This repository has been archived on 2024-06-13. You can view files and clone it, but cannot push or open issues or pull requests.
2020-08-04 13:13:01 -04:00

2765 lines
116 KiB
C++

//========= Copyright Valve Corporation, All rights reserved. ============//
// FastDelegate.h
// Efficient delegates in C++ that generate only two lines of asm code!
// Documentation is found at http://www.codeproject.com/cpp/FastDelegate.asp
//
// - Don Clugston, Mar 2004.
// Major contributions were made by Jody Hagins.
// History:
// 24-Apr-04 1.0 * Submitted to CodeProject.
// 28-Apr-04 1.1 * Prevent most unsafe uses of evil static function hack.
// * Improved syntax for horrible_cast (thanks Paul
//Bludov).
// * Tested on Metrowerks MWCC and Intel ICL
//(IA32)
// * Compiled, but not run, on Comeau C++ and Intel
//Itanium ICL. 27-Jun-04 1.2 * Now works on Borland C++ Builder 5.5
// * Now works on /clr "managed C++" code on VC7,
//VC7.1
// * Comeau C++ now compiles without warnings.
// * Prevent the virtual inheritance case from being
//used on VC6 and earlier, which generate incorrect code.
// * Improved warning and error messages. Non-standard
//hacks now have compile-time checks to make them safer.
// * implicit_cast used instead of static_cast in many
//cases.
// * If calling a const member function, a const class
//pointer can be used.
// * UtlMakeDelegate() global helper function added to
//simplify pass-by-value.
// * Added fastdelegate.Clear()
// 16-Jul-04 1.2.1* Workaround for gcc bug (const member function pointers in
// templates) 30-Oct-04 1.3 * Support for (non-void) return values.
// * No more workarounds in client code!
// MSVC and Intel now use a clever hack invented
//by John Dlugosz:
// - The FASTDELEGATEDECLARE workaround is no longer
//necessary.
// - No more warning messages for VC6
// * Less use of macros. Error messages should be more
//comprehensible.
// * Added include guards
// * Added FastDelegate::IsEmpty() to test if
//invocation is safe (Thanks Neville Franks).
// * Now tested on VS 2005 Express Beta, PGI C++
// 24-Dec-04 1.4 * Added CUtlAbstractDelegate, to allow collections of
// disparate delegates.
// * <,>,<=,>= comparison operators to allow storage in ordered
// containers.
// * Substantial reduction of code size, especially the
//'Closure' class.
// * Standardised all the compiler-specific
//workarounds.
// * MFP conversion now works for CodePlay (but not yet supported
// in the full code).
// * Now compiles without warnings on _any_ supported compiler,
// including BCC 5.5.1
// * New syntax: FastDelegate< int (char *, double)
//>.
// 14-Feb-05 1.4.1* Now treats =0 as equivalent to .Clear(), ==0 as equivalent
// to .IsEmpty(). (Thanks elfric).
// * Now tested on Intel ICL for AMD64, VS2005 Beta for
//AMD64 and Itanium.
// 30-Mar-05 1.5 * Safebool idiom: "if (dg)" is now equivalent to "if
// (!dg.IsEmpty())"
// * Fully supported by CodePlay VectorC
// * Bugfix for Metrowerks: IsEmpty() was buggy because a valid
// MFP can be 0 on MWCC!
// * More optimal assignment,== and != operators for static
// function pointers.
// 22-Jul-10 xxx * Reformatted + renamed to match valve coding standards
// * Added UtlMakeDelegate for static functions
#ifndef UTLDELEGATEIMPL_H
#define UTLDELEGATEIMPL_H
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#include <memory.h> // to allow <,> comparisons
////////////////////////////////////////////////////////////////////////////////
// Configuration options
//
////////////////////////////////////////////////////////////////////////////////
// Uncomment the following #define for optimally-sized delegates.
// In this case, the generated asm code is almost identical to the code you'd
// get if the compiler had native support for delegates. It will not work on
// systems where sizeof(dataptr) < sizeof(codeptr). Thus, it will not work for
// DOS compilers using the medium model. It will also probably fail on some DSP
// systems.
#define FASTDELEGATE_USESTATICFUNCTIONHACK
// Uncomment the next line to allow function declarator syntax.
// It is automatically enabled for those compilers where it is known to work.
//#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
////////////////////////////////////////////////////////////////////////////////
// Compiler identification for
//workarounds
//
////////////////////////////////////////////////////////////////////////////////
// Compiler identification. It's not easy to identify Visual C++ because
// many vendors fraudulently define Microsoft's identifiers.
#if defined(_MSC_VER) && !defined(__MWERKS__) && !defined(__VECTOR_C) && \
!defined(__ICL) && !defined(__BORLANDC__)
#define FASTDLGT_ISMSVC
#if (_MSC_VER < 1300) // Many workarounds are required for VC6.
#define FASTDLGT_VC6
#pragma warning(disable : 4786) // disable this ridiculous warning
#endif
#endif
// Does the compiler uses Microsoft's member function pointer structure?
// If so, it needs special treatment.
// Metrowerks CodeWarrior, Intel, and CodePlay fraudulently define Microsoft's
// identifier, _MSC_VER. We need to filter Metrowerks out.
#if defined(_MSC_VER) && !defined(__MWERKS__)
#define FASTDLGT_MICROSOFT_MFP
#if !defined(__VECTOR_C)
// CodePlay doesn't have the __single/multi/virtual_inheritance keywords
#define FASTDLGT_HASINHERITANCE_KEYWORDS
#endif
#endif
// Does it allow function declarator syntax? The following compilers are known
// to work:
#if defined(FASTDLGT_ISMSVC) && (_MSC_VER >= 1310) // VC 7.1
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif
// Gcc(2.95+), and versions of Digital Mars, Intel and Comeau in common use.
#if defined(__DMC__) || defined(__GNUC__) || defined(__ICL) || defined(__COMO__)
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif
// It works on Metrowerks MWCC 3.2.2. From boost.Config it should work on
// earlier ones too.
#if defined(__MWERKS__)
#define FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
#endif
#ifdef __GNUC__ // Workaround GCC bug #8271
// At present, GCC doesn't recognize constness of MFPs in templates
#define FASTDELEGATE_GCC_BUG_8271
#endif
////////////////////////////////////////////////////////////////////////////////
// General tricks used in this code
//
// (a) Error messages are generated by typdefing an array of negative size to
// generate compile-time errors.
// (b) Warning messages on MSVC are generated by declaring unused variables, and
// enabling the "variable XXX is never used" warning.
// (c) Unions are used in a few compiler-specific cases to perform illegal
// casts. (d) For Microsoft and Intel, when adjusting the 'this' pointer, it's
// cast to
// (char *) first to ensure that the correct number of *bytes* are added.
//
////////////////////////////////////////////////////////////////////////////////
// Helper templates
//
////////////////////////////////////////////////////////////////////////////////
namespace detail // we'll hide the implementation details in a nested
// namespace.
{
// implicit_cast< >
// I believe this was originally going to be in the C++ standard but
// was left out by accident. It's even milder than static_cast.
// I use it instead of static_cast<> to emphasize that I'm not doing
// anything nasty.
// Usage is identical to static_cast<>
template <class OutputClass, class InputClass>
inline OutputClass implicit_cast(InputClass input) {
return input;
}
// horrible_cast< >
// This is truly evil. It completely subverts C++'s type system, allowing you
// to cast from any class to any other class. Technically, using a union
// to perform the cast is undefined behaviour (even in C). But we can see if
// it is OK by checking that the union is the same size as each of its members.
// horrible_cast<> should only be used for compiler-specific workarounds.
// Usage is identical to reinterpret_cast<>.
// This union is declared outside the horrible_cast because BCC 5.5.1
// can't inline a function with a nested class, and gives a warning.
template <class OutputClass, class InputClass>
union horrible_union {
OutputClass out;
InputClass in;
};
template <class OutputClass, class InputClass>
inline OutputClass horrible_cast(const InputClass input) {
horrible_union<OutputClass, InputClass> u;
// Cause a compile-time error if in, out and u are not the same size.
// If the compile fails here, it means the compiler has peculiar
// unions which would prevent the cast from working.
typedef int ERROR_CantUseHorrible_cast[sizeof(InputClass) == sizeof(u) &&
sizeof(InputClass) ==
sizeof(OutputClass)
? 1
: -1];
u.in = input;
return u.out;
}
////////////////////////////////////////////////////////////////////////////////
// Workarounds
//
////////////////////////////////////////////////////////////////////////////////
// Backwards compatibility: This macro used to be necessary in the virtual
// inheritance case for Intel and Microsoft. Now it just forward-declares the
// class.
#define FASTDELEGATEDECLARE(CLASSNAME) class CLASSNAME;
// Prevent use of the static function hack with the DOS medium model.
#ifdef __MEDIUM__
#undef FASTDELEGATE_USESTATICFUNCTIONHACK
#endif
// DefaultVoid - a workaround for 'void' templates in VC6.
//
// (1) VC6 and earlier do not allow 'void' as a default template argument.
// (2) They also doesn't allow you to return 'void' from a function.
//
// Workaround for (1): Declare a dummy type 'DefaultVoid' which we use
// when we'd like to use 'void'. We convert it into 'void' and back
// using the templates DefaultVoidToVoid<> and VoidToDefaultVoid<>.
// Workaround for (2): On VC6, the code for calling a void function is
// identical to the code for calling a non-void function in which the
// return value is never used, provided the return value is returned
// in the EAX register, rather than on the stack.
// This is true for most fundamental types such as int, enum, void *.
// Const void * is the safest option since it doesn't participate
// in any automatic conversions. But on a 16-bit compiler it might
// cause extra code to be generated, so we disable it for all compilers
// except for VC6 (and VC5).
#ifdef FASTDLGT_VC6
// VC6 workaround
typedef const void *DefaultVoid;
#else
// On any other compiler, just use a normal void.
typedef void DefaultVoid;
#endif
// Translate from 'DefaultVoid' to 'void'.
// Everything else is unchanged
template <class T>
struct DefaultVoidToVoid {
typedef T type;
};
template <>
struct DefaultVoidToVoid<DefaultVoid> {
typedef void type;
};
// Translate from 'void' into 'DefaultVoid'
// Everything else is unchanged
template <class T>
struct VoidToDefaultVoid {
typedef T type;
};
template <>
struct VoidToDefaultVoid<void> {
typedef DefaultVoid type;
};
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 1:
//
// Conversion of member function pointer to a standard form
//
////////////////////////////////////////////////////////////////////////////////
// GenericClass is a fake class, ONLY used to provide a type.
// It is vitally important that it is never defined, so that the compiler
// doesn't think it can optimize the invocation. For example, Borland generates
// simpler code if it knows the class only uses single inheritance.
// Compilers using Microsoft's structure need to be treated as a special case.
#ifdef FASTDLGT_MICROSOFT_MFP
#ifdef FASTDLGT_HASINHERITANCE_KEYWORDS
// For Microsoft and Intel, we want to ensure that it's the most efficient type
// of MFP (4 bytes), even when the /vmg option is used. Declaring an empty class
// would give 16 byte pointers in this case....
class __single_inheritance GenericClass;
#endif
// ...but for Codeplay, an empty class *always* gives 4 byte pointers.
// If compiled with the /clr option ("managed C++"), the JIT compiler thinks
// it needs to load GenericClass before it can call any of its functions,
// (compiles OK but crashes at runtime!), so we need to declare an
// empty class to make it happy.
// Codeplay and VC4 can't cope with the unknown_inheritance case either.
class GenericClass {};
#else
class GenericClass;
#endif
// The size of a single inheritance member function pointer.
const int SINGLE_MEMFUNCPTR_SIZE = sizeof(void (GenericClass::*)());
// SimplifyMemFunc< >::Convert()
//
// A template function that converts an arbitrary member function pointer
//into the simplest possible form of member function pointer, using a supplied
//'this' pointer.
// According to the standard, this can be done legally with reinterpret_cast<>.
// For (non-standard) compilers which use member function pointers which
//vary in size
// depending on the class, we need to use knowledge of the internal
// structure of a member function pointer, as used by the compiler. Template
// specialization is used to distinguish between the sizes. Because some
// compilers don't support partial
// template specialisation, I use full specialisation of a wrapper struct.
// general case -- don't know how to convert it. Force a compile failure
template <int N>
struct SimplifyMemFunc {
template <class X, class XFuncType, class GenericMemFuncType>
inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
GenericMemFuncType &bound_func) {
// Unsupported member function type -- force a compile failure.
// (it's illegal to have a array with negative size).
typedef char
ERROR_Unsupported_member_function_pointer_on_this_compiler[N - 100];
return 0;
}
};
// For compilers where all member func ptrs are the same size, everything goes
// here. For non-standard compilers, only single_inheritance classes go here.
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE> {
template <class X, class XFuncType, class GenericMemFuncType>
inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
GenericMemFuncType &bound_func) {
#if defined __DMC__
// Digital Mars doesn't allow you to cast between abitrary PMF's,
// even though the standard says you can. The 32-bit compiler lets you
// static_cast through an int, but the DOS compiler doesn't.
bound_func = horrible_cast<GenericMemFuncType>(function_to_bind);
#else
bound_func = reinterpret_cast<GenericMemFuncType>(function_to_bind);
#endif
return reinterpret_cast<GenericClass *>(pthis);
}
};
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 1b:
//
// Workarounds for Microsoft and Intel
//
////////////////////////////////////////////////////////////////////////////////
// Compilers with member function pointers which violate the standard (MSVC,
// Intel, Codeplay), need to be treated as a special case.
#ifdef FASTDLGT_MICROSOFT_MFP
// We use unions to perform horrible_casts. I would like to use #pragma
// pack(push, 1) at the start of each function for extra safety, but VC6 seems
// to ICE intermittently if you do this inside a template.
// __multiple_inheritance classes go here
// Nasty hack for Microsoft and Intel (IA32 and Itanium)
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE + sizeof(int)> {
template <class X, class XFuncType, class GenericMemFuncType>
inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
GenericMemFuncType &bound_func) {
// We need to use a horrible_cast to do this conversion.
// In MSVC, a multiple inheritance member pointer is internally defined
// as:
union {
XFuncType func;
struct {
GenericMemFuncType
funcaddress; // points to the actual member function
int delta; // #BYTES to be added to the 'this' pointer
} s;
} u;
// Check that the horrible_cast will work
typedef int ERROR_CantUsehorrible_cast
[sizeof(function_to_bind) == sizeof(u.s) ? 1 : -1];
u.func = function_to_bind;
bound_func = u.s.funcaddress;
return reinterpret_cast<GenericClass *>(
reinterpret_cast<char *>(pthis) + u.s.delta);
}
};
// virtual inheritance is a real nuisance. It's inefficient and complicated.
// On MSVC and Intel, there isn't enough information in the pointer itself to
// enable conversion to a closure pointer. Earlier versions of this code didn't
// work for all cases, and generated a compile-time error instead.
// But a very clever hack invented by John M. Dlugosz solves this problem.
// My code is somewhat different to his: I have no asm code, and I make no
// assumptions about the calling convention that is used.
// In VC++ and ICL, a virtual_inheritance member pointer
// is internally defined as:
struct MicrosoftVirtualMFP {
void (GenericClass::*codeptr)(); // points to the actual member function
int delta; // #bytes to be added to the 'this' pointer
int vtable_index; // or 0 if no virtual inheritance
};
// The CRUCIAL feature of Microsoft/Intel MFPs which we exploit is that the
// m_codeptr member is *always* called, regardless of the values of the other
// members. (This is *not* true for other compilers, eg GCC, which obtain the
// function address from the vtable if a virtual function is being called).
// Dlugosz's trick is to make the codeptr point to a probe function which
// returns the 'this' pointer that was used.
// Define a generic class that uses virtual inheritance.
// It has a trival member function that returns the value of the 'this' pointer.
struct GenericVirtualClass : virtual public GenericClass {
typedef GenericVirtualClass *(GenericVirtualClass::*ProbePtrType)();
GenericVirtualClass *GetThis() { return this; }
};
// __virtual_inheritance classes go here
#ifdef _MSC_VER
#pragma warning(disable : 4121)
#endif
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE + 2 * sizeof(int)> {
template <class X, class XFuncType, class GenericMemFuncType>
inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
GenericMemFuncType &bound_func) {
union {
XFuncType func;
GenericClass *(X::*ProbeFunc)();
MicrosoftVirtualMFP s;
} u;
u.func = function_to_bind;
bound_func = reinterpret_cast<GenericMemFuncType>(u.s.codeptr);
union {
GenericVirtualClass::ProbePtrType virtfunc;
MicrosoftVirtualMFP s;
} u2;
// Check that the horrible_cast<>s will work
typedef int ERROR_CantUsehorrible_cast
[sizeof(function_to_bind) == sizeof(u.s) &&
sizeof(function_to_bind) == sizeof(u.ProbeFunc) &&
sizeof(u2.virtfunc) == sizeof(u2.s)
? 1
: -1];
// Unfortunately, taking the address of a MF prevents it from being
// inlined, so this next line can't be completely optimised away by the
// compiler.
u2.virtfunc = &GenericVirtualClass::GetThis;
u.s.codeptr = u2.s.codeptr;
return (pthis->*u.ProbeFunc)();
}
};
#ifdef _MSC_VER
#pragma warning(default : 4121)
#endif
#if (_MSC_VER < 1300)
// Nasty hack for Microsoft Visual C++ 6.0
// unknown_inheritance classes go here
// There is a compiler bug in MSVC6 which generates incorrect code in this
// case!!
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE + 3 * sizeof(int)> {
template <class X, class XFuncType, class GenericMemFuncType>
inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
GenericMemFuncType &bound_func) {
// There is an apalling but obscure compiler bug in MSVC6 and earlier:
// vtable_index and 'vtordisp' are always set to 0 in the
// unknown_inheritance case!
// This means that an incorrect function could be called!!!
// Compiling with the /vmg option leads to potentially incorrect code.
// This is probably the reason that the IDE has a user interface for
// specifying the /vmg option, but it is disabled - you can only
// specify /vmg on the command line. In VC1.5 and earlier, the compiler
// would ICE if it ever encountered this situation. It is OK to use the
// /vmg option if /vmm or /vms is specified.
// Fortunately, the wrong function is only called in very obscure cases.
// It only occurs when a derived class overrides a virtual function
// declared in a virtual base class, and the member function points to
// the *Derived* version of that function. The problem can be completely
// averted in 100% of cases by using the *Base class* for the member
// fpointer. Ie, if you use the base class as an interface, you'll stay
// out of trouble. Occasionally, you might want to point directly to a
// derived class function that isn't an override of a base class. In
// this case, both vtable_index and 'vtordisp' are zero, but a
// virtual_inheritance pointer will be generated. We can generate
// correct code in this case. To prevent an incorrect call from ever
// being made, on MSVC6 we generate a warning, and call a function to
// make the program crash instantly.
typedef char ERROR_VC6CompilerBug[-100];
return 0;
}
};
#else
// Nasty hack for Microsoft and Intel (IA32 and Itanium)
// unknown_inheritance classes go here
// This is probably the ugliest bit of code I've ever written. Look at the
// casts! There is a compiler bug in MSVC6 which prevents it from using this
// code.
template <>
struct SimplifyMemFunc<SINGLE_MEMFUNCPTR_SIZE + 3 * sizeof(int)> {
template <class X, class XFuncType, class GenericMemFuncType>
inline static GenericClass *Convert(X *pthis, XFuncType function_to_bind,
GenericMemFuncType &bound_func) {
// The member function pointer is 16 bytes long. We can't use a normal
// cast, but we can use a union to do the conversion.
union {
XFuncType func;
// In VC++ and ICL, an unknown_inheritance member pointer
// is internally defined as:
struct {
GenericMemFuncType
funcaddress; // points to the actual member function
int delta; // #bytes to be added to the 'this' pointer
int vtordisp; // #bytes to add to 'this' to find the vtable
int vtable_index; // or 0 if no virtual inheritance
} s;
} u;
// Check that the horrible_cast will work
typedef int ERROR_CantUsehorrible_cast[sizeof(XFuncType) == sizeof(u.s)
? 1
: -1];
u.func = function_to_bind;
bound_func = u.s.funcaddress;
int virtual_delta = 0;
if (u.s.vtable_index) { // Virtual inheritance is used
// First, get to the vtable.
// It is 'vtordisp' bytes from the start of the class.
const int *vtable = *reinterpret_cast<const int *const *>(
reinterpret_cast<const char *>(pthis) + u.s.vtordisp);
// 'vtable_index' tells us where in the table we should be looking.
virtual_delta =
u.s.vtordisp +
*reinterpret_cast<const int *>(
reinterpret_cast<const char *>(vtable) + u.s.vtable_index);
}
// The int at 'virtual_delta' gives us the amount to add to 'this'.
// Finally we can add the three components together. Phew!
return reinterpret_cast<GenericClass *>(
reinterpret_cast<char *>(pthis) + u.s.delta + virtual_delta);
};
};
#endif // MSVC 7 and greater
#endif // MS/Intel hacks
} // namespace detail
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 2:
//
// Define the delegate storage, and cope with static functions
//
////////////////////////////////////////////////////////////////////////////////
// CUtlAbstractDelegate -- an opaque structure which can hold an arbitary
// delegate. It knows nothing about the calling convention or number of
// arguments used by the function pointed to. It supplies comparison operators
// so that it can be stored in STL collections. It cannot be set to anything
// other than null, nor invoked directly:
// it must be converted to a specific delegate.
// Implementation:
// There are two possible implementations: the Safe method and the Evil method.
// CUtlAbstractDelegate - Safe version
//
// This implementation is standard-compliant, but a bit tricky.
// A static function pointer is stored inside the class.
// Here are the valid values:
// +-- Static pointer --+--pThis --+-- pMemFunc-+-- Meaning------+
// | 0 | 0 | 0 | Empty | | !=0
// |(dontcare)| Invoker | Static function| | 0 | !=0 |
// !=0* | Method call |
// +--------------------+----------+------------+----------------+
// * For Metrowerks, this can be 0. (first virtual function in a
// single_inheritance class).
// When stored stored inside a specific delegate, the 'dontcare' entries are
// replaced with a reference to the delegate itself. This complicates the = and
// == operators for the delegate class.
// CUtlAbstractDelegate - Evil version
//
// For compilers where data pointers are at least as big as code pointers, it is
// possible to store the function pointer in the this pointer, using another
// horrible_cast. In this case the CUtlAbstractDelegate implementation is
// simple:
// +--pThis --+-- pMemFunc-+-- Meaning---------------------+
// | 0 | 0 | Empty |
// | !=0 | !=0* | Static function or method call|
// +----------+------------+-------------------------------+
// * For Metrowerks, this can be 0. (first virtual function in a
// single_inheritance class).
// Note that the Sun C++ and MSVC documentation explicitly state that they
// support static_cast between void * and function pointers.
class CUtlAbstractDelegate {
protected:
// the data is protected, not private, because many
// compilers have problems with template friends.
typedef void (
detail::GenericClass::*GenericMemFuncType)(); // arbitrary MFP.
detail::GenericClass *m_pthis;
GenericMemFuncType m_pFunction;
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
typedef void (*GenericFuncPtr)(); // arbitrary code pointer
GenericFuncPtr m_pStaticFunction;
#endif
public:
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
CUtlAbstractDelegate() : m_pthis(0), m_pFunction(0), m_pStaticFunction(0){};
void Clear() {
m_pthis = 0;
m_pFunction = 0;
m_pStaticFunction = 0;
}
#else
CUtlAbstractDelegate() : m_pthis(0), m_pFunction(0){};
void Clear() {
m_pthis = 0;
m_pFunction = 0;
}
#endif
public:
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
inline bool IsEqual(const CUtlAbstractDelegate &x) const {
// We have to cope with the static function pointers as a special case
if (m_pFunction != x.m_pFunction) return false;
// the static function ptrs must either both be equal, or both be 0.
if (m_pStaticFunction != x.m_pStaticFunction) return false;
if (m_pStaticFunction != 0)
return m_pthis == x.m_pthis;
else
return true;
}
#else // Evil Method
inline bool IsEqual(const CUtlAbstractDelegate &x) const {
return m_pthis == x.m_pthis && m_pFunction == x.m_pFunction;
}
#endif
// Provide a strict weak ordering for DelegateMementos.
inline bool IsLess(const CUtlAbstractDelegate &right) const {
// deal with static function pointers first
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
if (m_pStaticFunction != 0 || right.m_pStaticFunction != 0)
return m_pStaticFunction < right.m_pStaticFunction;
#endif
if (m_pthis != right.m_pthis) return m_pthis < right.m_pthis;
// There are no ordering operators for member function pointers,
// but we can fake one by comparing each byte. The resulting ordering is
// arbitrary (and compiler-dependent), but it permits storage in ordered
// STL containers.
return memcmp(&m_pFunction, &right.m_pFunction, sizeof(m_pFunction)) <
0;
}
// BUGFIX (Mar 2005):
// We can't just compare m_pFunction because on Metrowerks,
// m_pFunction can be zero even if the delegate is not empty!
inline bool operator!() const // Is it bound to anything?
{
return m_pthis == 0 && m_pFunction == 0;
}
inline bool IsEmpty() const // Is it bound to anything?
{
return m_pthis == 0 && m_pFunction == 0;
}
public:
CUtlAbstractDelegate &operator=(const CUtlAbstractDelegate &right) {
SetMementoFrom(right);
return *this;
}
inline bool operator<(const CUtlAbstractDelegate &right) {
return IsLess(right);
}
inline bool operator>(const CUtlAbstractDelegate &right) {
return right.IsLess(*this);
}
CUtlAbstractDelegate(const CUtlAbstractDelegate &right)
: m_pFunction(right.m_pFunction),
m_pthis(right.m_pthis)
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
,
m_pStaticFunction(right.m_pStaticFunction)
#endif
{
}
// Only use this if you really know what you're doing.
// It's used in cases where I've cached off a delegate previously
void UnsafeThisPointerSlam(void *pThis) {
m_pthis = (detail::GenericClass *)(pThis);
}
void *UnsafeGetThisPtr() { return m_pthis; }
protected:
void SetMementoFrom(const CUtlAbstractDelegate &right) {
m_pFunction = right.m_pFunction;
m_pthis = right.m_pthis;
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
m_pStaticFunction = right.m_pStaticFunction;
#endif
}
};
// ClosurePtr<>
//
// A private wrapper class that adds function signatures to
// CUtlAbstractDelegate. It's the class that does most of the actual work. The
// signatures are specified by: GenericMemFunc: must be a type of GenericClass
// member function pointer. StaticFuncPtr: must be a type of function pointer
// with the same signature
// as GenericMemFunc.
// UnvoidStaticFuncPtr: is the same as StaticFuncPtr, except on VC6
// where it never returns void (returns DefaultVoid instead).
// An outer class, FastDelegateN<>, handles the invoking and creates the
// necessary typedefs.
// This class does everything else.
namespace detail {
template <class GenericMemFunc, class StaticFuncPtr, class UnvoidStaticFuncPtr>
class ClosurePtr : public CUtlAbstractDelegate {
public:
// These functions are for setting the delegate to a member function.
// Here's the clever bit: we convert an arbitrary member function into a
// standard form. XMemFunc should be a member function of class X, but I
// can't enforce that here. It needs to be enforced by the wrapper class.
template <class X, class XMemFunc>
inline void bindmemfunc(X *pthis, XMemFunc function_to_bind) {
m_pthis = SimplifyMemFunc<sizeof(function_to_bind)>::Convert(
pthis, function_to_bind, m_pFunction);
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
m_pStaticFunction = 0;
#endif
}
// For const member functions, we only need a const class pointer.
// Since we know that the member function is const, it's safe to
// remove the const qualifier from the 'this' pointer with a const_cast.
// VC6 has problems if we just overload 'bindmemfunc', so we give it a
// different name.
template <class X, class XMemFunc>
inline void bindconstmemfunc(const X *pthis, XMemFunc function_to_bind) {
m_pthis = SimplifyMemFunc<sizeof(function_to_bind)>::Convert(
const_cast<X *>(pthis), function_to_bind, m_pFunction);
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
m_pStaticFunction = 0;
#endif
}
#ifdef FASTDELEGATE_GCC_BUG_8271 // At present, GCC doesn't recognize constness
// of MFPs in templates
template <class X, class XMemFunc>
inline void bindmemfunc(const X *pthis, XMemFunc function_to_bind) {
bindconstmemfunc(pthis, function_to_bind);
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
m_pStaticFunction = 0;
#endif
}
#endif
// These functions are required for invoking the stored function
inline GenericClass *GetClosureThis() const { return m_pthis; }
inline GenericMemFunc GetClosureMemPtr() const {
return reinterpret_cast<GenericMemFunc>(m_pFunction);
}
// There are a few ways of dealing with static function pointers.
// There's a standard-compliant, but tricky method.
// There's also a straightforward hack, that won't work on DOS compilers
// using the medium memory model. It's so evil that I can't recommend it,
// but I've implemented it anyway because it produces very nice asm code.
#if !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
// ClosurePtr<> - Safe version
//
// This implementation is standard-compliant, but a bit tricky.
// I store the function pointer inside the class, and the delegate then
// points to itself. Whenever the delegate is copied, these self-references
// must be transformed, and this complicates the = and == operators.
public:
// The next two functions are for operator ==, =, and the copy constructor.
// We may need to convert the m_pthis pointers, so that
// they remain as self-references.
template <class DerivedClass>
inline void CopyFrom(DerivedClass *pParent, const CUtlAbstractDelegate &x) {
SetMementoFrom(x);
if (m_pStaticFunction != 0) {
// transform self references...
m_pthis = reinterpret_cast<GenericClass *>(pParent);
}
}
// For static functions, the 'static_function_invoker' class in the parent
// will be called. The parent then needs to call GetStaticFunction() to find
// out the actual function to invoke.
template <class DerivedClass, class ParentInvokerSig>
inline void bindstaticfunc(DerivedClass *pParent,
ParentInvokerSig static_function_invoker,
StaticFuncPtr function_to_bind) {
if (function_to_bind == 0) { // cope with assignment to 0
m_pFunction = 0;
} else {
bindmemfunc(pParent, static_function_invoker);
}
m_pStaticFunction = reinterpret_cast<GenericFuncPtr>(function_to_bind);
}
inline UnvoidStaticFuncPtr GetStaticFunction() const {
return reinterpret_cast<UnvoidStaticFuncPtr>(m_pStaticFunction);
}
#else
// ClosurePtr<> - Evil version
//
// For compilers where data pointers are at least as big as code pointers,
// it is possible to store the function pointer in the this pointer, using
// another horrible_cast. Invocation isn't any faster, but it saves 4 bytes,
// and speeds up comparison and assignment. If C++ provided direct language
// support for delegates, they would produce asm code that was almost
// identical to this. Note that the Sun C++ and MSVC documentation
// explicitly state that they support static_cast between void * and
// function pointers.
template <class DerivedClass>
inline void CopyFrom(DerivedClass *pParent,
const CUtlAbstractDelegate &right) {
pParent;
SetMementoFrom(right);
}
// For static functions, the 'static_function_invoker' class in the parent
// will be called. The parent then needs to call GetStaticFunction() to find
// out the actual function to invoke.
// ******** EVIL, EVIL CODE! *******
template <class DerivedClass, class ParentInvokerSig>
inline void bindstaticfunc(DerivedClass *pParent,
ParentInvokerSig static_function_invoker,
StaticFuncPtr function_to_bind) {
if (function_to_bind == 0) { // cope with assignment to 0
m_pFunction = 0;
} else {
// We'll be ignoring the 'this' pointer, but we need to make sure we
// pass a valid value to bindmemfunc().
bindmemfunc(pParent, static_function_invoker);
}
// WARNING! Evil hack. We store the function in the 'this' pointer!
// Ensure that there's a compilation failure if function pointers
// and data pointers have different sizes.
// If you get this error, you need to #undef
// FASTDELEGATE_USESTATICFUNCTIONHACK.
typedef int ERROR_CantUseEvilMethod
[sizeof(GenericClass *) == sizeof(function_to_bind) ? 1 : -1];
m_pthis = horrible_cast<GenericClass *>(function_to_bind);
// MSVC, SunC++ and DMC accept the following (non-standard) code:
// m_pthis = static_cast<GenericClass *>(static_cast<void
//*>(function_to_bind));
// BCC32, Comeau and DMC accept this method. MSVC7.1 needs __int64
// instead of long
// m_pthis = reinterpret_cast<GenericClass
//*>(reinterpret_cast<long>(function_to_bind));
}
// ******** EVIL, EVIL CODE! *******
// This function will be called with an invalid 'this' pointer!!
// We're just returning the 'this' pointer, converted into
// a function pointer!
inline UnvoidStaticFuncPtr GetStaticFunction() const {
// Ensure that there's a compilation failure if function pointers
// and data pointers have different sizes.
// If you get this error, you need to #undef
// FASTDELEGATE_USESTATICFUNCTIONHACK.
typedef int ERROR_CantUseEvilMethod
[sizeof(UnvoidStaticFuncPtr) == sizeof(this) ? 1 : -1];
return horrible_cast<UnvoidStaticFuncPtr>(this);
}
#endif // !defined(FASTDELEGATE_USESTATICFUNCTIONHACK)
// Does the closure contain this static function?
inline bool IsEqualToStaticFuncPtr(StaticFuncPtr funcptr) {
if (funcptr == 0) return IsEmpty();
// For the Evil method, if it doesn't actually contain a static
// function, this will return an arbitrary value that is not equal to
// any valid function pointer.
else
return funcptr ==
reinterpret_cast<StaticFuncPtr>(GetStaticFunction());
}
};
} // namespace detail
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 3:
//
// Wrapper classes to ensure type safety
//
////////////////////////////////////////////////////////////////////////////////
// Once we have the member function conversion templates, it's easy to make the
// wrapper classes. So that they will work with as many compilers as possible,
// the classes are of the form
// FastDelegate3<int, char *, double>
// They can cope with any combination of parameters. The max number of
// parameters allowed is 8, but it is trivial to increase this limit. Note that
// we need to treat const member functions seperately. All this class does is to
// enforce type safety, and invoke the delegate with the correct list of
// parameters.
// Because of the weird rule about the class of derived member function
// pointers, you sometimes need to apply a downcast to the 'this' pointer. This
// is the reason for the use of "implicit_cast<X*>(pthis)" in the code below. If
// CDerivedClass is derived from CBaseClass, but doesn't override
// SimpleVirtualFunction, without this trick you'd need to write:
// MyDelegate(static_cast<CBaseClass *>(&d),
//&CDerivedClass::SimpleVirtualFunction);
// but with the trick you can write
// MyDelegate(&d, &CDerivedClass::SimpleVirtualFunction);
// RetType is the type the compiler uses in compiling the template. For VC6,
// it cannot be void. DesiredRetType is the real type which is returned from
// all of the functions. It can be void.
// Implicit conversion to "bool" is achieved using the safe_bool idiom,
// using member data pointers (MDP). This allows "if (dg)..." syntax
// Because some compilers (eg codeplay) don't have a unique value for a zero
// MDP, an extra padding member is added to the SafeBool struct.
// Some compilers (eg VC6) won't implicitly convert from 0 to an MDP, so
// in that case the static function constructor is not made explicit; this
// allows "if (dg==0) ..." to compile.
// N=0
template <class RetType = detail::DefaultVoid>
class FastDelegate0 {
private:
typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
typedef DesiredRetType (*StaticFunctionPtr)();
typedef RetType (*UnvoidStaticFunctionPtr)();
typedef RetType (detail::GenericClass::*GenericMemFn)();
typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr,
UnvoidStaticFunctionPtr>
ClosureType;
ClosureType m_Closure;
public:
// Typedefs to aid generic programming
typedef FastDelegate0 type;
// Construction and comparison functions
FastDelegate0() { Clear(); }
FastDelegate0(const FastDelegate0 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
void operator=(const FastDelegate0 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
bool operator==(const FastDelegate0 &x) const {
return m_Closure.IsEqual(x.m_Closure);
}
bool operator!=(const FastDelegate0 &x) const {
return !m_Closure.IsEqual(x.m_Closure);
}
bool operator<(const FastDelegate0 &x) const {
return m_Closure.IsLess(x.m_Closure);
}
bool operator>(const FastDelegate0 &x) const {
return x.m_Closure.IsLess(m_Closure);
}
// Binding to non-const member functions
template <class X, class Y>
FastDelegate0(Y *pthis, DesiredRetType (X::*function_to_bind)()) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(Y *pthis, DesiredRetType (X::*function_to_bind)()) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
// Binding to const member functions.
template <class X, class Y>
FastDelegate0(const Y *pthis,
DesiredRetType (X::*function_to_bind)() const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(const Y *pthis,
DesiredRetType (X::*function_to_bind)() const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
// Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate0(DesiredRetType (*function_to_bind)()) {
Bind(function_to_bind);
}
// for efficiency, prevent creation of a temporary
void operator=(DesiredRetType (*function_to_bind)()) {
Bind(function_to_bind);
}
inline void Bind(DesiredRetType (*function_to_bind)()) {
m_Closure.bindstaticfunc(this, &FastDelegate0::InvokeStaticFunction,
function_to_bind);
}
// Invoke the delegate
RetType operator()() const {
return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))();
}
// Implicit conversion to "bool" using the safe_bool idiom
private:
typedef struct SafeBoolStruct {
int a_data_pointer_to_this_is_0_on_buggy_compilers;
StaticFunctionPtr m_nonzero;
} UselessTypedef;
typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
operator unspecified_bool_type() const {
return IsEmpty() ? 0 : &SafeBoolStruct::m_nonzero;
}
// necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) {
return m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!=(StaticFunctionPtr funcptr) {
return !m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!() const { // Is it bound to anything?
return !m_Closure;
}
inline bool IsEmpty() const { return !m_Closure; }
void Clear() { m_Closure.Clear(); }
// Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate &GetAbstractDelegate() { return m_Closure; }
void SetAbstractDelegate(const CUtlAbstractDelegate &any) {
m_Closure.CopyFrom(this, any);
}
private: // Invoker for static functions
RetType InvokeStaticFunction() const {
return (*(m_Closure.GetStaticFunction()))();
}
};
// N=1
template <class Param1, class RetType = detail::DefaultVoid>
class FastDelegate1 {
private:
typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1);
typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1);
typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1);
typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr,
UnvoidStaticFunctionPtr>
ClosureType;
ClosureType m_Closure;
public:
// Typedefs to aid generic programming
typedef FastDelegate1 type;
// Construction and comparison functions
FastDelegate1() { Clear(); }
FastDelegate1(const FastDelegate1 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
void operator=(const FastDelegate1 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
bool operator==(const FastDelegate1 &x) const {
return m_Closure.IsEqual(x.m_Closure);
}
bool operator!=(const FastDelegate1 &x) const {
return !m_Closure.IsEqual(x.m_Closure);
}
bool operator<(const FastDelegate1 &x) const {
return m_Closure.IsLess(x.m_Closure);
}
bool operator>(const FastDelegate1 &x) const {
return x.m_Closure.IsLess(m_Closure);
}
// Binding to non-const member functions
template <class X, class Y>
FastDelegate1(Y *pthis, DesiredRetType (X::*function_to_bind)(Param1 p1)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
// Binding to const member functions.
template <class X, class Y>
FastDelegate1(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1) const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1) const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
// Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate1(DesiredRetType (*function_to_bind)(Param1 p1)) {
Bind(function_to_bind);
}
// for efficiency, prevent creation of a temporary
void operator=(DesiredRetType (*function_to_bind)(Param1 p1)) {
Bind(function_to_bind);
}
inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1)) {
m_Closure.bindstaticfunc(this, &FastDelegate1::InvokeStaticFunction,
function_to_bind);
}
// Invoke the delegate
RetType operator()(Param1 p1) const {
return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(
p1);
}
// Implicit conversion to "bool" using the safe_bool idiom
private:
typedef struct SafeBoolStruct {
int a_data_pointer_to_this_is_0_on_buggy_compilers;
StaticFunctionPtr m_nonzero;
} UselessTypedef;
typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
operator unspecified_bool_type() const {
return IsEmpty() ? 0 : &SafeBoolStruct::m_nonzero;
}
// necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) {
return m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!=(StaticFunctionPtr funcptr) {
return !m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!() const { // Is it bound to anything?
return !m_Closure;
}
inline bool IsEmpty() const { return !m_Closure; }
void Clear() { m_Closure.Clear(); }
// Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate &GetAbstractDelegate() { return m_Closure; }
void SetAbstractDelegate(const CUtlAbstractDelegate &any) {
m_Closure.CopyFrom(this, any);
}
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1) const {
return (*(m_Closure.GetStaticFunction()))(p1);
}
};
// N=2
template <class Param1, class Param2, class RetType = detail::DefaultVoid>
class FastDelegate2 {
private:
typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2);
typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2);
typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2);
typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr,
UnvoidStaticFunctionPtr>
ClosureType;
ClosureType m_Closure;
public:
// Typedefs to aid generic programming
typedef FastDelegate2 type;
// Construction and comparison functions
FastDelegate2() { Clear(); }
FastDelegate2(const FastDelegate2 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
void operator=(const FastDelegate2 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
bool operator==(const FastDelegate2 &x) const {
return m_Closure.IsEqual(x.m_Closure);
}
bool operator!=(const FastDelegate2 &x) const {
return !m_Closure.IsEqual(x.m_Closure);
}
bool operator<(const FastDelegate2 &x) const {
return m_Closure.IsLess(x.m_Closure);
}
bool operator>(const FastDelegate2 &x) const {
return x.m_Closure.IsLess(m_Closure);
}
// Binding to non-const member functions
template <class X, class Y>
FastDelegate2(Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1,
Param2 p2)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
// Binding to const member functions.
template <class X, class Y>
FastDelegate2(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2)
const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2)
const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
// Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate2(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2)) {
Bind(function_to_bind);
}
// for efficiency, prevent creation of a temporary
void operator=(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2)) {
Bind(function_to_bind);
}
inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2)) {
m_Closure.bindstaticfunc(this, &FastDelegate2::InvokeStaticFunction,
function_to_bind);
}
// Invoke the delegate
RetType operator()(Param1 p1, Param2 p2) const {
return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(
p1, p2);
}
// Implicit conversion to "bool" using the safe_bool idiom
private:
typedef struct SafeBoolStruct {
int a_data_pointer_to_this_is_0_on_buggy_compilers;
StaticFunctionPtr m_nonzero;
} UselessTypedef;
typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
operator unspecified_bool_type() const {
return IsEmpty() ? 0 : &SafeBoolStruct::m_nonzero;
}
// necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) {
return m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!=(StaticFunctionPtr funcptr) {
return !m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!() const { // Is it bound to anything?
return !m_Closure;
}
inline bool IsEmpty() const { return !m_Closure; }
void Clear() { m_Closure.Clear(); }
// Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate &GetAbstractDelegate() { return m_Closure; }
void SetAbstractDelegate(const CUtlAbstractDelegate &any) {
m_Closure.CopyFrom(this, any);
}
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2) const {
return (*(m_Closure.GetStaticFunction()))(p1, p2);
}
};
// N=3
template <class Param1, class Param2, class Param3,
class RetType = detail::DefaultVoid>
class FastDelegate3 {
private:
typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2,
Param3 p3);
typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3);
typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2,
Param3 p3);
typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr,
UnvoidStaticFunctionPtr>
ClosureType;
ClosureType m_Closure;
public:
// Typedefs to aid generic programming
typedef FastDelegate3 type;
// Construction and comparison functions
FastDelegate3() { Clear(); }
FastDelegate3(const FastDelegate3 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
void operator=(const FastDelegate3 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
bool operator==(const FastDelegate3 &x) const {
return m_Closure.IsEqual(x.m_Closure);
}
bool operator!=(const FastDelegate3 &x) const {
return !m_Closure.IsEqual(x.m_Closure);
}
bool operator<(const FastDelegate3 &x) const {
return m_Closure.IsLess(x.m_Closure);
}
bool operator>(const FastDelegate3 &x) const {
return x.m_Closure.IsLess(m_Closure);
}
// Binding to non-const member functions
template <class X, class Y>
FastDelegate3(Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
// Binding to const member functions.
template <class X, class Y>
FastDelegate3(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3) const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3) const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
// Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate3(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3)) {
Bind(function_to_bind);
}
// for efficiency, prevent creation of a temporary
void operator=(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3)) {
Bind(function_to_bind);
}
inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3)) {
m_Closure.bindstaticfunc(this, &FastDelegate3::InvokeStaticFunction,
function_to_bind);
}
// Invoke the delegate
RetType operator()(Param1 p1, Param2 p2, Param3 p3) const {
return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(
p1, p2, p3);
}
// Implicit conversion to "bool" using the safe_bool idiom
private:
typedef struct SafeBoolStruct {
int a_data_pointer_to_this_is_0_on_buggy_compilers;
StaticFunctionPtr m_nonzero;
} UselessTypedef;
typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
operator unspecified_bool_type() const {
return IsEmpty() ? 0 : &SafeBoolStruct::m_nonzero;
}
// necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) {
return m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!=(StaticFunctionPtr funcptr) {
return !m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!() const { // Is it bound to anything?
return !m_Closure;
}
inline bool IsEmpty() const { return !m_Closure; }
void Clear() { m_Closure.Clear(); }
// Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate &GetAbstractDelegate() { return m_Closure; }
void SetAbstractDelegate(const CUtlAbstractDelegate &any) {
m_Closure.CopyFrom(this, any);
}
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3) const {
return (*(m_Closure.GetStaticFunction()))(p1, p2, p3);
}
};
// N=4
template <class Param1, class Param2, class Param3, class Param4,
class RetType = detail::DefaultVoid>
class FastDelegate4 {
private:
typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4);
typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4);
typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4);
typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr,
UnvoidStaticFunctionPtr>
ClosureType;
ClosureType m_Closure;
public:
// Typedefs to aid generic programming
typedef FastDelegate4 type;
// Construction and comparison functions
FastDelegate4() { Clear(); }
FastDelegate4(const FastDelegate4 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
void operator=(const FastDelegate4 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
bool operator==(const FastDelegate4 &x) const {
return m_Closure.IsEqual(x.m_Closure);
}
bool operator!=(const FastDelegate4 &x) const {
return !m_Closure.IsEqual(x.m_Closure);
}
bool operator<(const FastDelegate4 &x) const {
return m_Closure.IsLess(x.m_Closure);
}
bool operator>(const FastDelegate4 &x) const {
return x.m_Closure.IsLess(m_Closure);
}
// Binding to non-const member functions
template <class X, class Y>
FastDelegate4(Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3,
Param4 p4)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
// Binding to const member functions.
template <class X, class Y>
FastDelegate4(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4)
const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4)
const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
// Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate4(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4)) {
Bind(function_to_bind);
}
// for efficiency, prevent creation of a temporary
void operator=(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4)) {
Bind(function_to_bind);
}
inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4)) {
m_Closure.bindstaticfunc(this, &FastDelegate4::InvokeStaticFunction,
function_to_bind);
}
// Invoke the delegate
RetType operator()(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const {
return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(
p1, p2, p3, p4);
}
// Implicit conversion to "bool" using the safe_bool idiom
private:
typedef struct SafeBoolStruct {
int a_data_pointer_to_this_is_0_on_buggy_compilers;
StaticFunctionPtr m_nonzero;
} UselessTypedef;
typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
operator unspecified_bool_type() const {
return IsEmpty() ? 0 : &SafeBoolStruct::m_nonzero;
}
// necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) {
return m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!=(StaticFunctionPtr funcptr) {
return !m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!() const { // Is it bound to anything?
return !m_Closure;
}
inline bool IsEmpty() const { return !m_Closure; }
void Clear() { m_Closure.Clear(); }
// Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate &GetAbstractDelegate() { return m_Closure; }
void SetAbstractDelegate(const CUtlAbstractDelegate &any) {
m_Closure.CopyFrom(this, any);
}
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3,
Param4 p4) const {
return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4);
}
};
// N=5
template <class Param1, class Param2, class Param3, class Param4, class Param5,
class RetType = detail::DefaultVoid>
class FastDelegate5 {
private:
typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5);
typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5);
typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5);
typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr,
UnvoidStaticFunctionPtr>
ClosureType;
ClosureType m_Closure;
public:
// Typedefs to aid generic programming
typedef FastDelegate5 type;
// Construction and comparison functions
FastDelegate5() { Clear(); }
FastDelegate5(const FastDelegate5 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
void operator=(const FastDelegate5 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
bool operator==(const FastDelegate5 &x) const {
return m_Closure.IsEqual(x.m_Closure);
}
bool operator!=(const FastDelegate5 &x) const {
return !m_Closure.IsEqual(x.m_Closure);
}
bool operator<(const FastDelegate5 &x) const {
return m_Closure.IsLess(x.m_Closure);
}
bool operator>(const FastDelegate5 &x) const {
return x.m_Closure.IsLess(m_Closure);
}
// Binding to non-const member functions
template <class X, class Y>
FastDelegate5(Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
// Binding to const member functions.
template <class X, class Y>
FastDelegate5(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5) const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5) const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
// Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate5(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5)) {
Bind(function_to_bind);
}
// for efficiency, prevent creation of a temporary
void operator=(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5)) {
Bind(function_to_bind);
}
inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5)) {
m_Closure.bindstaticfunc(this, &FastDelegate5::InvokeStaticFunction,
function_to_bind);
}
// Invoke the delegate
RetType operator()(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5) const {
return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(
p1, p2, p3, p4, p5);
}
// Implicit conversion to "bool" using the safe_bool idiom
private:
typedef struct SafeBoolStruct {
int a_data_pointer_to_this_is_0_on_buggy_compilers;
StaticFunctionPtr m_nonzero;
} UselessTypedef;
typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
operator unspecified_bool_type() const {
return IsEmpty() ? 0 : &SafeBoolStruct::m_nonzero;
}
// necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) {
return m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!=(StaticFunctionPtr funcptr) {
return !m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!() const { // Is it bound to anything?
return !m_Closure;
}
inline bool IsEmpty() const { return !m_Closure; }
void Clear() { m_Closure.Clear(); }
// Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate &GetAbstractDelegate() { return m_Closure; }
void SetAbstractDelegate(const CUtlAbstractDelegate &any) {
m_Closure.CopyFrom(this, any);
}
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5) const {
return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5);
}
};
// N=6
template <class Param1, class Param2, class Param3, class Param4, class Param5,
class Param6, class RetType = detail::DefaultVoid>
class FastDelegate6 {
private:
typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5,
Param6 p6);
typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6);
typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6);
typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr,
UnvoidStaticFunctionPtr>
ClosureType;
ClosureType m_Closure;
public:
// Typedefs to aid generic programming
typedef FastDelegate6 type;
// Construction and comparison functions
FastDelegate6() { Clear(); }
FastDelegate6(const FastDelegate6 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
void operator=(const FastDelegate6 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
bool operator==(const FastDelegate6 &x) const {
return m_Closure.IsEqual(x.m_Closure);
}
bool operator!=(const FastDelegate6 &x) const {
return !m_Closure.IsEqual(x.m_Closure);
}
bool operator<(const FastDelegate6 &x) const {
return m_Closure.IsLess(x.m_Closure);
}
bool operator>(const FastDelegate6 &x) const {
return x.m_Closure.IsLess(m_Closure);
}
// Binding to non-const member functions
template <class X, class Y>
FastDelegate6(Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(Y *pthis, DesiredRetType (X::*function_to_bind)(
Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
// Binding to const member functions.
template <class X, class Y>
FastDelegate6(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6)
const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6)
const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
// Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate6(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6)) {
Bind(function_to_bind);
}
// for efficiency, prevent creation of a temporary
void operator=(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6)) {
Bind(function_to_bind);
}
inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6)) {
m_Closure.bindstaticfunc(this, &FastDelegate6::InvokeStaticFunction,
function_to_bind);
}
// Invoke the delegate
RetType operator()(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5,
Param6 p6) const {
return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(
p1, p2, p3, p4, p5, p6);
}
// Implicit conversion to "bool" using the safe_bool idiom
private:
typedef struct SafeBoolStruct {
int a_data_pointer_to_this_is_0_on_buggy_compilers;
StaticFunctionPtr m_nonzero;
} UselessTypedef;
typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
operator unspecified_bool_type() const {
return IsEmpty() ? 0 : &SafeBoolStruct::m_nonzero;
}
// necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) {
return m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!=(StaticFunctionPtr funcptr) {
return !m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!() const { // Is it bound to anything?
return !m_Closure;
}
inline bool IsEmpty() const { return !m_Closure; }
void Clear() { m_Closure.Clear(); }
// Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate &GetAbstractDelegate() { return m_Closure; }
void SetAbstractDelegate(const CUtlAbstractDelegate &any) {
m_Closure.CopyFrom(this, any);
}
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6) const {
return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6);
}
};
// N=7
template <class Param1, class Param2, class Param3, class Param4, class Param5,
class Param6, class Param7, class RetType = detail::DefaultVoid>
class FastDelegate7 {
private:
typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7);
typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7);
typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7);
typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr,
UnvoidStaticFunctionPtr>
ClosureType;
ClosureType m_Closure;
public:
// Typedefs to aid generic programming
typedef FastDelegate7 type;
// Construction and comparison functions
FastDelegate7() { Clear(); }
FastDelegate7(const FastDelegate7 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
void operator=(const FastDelegate7 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
bool operator==(const FastDelegate7 &x) const {
return m_Closure.IsEqual(x.m_Closure);
}
bool operator!=(const FastDelegate7 &x) const {
return !m_Closure.IsEqual(x.m_Closure);
}
bool operator<(const FastDelegate7 &x) const {
return m_Closure.IsLess(x.m_Closure);
}
bool operator>(const FastDelegate7 &x) const {
return x.m_Closure.IsLess(m_Closure);
}
// Binding to non-const member functions
template <class X, class Y>
FastDelegate7(Y *pthis, DesiredRetType (X::*function_to_bind)(
Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6, Param7 p7)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(Y *pthis, DesiredRetType (X::*function_to_bind)(
Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6, Param7 p7)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
// Binding to const member functions.
template <class X, class Y>
FastDelegate7(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7) const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7) const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
// Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate7(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7)) {
Bind(function_to_bind);
}
// for efficiency, prevent creation of a temporary
void operator=(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7)) {
Bind(function_to_bind);
}
inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7)) {
m_Closure.bindstaticfunc(this, &FastDelegate7::InvokeStaticFunction,
function_to_bind);
}
// Invoke the delegate
RetType operator()(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5,
Param6 p6, Param7 p7) const {
return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(
p1, p2, p3, p4, p5, p6, p7);
}
// Implicit conversion to "bool" using the safe_bool idiom
private:
typedef struct SafeBoolStruct {
int a_data_pointer_to_this_is_0_on_buggy_compilers;
StaticFunctionPtr m_nonzero;
} UselessTypedef;
typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
operator unspecified_bool_type() const {
return IsEmpty() ? 0 : &SafeBoolStruct::m_nonzero;
}
// necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) {
return m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!=(StaticFunctionPtr funcptr) {
return !m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!() const { // Is it bound to anything?
return !m_Closure;
}
inline bool IsEmpty() const { return !m_Closure; }
void Clear() { m_Closure.Clear(); }
// Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate &GetAbstractDelegate() { return m_Closure; }
void SetAbstractDelegate(const CUtlAbstractDelegate &any) {
m_Closure.CopyFrom(this, any);
}
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6, Param7 p7) const {
return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6, p7);
}
};
// N=8
template <class Param1, class Param2, class Param3, class Param4, class Param5,
class Param6, class Param7, class Param8,
class RetType = detail::DefaultVoid>
class FastDelegate8 {
private:
typedef typename detail::DefaultVoidToVoid<RetType>::type DesiredRetType;
typedef DesiredRetType (*StaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7, Param8 p8);
typedef RetType (*UnvoidStaticFunctionPtr)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7, Param8 p8);
typedef RetType (detail::GenericClass::*GenericMemFn)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7, Param8 p8);
typedef detail::ClosurePtr<GenericMemFn, StaticFunctionPtr,
UnvoidStaticFunctionPtr>
ClosureType;
ClosureType m_Closure;
public:
// Typedefs to aid generic programming
typedef FastDelegate8 type;
// Construction and comparison functions
FastDelegate8() { Clear(); }
FastDelegate8(const FastDelegate8 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
void operator=(const FastDelegate8 &x) {
m_Closure.CopyFrom(this, x.m_Closure);
}
bool operator==(const FastDelegate8 &x) const {
return m_Closure.IsEqual(x.m_Closure);
}
bool operator!=(const FastDelegate8 &x) const {
return !m_Closure.IsEqual(x.m_Closure);
}
bool operator<(const FastDelegate8 &x) const {
return m_Closure.IsLess(x.m_Closure);
}
bool operator>(const FastDelegate8 &x) const {
return x.m_Closure.IsLess(m_Closure);
}
// Binding to non-const member functions
template <class X, class Y>
FastDelegate8(Y *pthis, DesiredRetType (X::*function_to_bind)(
Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6, Param7 p7, Param8 p8)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(Y *pthis,
DesiredRetType (X::*function_to_bind)(
Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5,
Param6 p6, Param7 p7, Param8 p8)) {
m_Closure.bindmemfunc(detail::implicit_cast<X *>(pthis),
function_to_bind);
}
// Binding to const member functions.
template <class X, class Y>
FastDelegate8(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7, Param8 p8)
const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
template <class X, class Y>
inline void Bind(const Y *pthis,
DesiredRetType (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7, Param8 p8)
const) {
m_Closure.bindconstmemfunc(detail::implicit_cast<const X *>(pthis),
function_to_bind);
}
// Static functions. We convert them into a member function call.
// This constructor also provides implicit conversion
FastDelegate8(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7, Param8 p8)) {
Bind(function_to_bind);
}
// for efficiency, prevent creation of a temporary
void operator=(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7, Param8 p8)) {
Bind(function_to_bind);
}
inline void Bind(DesiredRetType (*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4,
Param5 p5, Param6 p6,
Param7 p7, Param8 p8)) {
m_Closure.bindstaticfunc(this, &FastDelegate8::InvokeStaticFunction,
function_to_bind);
}
// Invoke the delegate
RetType operator()(Param1 p1, Param2 p2, Param3 p3, Param4 p4, Param5 p5,
Param6 p6, Param7 p7, Param8 p8) const {
return (m_Closure.GetClosureThis()->*(m_Closure.GetClosureMemPtr()))(
p1, p2, p3, p4, p5, p6, p7, p8);
}
// Implicit conversion to "bool" using the safe_bool idiom
private:
typedef struct SafeBoolStruct {
int a_data_pointer_to_this_is_0_on_buggy_compilers;
StaticFunctionPtr m_nonzero;
} UselessTypedef;
typedef StaticFunctionPtr SafeBoolStruct::*unspecified_bool_type;
public:
operator unspecified_bool_type() const {
return IsEmpty() ? 0 : &SafeBoolStruct::m_nonzero;
}
// necessary to allow ==0 to work despite the safe_bool idiom
inline bool operator==(StaticFunctionPtr funcptr) {
return m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!=(StaticFunctionPtr funcptr) {
return !m_Closure.IsEqualToStaticFuncPtr(funcptr);
}
inline bool operator!() const { // Is it bound to anything?
return !m_Closure;
}
inline bool IsEmpty() const { return !m_Closure; }
void Clear() { m_Closure.Clear(); }
// Conversion to and from the CUtlAbstractDelegate storage class
const CUtlAbstractDelegate &GetAbstractDelegate() { return m_Closure; }
void SetAbstractDelegate(const CUtlAbstractDelegate &any) {
m_Closure.CopyFrom(this, any);
}
private: // Invoker for static functions
RetType InvokeStaticFunction(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6, Param7 p7,
Param8 p8) const {
return (*(m_Closure.GetStaticFunction()))(p1, p2, p3, p4, p5, p6, p7,
p8);
}
};
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 4:
//
// CUtlDelegate<> class (Original author: Jody
//Hagins)
// Allows boost::function style syntax like:
// CUtlDelegate< double (int, long) >
// instead of:
// FastDelegate2< int, long, double >
//
////////////////////////////////////////////////////////////////////////////////
#ifdef FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
// Declare CUtlDelegate as a class template. It will be specialized
// later for all number of arguments.
template <typename Signature>
class CUtlDelegate;
// N=0
// Specialization to allow use of
// CUtlDelegate< R ( ) >
// instead of
// FastDelegate0 < R >
template <typename R>
class CUtlDelegate<R()>
// Inherit from FastDelegate0 so that it can be treated just like a
// FastDelegate0
: public FastDelegate0<R> {
public:
// Make using the base type a bit easier via typedef.
typedef FastDelegate0<R> BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() {}
template <class X, class Y>
CUtlDelegate(Y *pthis, R (X::*function_to_bind)())
: BaseType(pthis, function_to_bind) {}
template <class X, class Y>
CUtlDelegate(const Y *pthis, R (X::*function_to_bind)() const)
: BaseType(pthis, function_to_bind) {}
CUtlDelegate(R (*function_to_bind)()) : BaseType(function_to_bind) {}
void operator=(const BaseType &x) { *static_cast<BaseType *>(this) = x; }
};
// N=1
// Specialization to allow use of
// CUtlDelegate< R ( Param1 ) >
// instead of
// FastDelegate1 < Param1, R >
template <typename R, class Param1>
class CUtlDelegate<R(Param1)>
// Inherit from FastDelegate1 so that it can be treated just like a
// FastDelegate1
: public FastDelegate1<Param1, R> {
public:
// Make using the base type a bit easier via typedef.
typedef FastDelegate1<Param1, R> BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() {}
template <class X, class Y>
CUtlDelegate(Y *pthis, R (X::*function_to_bind)(Param1 p1))
: BaseType(pthis, function_to_bind) {}
template <class X, class Y>
CUtlDelegate(const Y *pthis, R (X::*function_to_bind)(Param1 p1) const)
: BaseType(pthis, function_to_bind) {}
CUtlDelegate(R (*function_to_bind)(Param1 p1))
: BaseType(function_to_bind) {}
void operator=(const BaseType &x) { *static_cast<BaseType *>(this) = x; }
};
// N=2
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2 ) >
// instead of
// FastDelegate2 < Param1, Param2, R >
template <typename R, class Param1, class Param2>
class CUtlDelegate<R(Param1, Param2)>
// Inherit from FastDelegate2 so that it can be treated just like a
// FastDelegate2
: public FastDelegate2<Param1, Param2, R> {
public:
// Make using the base type a bit easier via typedef.
typedef FastDelegate2<Param1, Param2, R> BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() {}
template <class X, class Y>
CUtlDelegate(Y *pthis, R (X::*function_to_bind)(Param1 p1, Param2 p2))
: BaseType(pthis, function_to_bind) {}
template <class X, class Y>
CUtlDelegate(const Y *pthis,
R (X::*function_to_bind)(Param1 p1, Param2 p2) const)
: BaseType(pthis, function_to_bind) {}
CUtlDelegate(R (*function_to_bind)(Param1 p1, Param2 p2))
: BaseType(function_to_bind) {}
void operator=(const BaseType &x) { *static_cast<BaseType *>(this) = x; }
};
// N=3
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3 ) >
// instead of
// FastDelegate3 < Param1, Param2, Param3, R >
template <typename R, class Param1, class Param2, class Param3>
class CUtlDelegate<R(Param1, Param2, Param3)>
// Inherit from FastDelegate3 so that it can be treated just like a
// FastDelegate3
: public FastDelegate3<Param1, Param2, Param3, R> {
public:
// Make using the base type a bit easier via typedef.
typedef FastDelegate3<Param1, Param2, Param3, R> BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() {}
template <class X, class Y>
CUtlDelegate(Y *pthis,
R (X::*function_to_bind)(Param1 p1, Param2 p2, Param3 p3))
: BaseType(pthis, function_to_bind) {}
template <class X, class Y>
CUtlDelegate(const Y *pthis, R (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3) const)
: BaseType(pthis, function_to_bind) {}
CUtlDelegate(R (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3))
: BaseType(function_to_bind) {}
void operator=(const BaseType &x) { *static_cast<BaseType *>(this) = x; }
};
// N=4
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3, Param4 ) >
// instead of
// FastDelegate4 < Param1, Param2, Param3, Param4, R >
template <typename R, class Param1, class Param2, class Param3, class Param4>
class CUtlDelegate<R(Param1, Param2, Param3, Param4)>
// Inherit from FastDelegate4 so that it can be treated just like a
// FastDelegate4
: public FastDelegate4<Param1, Param2, Param3, Param4, R> {
public:
// Make using the base type a bit easier via typedef.
typedef FastDelegate4<Param1, Param2, Param3, Param4, R> BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() {}
template <class X, class Y>
CUtlDelegate(Y *pthis, R (X::*function_to_bind)(Param1 p1, Param2 p2,
Param3 p3, Param4 p4))
: BaseType(pthis, function_to_bind) {}
template <class X, class Y>
CUtlDelegate(const Y *pthis,
R (X::*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4) const)
: BaseType(pthis, function_to_bind) {}
CUtlDelegate(R (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4))
: BaseType(function_to_bind) {}
void operator=(const BaseType &x) { *static_cast<BaseType *>(this) = x; }
};
// N=5
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5 ) >
// instead of
// FastDelegate5 < Param1, Param2, Param3, Param4, Param5, R >
template <typename R, class Param1, class Param2, class Param3, class Param4,
class Param5>
class CUtlDelegate<R(Param1, Param2, Param3, Param4, Param5)>
// Inherit from FastDelegate5 so that it can be treated just like a
// FastDelegate5
: public FastDelegate5<Param1, Param2, Param3, Param4, Param5, R> {
public:
// Make using the base type a bit easier via typedef.
typedef FastDelegate5<Param1, Param2, Param3, Param4, Param5, R> BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() {}
template <class X, class Y>
CUtlDelegate(Y *pthis,
R (X::*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5))
: BaseType(pthis, function_to_bind) {}
template <class X, class Y>
CUtlDelegate(const Y *pthis,
R (X::*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5) const)
: BaseType(pthis, function_to_bind) {}
CUtlDelegate(R (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5))
: BaseType(function_to_bind) {}
void operator=(const BaseType &x) { *static_cast<BaseType *>(this) = x; }
};
// N=6
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6 ) >
// instead of
// FastDelegate6 < Param1, Param2, Param3, Param4, Param5, Param6, R >
template <typename R, class Param1, class Param2, class Param3, class Param4,
class Param5, class Param6>
class CUtlDelegate<R(Param1, Param2, Param3, Param4, Param5, Param6)>
// Inherit from FastDelegate6 so that it can be treated just like a
// FastDelegate6
: public FastDelegate6<Param1, Param2, Param3, Param4, Param5, Param6, R> {
public:
// Make using the base type a bit easier via typedef.
typedef FastDelegate6<Param1, Param2, Param3, Param4, Param5, Param6, R>
BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() {}
template <class X, class Y>
CUtlDelegate(Y *pthis,
R (X::*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6))
: BaseType(pthis, function_to_bind) {}
template <class X, class Y>
CUtlDelegate(const Y *pthis,
R (X::*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6)
const)
: BaseType(pthis, function_to_bind) {}
CUtlDelegate(R (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6))
: BaseType(function_to_bind) {}
void operator=(const BaseType &x) { *static_cast<BaseType *>(this) = x; }
};
// N=7
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7 ) >
// instead of
// FastDelegate7 < Param1, Param2, Param3, Param4, Param5, Param6, Param7, R >
template <typename R, class Param1, class Param2, class Param3, class Param4,
class Param5, class Param6, class Param7>
class CUtlDelegate<R(Param1, Param2, Param3, Param4, Param5, Param6, Param7)>
// Inherit from FastDelegate7 so that it can be treated just like a
// FastDelegate7
: public FastDelegate7<Param1, Param2, Param3, Param4, Param5, Param6,
Param7, R> {
public:
// Make using the base type a bit easier via typedef.
typedef FastDelegate7<Param1, Param2, Param3, Param4, Param5, Param6,
Param7, R>
BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() {}
template <class X, class Y>
CUtlDelegate(Y *pthis,
R (X::*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7))
: BaseType(pthis, function_to_bind) {}
template <class X, class Y>
CUtlDelegate(const Y *pthis,
R (X::*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7) const)
: BaseType(pthis, function_to_bind) {}
CUtlDelegate(R (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7))
: BaseType(function_to_bind) {}
void operator=(const BaseType &x) { *static_cast<BaseType *>(this) = x; }
};
// N=8
// Specialization to allow use of
// CUtlDelegate< R ( Param1, Param2, Param3, Param4, Param5, Param6, Param7,
// Param8 ) > instead of FastDelegate8 < Param1, Param2, Param3, Param4, Param5,
// Param6, Param7, Param8, R >
template <typename R, class Param1, class Param2, class Param3, class Param4,
class Param5, class Param6, class Param7, class Param8>
class CUtlDelegate<R(Param1, Param2, Param3, Param4, Param5, Param6, Param7,
Param8)>
// Inherit from FastDelegate8 so that it can be treated just like a
// FastDelegate8
: public FastDelegate8<Param1, Param2, Param3, Param4, Param5, Param6,
Param7, Param8, R> {
public:
// Make using the base type a bit easier via typedef.
typedef FastDelegate8<Param1, Param2, Param3, Param4, Param5, Param6,
Param7, Param8, R>
BaseType;
// Allow users access to the specific type of this delegate.
typedef CUtlDelegate SelfType;
// Mimic the base class constructors.
CUtlDelegate() : BaseType() {}
template <class X, class Y>
CUtlDelegate(Y *pthis,
R (X::*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7, Param8 p8))
: BaseType(pthis, function_to_bind) {}
template <class X, class Y>
CUtlDelegate(const Y *pthis,
R (X::*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7, Param8 p8) const)
: BaseType(pthis, function_to_bind) {}
CUtlDelegate(R (*function_to_bind)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7, Param8 p8))
: BaseType(function_to_bind) {}
void operator=(const BaseType &x) { *static_cast<BaseType *>(this) = x; }
};
#endif // FASTDELEGATE_ALLOW_FUNCTION_TYPE_SYNTAX
////////////////////////////////////////////////////////////////////////////////
// Fast Delegates, part 5:
//
// UtlMakeDelegate() helper function
//
// UtlMakeDelegate(&x, &X::func) returns a fastdelegate of the
//type necessary for calling x.func() with the correct number of arguments. This
//makes it possible to eliminate many typedefs from user code.
//
////////////////////////////////////////////////////////////////////////////////
// Also declare overloads of a UtlMakeDelegate() global function to
// reduce the need for typedefs.
// We need seperate overloads for const and non-const member functions.
// Also, because of the weird rule about the class of derived member function
// pointers, implicit downcasts may need to be applied later to the 'this'
// pointer. That's why two classes (X and Y) appear in the definitions. Y must
// be implicitly castable to X.
// Workaround for VC6. VC6 needs void return types converted into DefaultVoid.
// GCC 3.2 and later won't compile this unless it's preceded by 'typename',
// but VC6 doesn't allow 'typename' in this context.
// So, I have to use a macro.
#ifdef FASTDLGT_VC6
#define FASTDLGT_RETTYPE detail::VoidToDefaultVoid<RetType>::type
#else
#define FASTDLGT_RETTYPE RetType
#endif
// N=0
template <class X, class Y, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE()> UtlMakeDelegate(Y *x, RetType (X::*func)()) {
return CUtlDelegate<FASTDLGT_RETTYPE()>(x, func);
}
template <class X, class Y, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE()> UtlMakeDelegate(Y *x,
RetType (X::*func)() const) {
return CUtlDelegate<FASTDLGT_RETTYPE()>(x, func);
}
template <class RetType>
CUtlDelegate<FASTDLGT_RETTYPE()> UtlMakeDelegate(RetType (*func)()) {
return CUtlDelegate<FASTDLGT_RETTYPE()>(func);
}
// N=1
template <class X, class Y, class Param1, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1)> UtlMakeDelegate(
Y *x, RetType (X::*func)(Param1 p1)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1)>(x, func);
}
template <class X, class Y, class Param1, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1)> UtlMakeDelegate(
Y *x, RetType (X::*func)(Param1 p1) const) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1)>(x, func);
}
template <class Param1, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1)> UtlMakeDelegate(
RetType (*func)(Param1 p1)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1)>(func);
}
// N=2
template <class X, class Y, class Param1, class Param2, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2)> UtlMakeDelegate(
Y *x, RetType (X::*func)(Param1 p1, Param2 p2)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2)>(x, func);
}
template <class X, class Y, class Param1, class Param2, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2)> UtlMakeDelegate(
Y *x, RetType (X::*func)(Param1 p1, Param2 p2) const) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2)>(x, func);
}
template <class Param1, class Param2, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2)> UtlMakeDelegate(
RetType (*func)(Param1 p1, Param2 p2)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2)>(func);
}
// N=3
template <class X, class Y, class Param1, class Param2, class Param3,
class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3)> UtlMakeDelegate(
Y *x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3)>(x, func);
}
template <class X, class Y, class Param1, class Param2, class Param3,
class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3)> UtlMakeDelegate(
Y *x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3) const) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3)>(x, func);
}
template <class Param1, class Param2, class Param3, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3)> UtlMakeDelegate(
RetType (*func)(Param1 p1, Param2 p2, Param3 p3)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3)>(func);
}
// N=4
template <class X, class Y, class Param1, class Param2, class Param3,
class Param4, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4)> UtlMakeDelegate(
Y *x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4)>(x,
func);
}
template <class X, class Y, class Param1, class Param2, class Param3,
class Param4, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4)> UtlMakeDelegate(
Y *x,
RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4) const) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4)>(x,
func);
}
template <class Param1, class Param2, class Param3, class Param4, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4)> UtlMakeDelegate(
RetType (*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4)>(func);
}
// N=5
template <class X, class Y, class Param1, class Param2, class Param3,
class Param4, class Param5, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5)>
UtlMakeDelegate(Y *x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4,
Param5)>(x, func);
}
template <class X, class Y, class Param1, class Param2, class Param3,
class Param4, class Param5, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5)>
UtlMakeDelegate(Y *x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5) const) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4,
Param5)>(x, func);
}
template <class Param1, class Param2, class Param3, class Param4, class Param5,
class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5)>
UtlMakeDelegate(RetType (*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4,
Param5)>(func);
}
// N=6
template <class X, class Y, class Param1, class Param2, class Param3,
class Param4, class Param5, class Param6, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5, Param6)>
UtlMakeDelegate(Y *x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5,
Param6)>(x, func);
}
template <class X, class Y, class Param1, class Param2, class Param3,
class Param4, class Param5, class Param6, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5, Param6)>
UtlMakeDelegate(Y *x,
RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6) const) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5,
Param6)>(x, func);
}
template <class Param1, class Param2, class Param3, class Param4, class Param5,
class Param6, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5, Param6)>
UtlMakeDelegate(RetType (*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5,
Param6)>(func);
}
// N=7
template <class X, class Y, class Param1, class Param2, class Param3,
class Param4, class Param5, class Param6, class Param7, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5, Param6,
Param7)>
UtlMakeDelegate(Y *x,
RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6, Param7 p7)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5,
Param6, Param7)>(x, func);
}
template <class X, class Y, class Param1, class Param2, class Param3,
class Param4, class Param5, class Param6, class Param7, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5, Param6,
Param7)>
UtlMakeDelegate(Y *x,
RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6, Param7 p7) const) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5,
Param6, Param7)>(x, func);
}
template <class Param1, class Param2, class Param3, class Param4, class Param5,
class Param6, class Param7, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5, Param6,
Param7)>
UtlMakeDelegate(RetType (*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6, Param7 p7)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5,
Param6, Param7)>(func);
}
// N=8
template <class X, class Y, class Param1, class Param2, class Param3,
class Param4, class Param5, class Param6, class Param7, class Param8,
class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5, Param6,
Param7, Param8)>
UtlMakeDelegate(Y *x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7, Param8 p8)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5,
Param6, Param7, Param8)>(x, func);
}
template <class X, class Y, class Param1, class Param2, class Param3,
class Param4, class Param5, class Param6, class Param7, class Param8,
class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5, Param6,
Param7, Param8)>
UtlMakeDelegate(Y *x, RetType (X::*func)(Param1 p1, Param2 p2, Param3 p3,
Param4 p4, Param5 p5, Param6 p6,
Param7 p7, Param8 p8) const) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5,
Param6, Param7, Param8)>(x, func);
}
template <class Param1, class Param2, class Param3, class Param4, class Param5,
class Param6, class Param7, class Param8, class RetType>
CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5, Param6,
Param7, Param8)>
UtlMakeDelegate(RetType (*func)(Param1 p1, Param2 p2, Param3 p3, Param4 p4,
Param5 p5, Param6 p6, Param7 p7, Param8 p8)) {
return CUtlDelegate<FASTDLGT_RETTYPE(Param1, Param2, Param3, Param4, Param5,
Param6, Param7, Param8)>(func);
}
// clean up after ourselves...
#undef FASTDLGT_RETTYPE
#endif // !defined(UTLDELEGATEIMPL_H)