back to previous / or \ character )
void V_StripFilename(char *path);
// Remove the final directory from the path
bool V_StripLastDir(char *dirName, int maxlen);
// Returns a pointer to the unqualified file name (no path) of a file name
const char *V_UnqualifiedFileName(const char *in);
// Given a path and a filename, composes "path\filename", inserting the (OS
// correct) separator if necessary
void V_ComposeFileName(const char *path, const char *filename, char *dest,
int destSize);
// Copy out the path except for the stuff after the final pathseparator
bool V_ExtractFilePath(const char *path, char *dest, int destSize);
// Copy out the file extension into dest
void V_ExtractFileExtension(const char *path, char *dest, int destSize);
const char *V_GetFileExtension(const char *path);
// returns a pointer to just the filename part of the path
// (everything after the last path seperator)
const char *V_GetFileName(const char *path);
// This removes "./" and "../" from the pathname. pFilename should be a full
// pathname. Also incorporates the behavior of V_FixSlashes and optionally
// V_FixDoubleSlashes. Returns false if it tries to ".." past the root directory
// in the drive (in which case it is an invalid path).
bool V_RemoveDotSlashes(char *pFilename,
char separator = CORRECT_PATH_SEPARATOR,
bool bRemoveDoubleSlashes = true);
// If pPath is a relative path, this function makes it into an absolute path
// using the current working directory as the base, or pStartingDir if it's
// non-NULL. Returns false if it runs out of room in the string, or if pPath
// tries to ".." past the root directory.
void V_MakeAbsolutePath(char *pOut, int outLen, const char *pPath,
const char *pStartingDir = NULL);
// Creates a relative path given two full paths
// The first is the full path of the file to make a relative path for.
// The second is the full path of the directory to make the first file relative
// to Returns false if they can't be made relative (on separate drives, for
// example)
bool V_MakeRelativePath(const char *pFullPath, const char *pDirectory,
char *pRelativePath, int nBufLen);
// Fixes up a file name, removing dot slashes, fixing slashes, converting to
// lowercase, etc.
void V_FixupPathName(OUT_Z_CAP(nOutLen) char *pOut, size_t nOutLen,
const char *pPath);
// Adds a path separator to the end of the string if there isn't one already.
// Returns false if it would run out of space.
void V_AppendSlash(INOUT_Z_CAP(strSize) char *pStr, int strSize);
// Returns true if the path is an absolute path.
bool V_IsAbsolutePath(IN_Z const char *pPath);
// Scans pIn and replaces all occurences of pMatch with pReplaceWith.
// Writes the result to pOut.
// Returns true if it completed successfully.
// If it would overflow pOut, it fills as much as it can and returns false.
bool V_StrSubst(IN_Z const char *pIn, IN_Z const char *pMatch,
const char *pReplaceWith, OUT_Z_CAP(outLen) char *pOut,
int outLen, bool bCaseSensitive = false);
// Split the specified string on the specified separator.
// Returns a list of strings separated by pSeparator.
// You are responsible for freeing the contents of outStrings (call
// outStrings.PurgeAndDeleteElements).
void V_SplitString(IN_Z const char *pString, IN_Z const char *pSeparator,
CUtlVector<char *, CUtlMemory<char *, int> > &outStrings);
// Just like V_SplitString, but it can use multiple possible separators.
void V_SplitString2(IN_Z const char *pString, const char **pSeparators,
int nSeparators,
CUtlVector<char *, CUtlMemory<char *, int> > &outStrings);
// Returns false if the buffer is not large enough to hold the working directory
// name.
bool V_GetCurrentDirectory(OUT_Z_CAP(maxLen) char *pOut, int maxLen);
// Set the working directory thus.
bool V_SetCurrentDirectory(const char *pDirName);
// This function takes a slice out of pStr and stores it in pOut.
// It follows the Python slice convention:
// Negative numbers wrap around the string (-1 references the last character).
// Large numbers are clamped to the end of the string.
void V_StrSlice(const char *pStr, int firstChar, int lastCharNonInclusive,
OUT_Z_CAP(outSize) char *pOut, int outSize);
// Chop off the left nChars of a string.
void V_StrLeft(const char *pStr, int nChars, OUT_Z_CAP(outSize) char *pOut,
int outSize);
// Chop off the right nChars of a string.
void V_StrRight(const char *pStr, int nChars, OUT_Z_CAP(outSize) char *pOut,
int outSize);
// change "special" characters to have their c-style backslash sequence. like
// \n, \r, \t, ", etc. returns a pointer to a newly allocated string, which you
// must delete[] when finished with.
char *V_AddBackSlashesToSpecialChars(char const *pSrc);
// Force slashes of either type to be = separator character
void V_FixSlashes(char *pname, char separator = CORRECT_PATH_SEPARATOR);
// This function fixes cases of filenames like materials\\blah.vmt or
// somepath\otherpath\\ and removes the extra double slash.
void V_FixDoubleSlashes(char *pStr);
// Convert multibyte to wchar + back
// Specify -1 for nInSize for null-terminated string
void V_strtowcs(const char *pString, int nInSize,
OUT_Z_BYTECAP(nOutSizeInBytes) wchar_t *pWString,
int nOutSizeInBytes);
void V_wcstostr(const wchar_t *pWString, int nInSize,
OUT_Z_CAP(nOutSizeInBytes) char *pString, int nOutSizeInBytes);
// buffer-safe strcat
inline void V_strcat(INOUT_Z_CAP(cchDest) char *dest, const char *src,
int cchDest) {
V_strncat(dest, src, cchDest, COPY_ALL_CHARACTERS);
}
// Buffer safe wcscat
inline void V_wcscat(INOUT_Z_CAP(cchDest) wchar_t *dest, const wchar_t *src,
int cchDest) {
V_wcsncat(dest, src, cchDest, COPY_ALL_CHARACTERS);
}
//-----------------------------------------------------------------------------
// generic unique name helper functions
//-----------------------------------------------------------------------------
// returns startindex if none found, 2 if "prefix" found, and n+1 if "prefixn"
// found
template <class NameArray>
int V_GenerateUniqueNameIndex(const char *prefix, const NameArray &nameArray,
int startindex = 0) {
if (prefix == NULL) return 0;
int freeindex = startindex;
int nNames = nameArray.Count();
for (int i = 0; i < nNames; ++i) {
const char *pName = nameArray[i];
if (!pName) continue;
const char *pIndexStr = StringAfterPrefix(pName, prefix);
if (pIndexStr) {
int index = *pIndexStr ? atoi(pIndexStr) : 1;
if (index >= freeindex) {
// TODO - check that there isn't more junk after the index in
// pElementName
freeindex = index + 1;
}
}
}
return freeindex;
}
template <class NameArray>
bool V_GenerateUniqueName(OUT_Z_CAP(memsize) char *name, int memsize,
const char *prefix, const NameArray &nameArray) {
if (name == NULL || memsize == 0) return false;
if (prefix == NULL) {
name[0] = '\0';
return false;
}
int prefixLength = V_strlen(prefix);
if (prefixLength + 1 > memsize) {
name[0] = '\0';
return false;
}
int i = V_GenerateUniqueNameIndex(prefix, nameArray);
if (i <= 0) {
V_strncpy(name, prefix, memsize);
return true;
}
int newlen = prefixLength + (int)log10((float)i) + 1;
if (newlen + 1 > memsize) {
V_strncpy(name, prefix, memsize);
return false;
}
V_snprintf(name, memsize, "%s%d", prefix, i);
return true;
}
//
// This utility class is for performing UTF-8 <-> UTF-16 conversion.
// It is intended for use with function/method parameters.
//
// For example, you can call
// FunctionTakingUTF16( CStrAutoEncode( utf8_string ).ToWString() )
// or
// FunctionTakingUTF8( CStrAutoEncode( utf16_string ).ToString() )
//
// The converted string is allocated off the heap, and destroyed when
// the object goes out of scope.
//
// if the string cannot be converted, NULL is returned.
//
// This class doesn't have any conversion operators; the intention is
// to encourage the developer to get used to having to think about which
// encoding is desired.
//
class CStrAutoEncode {
public:
// ctor
explicit CStrAutoEncode(const char *pch) {
m_pch = pch;
m_pwch = NULL;
#if !defined(WIN32) && !defined(_WIN32)
m_pucs2 = NULL;
m_bCreatedUCS2 = false;
#endif
m_bCreatedUTF16 = false;
}
// ctor
explicit CStrAutoEncode(const wchar_t *pwch) {
m_pch = NULL;
m_pwch = pwch;
#if !defined(WIN32) && !defined(_WIN32)
m_pucs2 = NULL;
m_bCreatedUCS2 = false;
#endif
m_bCreatedUTF16 = true;
}
#if !defined(WIN32) && !defined(_WINDOWS) && !defined(_WIN32)
explicit CStrAutoEncode(const ucs2 *pwch) {
m_pch = NULL;
m_pwch = NULL;
m_pucs2 = pwch;
m_bCreatedUCS2 = true;
m_bCreatedUTF16 = false;
}
#endif
// returns the UTF-8 string, converting on the fly.
const char *ToString() {
PopulateUTF8();
return m_pch;
}
// returns the UTF-8 string - a writable pointer.
// only use this if you don't want to call const_cast
// yourself. We need this for cases like CreateProcess.
char *ToStringWritable() {
PopulateUTF8();
return const_cast<char *>(m_pch);
}
// returns the UTF-16 string, converting on the fly.
const wchar_t *ToWString() {
PopulateUTF16();
return m_pwch;
}
#if !defined(WIN32) && !defined(_WIN32)
// returns the UTF-16 string, converting on the fly.
const ucs2 *ToUCS2String() {
PopulateUCS2();
return m_pucs2;
}
#endif
// returns the UTF-16 string - a writable pointer.
// only use this if you don't want to call const_cast
// yourself. We need this for cases like CreateProcess.
wchar_t *ToWStringWritable() {
PopulateUTF16();
return const_cast<wchar_t *>(m_pwch);
}
// dtor
~CStrAutoEncode() {
// if we're "native unicode" then the UTF-8 string is something we
// allocated, and vice versa.
if (m_bCreatedUTF16) {
delete[] m_pch;
} else {
delete[] m_pwch;
}
#if !defined(WIN32) && !defined(_WIN32)
if (!m_bCreatedUCS2 && m_pucs2) delete[] m_pucs2;
#endif
}
private:
// ensure we have done any conversion work required to farm out a
// UTF-8 encoded string.
//
// We perform two heap allocs here; the first one is the worst-case
// (four bytes per Unicode code point). This is usually quite pessimistic,
// so we perform a second allocation that's just the size we need.
void PopulateUTF8() {
if (!m_bCreatedUTF16) return; // no work to do
if (m_pwch == NULL) return; // don't have a UTF-16 string to convert
if (m_pch != NULL)
return; // already been converted to UTF-8; no work to do
// each Unicode code point can expand to as many as four bytes in UTF-8;
// we also need to leave room for the terminating NUL.
uint32 cbMax = 4 * static_cast<uint32>(V_wcslen(m_pwch)) + 1;
char *pchTemp = new char[cbMax];
if (V_UnicodeToUTF8(m_pwch, pchTemp, cbMax)) {
uint32 cchAlloc = static_cast<uint32>(V_strlen(pchTemp)) + 1;
char *pchHeap = new char[cchAlloc];
V_strncpy(pchHeap, pchTemp, cchAlloc);
delete[] pchTemp;
m_pch = pchHeap;
} else {
// do nothing, and leave the UTF-8 string NULL
delete[] pchTemp;
}
}
// ensure we have done any conversion work required to farm out a
// UTF-16 encoded string.
//
// We perform two heap allocs here; the first one is the worst-case
// (one code point per UTF-8 byte). This is sometimes pessimistic,
// so we perform a second allocation that's just the size we need.
void PopulateUTF16() {
if (m_bCreatedUTF16) return; // no work to do
if (m_pch == NULL) return; // no UTF-8 string to convert
if (m_pwch != NULL)
return; // already been converted to UTF-16; no work to do
uint32 cchMax = static_cast<uint32>(V_strlen(m_pch)) + 1;
wchar_t *pwchTemp = new wchar_t[cchMax];
if (V_UTF8ToUnicode(m_pch, pwchTemp, cchMax * sizeof(wchar_t))) {
uint32 cchAlloc = static_cast<uint32>(V_wcslen(pwchTemp)) + 1;
wchar_t *pwchHeap = new wchar_t[cchAlloc];
V_wcsncpy(pwchHeap, pwchTemp, cchAlloc * sizeof(wchar_t));
delete[] pwchTemp;
m_pwch = pwchHeap;
} else {
// do nothing, and leave the UTF-16 string NULL
delete[] pwchTemp;
}
}
#if !defined(WIN32) && !defined(_WIN32)
// ensure we have done any conversion work required to farm out a
// UTF-16 encoded string.
//
// We perform two heap allocs here; the first one is the worst-case
// (one code point per UTF-8 byte). This is sometimes pessimistic,
// so we perform a second allocation that's just the size we need.
void PopulateUCS2() {
if (m_bCreatedUCS2) return;
if (m_pch == NULL) return; // no UTF-8 string to convert
if (m_pucs2 != NULL)
return; // already been converted to UTF-16; no work to do
uint32 cchMax = static_cast<uint32>(V_strlen(m_pch)) + 1;
ucs2 *pwchTemp = new ucs2[cchMax];
if (V_UTF8ToUCS2(m_pch, cchMax, pwchTemp, cchMax * sizeof(ucs2))) {
uint32 cchAlloc = cchMax;
ucs2 *pwchHeap = new ucs2[cchAlloc];
memcpy(pwchHeap, pwchTemp, cchAlloc * sizeof(ucs2));
delete[] pwchTemp;
m_pucs2 = pwchHeap;
} else {
// do nothing, and leave the UTF-16 string NULL
delete[] pwchTemp;
}
}
#endif
// one of these pointers is an owned pointer; whichever
// one is the encoding OTHER than the one we were initialized
// with is the pointer we've allocated and must free.
const char *m_pch;
const wchar_t *m_pwch;
#if !defined(WIN32) && !defined(_WIN32)
const ucs2 *m_pucs2;
bool m_bCreatedUCS2;
#endif
// "created as UTF-16", means our owned string is the UTF-8 string not the
// UTF-16 one.
bool m_bCreatedUTF16;
};
// Encodes a string (or binary data) in URL encoding format, see rfc1738
// section 2.2. Dest buffer should be 3 times the size of source buffer to
// guarantee it has room to encode.
void Q_URLEncodeRaw(OUT_Z_CAP(nDestLen) char *pchDest, int nDestLen,
const char *pchSource, int nSourceLen);
// Decodes a string (or binary data) from URL encoding format, see rfc1738
// section 2.2. Dest buffer should be at least as large as source buffer to
// gurantee room for decode. Dest buffer being the same as the source buffer
// (decode in-place) is explicitly allowed.
//
// Returns the amount of space actually used in the output buffer.
size_t Q_URLDecodeRaw(OUT_CAP(nDecodeDestLen) char *pchDecodeDest,
int nDecodeDestLen, const char *pchEncodedSource,
int nEncodedSourceLen);
// Encodes a string (or binary data) in URL encoding format, this isn't the
// strict rfc1738 format, but instead uses + for spaces. This is for historical
// reasons and HTML spec foolishness that lead to + becoming a de facto standard
// for spaces when encoding form data. Dest buffer should be 3 times the size of
// source buffer to guarantee it has room to encode.
void Q_URLEncode(OUT_Z_CAP(nDestLen) char *pchDest, int nDestLen,
const char *pchSource, int nSourceLen);
// Decodes a string (or binary data) in URL encoding format, this isn't the
// strict rfc1738 format, but instead uses + for spaces. This is for historical
// reasons and HTML spec foolishness that lead to + becoming a de facto standard
// for spaces when encoding form data. Dest buffer should be at least as large
// as source buffer to gurantee room for decode. Dest buffer being the same as
// the source buffer (decode in-place) is explicitly allowed.
//
// Returns the amount of space actually used in the output buffer.
size_t Q_URLDecode(OUT_CAP(nDecodeDestLen) char *pchDecodeDest,
int nDecodeDestLen, const char *pchEncodedSource,
int nEncodedSourceLen);
// NOTE: This is for backward compatability!
// We need to DLL-export the Q methods in vstdlib but not link to them in other
// projects
#if !defined(VSTDLIB_BACKWARD_COMPAT)
#define Q_memset V_memset
#define Q_memcpy V_memcpy
#define Q_memmove V_memmove
#define Q_memcmp V_memcmp
#define Q_strlen V_strlen
#define Q_strcpy V_strcpy
#define Q_strrchr V_strrchr
#define Q_strcmp V_strcmp
#define Q_wcscmp V_wcscmp
#define Q_stricmp V_stricmp
#define Q_strstr V_strstr
#define Q_strupr V_strupr
#define Q_strlower V_strlower
#define Q_wcslen V_wcslen
#define Q_strncmp V_strncmp
#define Q_strcasecmp V_strcasecmp
#define Q_strncasecmp V_strncasecmp
#define Q_strnicmp V_strnicmp
#define Q_atoi V_atoi
#define Q_atoi64 V_atoi64
#define Q_atoui64 V_atoui64
#define Q_atof V_atof
#define Q_stristr V_stristr
#define Q_strnistr V_strnistr
#define Q_strnchr V_strnchr
#define Q_normalizeFloatString V_normalizeFloatString
#define Q_strncpy V_strncpy
#define Q_snprintf V_snprintf
#define Q_wcsncpy V_wcsncpy
#define Q_strncat V_strncat
#define Q_strnlwr V_strnlwr
#define Q_vsnprintf V_vsnprintf
#define Q_vsnprintfRet V_vsnprintfRet
#define Q_pretifymem V_pretifymem
#define Q_pretifynum V_pretifynum
#define Q_UTF8ToUnicode V_UTF8ToUnicode
#define Q_UnicodeToUTF8 V_UnicodeToUTF8
#define Q_hextobinary V_hextobinary
#define Q_binarytohex V_binarytohex
#define Q_FileBase V_FileBase
#define Q_StripTrailingSlash V_StripTrailingSlash
#define Q_StripExtension V_StripExtension
#define Q_DefaultExtension V_DefaultExtension
#define Q_SetExtension V_SetExtension
#define Q_StripFilename V_StripFilename
#define Q_StripLastDir V_StripLastDir
#define Q_UnqualifiedFileName V_UnqualifiedFileName
#define Q_ComposeFileName V_ComposeFileName
#define Q_ExtractFilePath V_ExtractFilePath
#define Q_ExtractFileExtension V_ExtractFileExtension
#define Q_GetFileExtension V_GetFileExtension
#define Q_RemoveDotSlashes V_RemoveDotSlashes
#define Q_MakeAbsolutePath V_MakeAbsolutePath
#define Q_AppendSlash V_AppendSlash
#define Q_IsAbsolutePath V_IsAbsolutePath
#define Q_StrSubst V_StrSubst
#define Q_SplitString V_SplitString
#define Q_SplitString2 V_SplitString2
#define Q_StrSlice V_StrSlice
#define Q_StrLeft V_StrLeft
#define Q_StrRight V_StrRight
#define Q_FixSlashes V_FixSlashes
#define Q_strtowcs V_strtowcs
#define Q_wcstostr V_wcstostr
#define Q_strcat V_strcat
#define Q_GenerateUniqueNameIndex V_GenerateUniqueNameIndex
#define Q_GenerateUniqueName V_GenerateUniqueName
#define Q_MakeRelativePath V_MakeRelativePath
#define Q_qsort_s V_qsort_s
#endif // !defined( VSTDLIB_DLL_EXPORT )
#ifdef POSIX
#define FMT_WS L"%ls"
#else
#define FMT_WS L"%s"
#endif
#endif // TIER1_STRTOOLS_H