some extra math functions from netbsd for netpbm.
This commit is contained in:
		
							parent
							
								
									d5322973fa
								
							
						
					
					
						commit
						dee29bbd3c
					
				| @ -21,4 +21,7 @@ SRCS+=  \ | ||||
| 	sinh.c \ | ||||
| 	sqrt.c \ | ||||
| 	tan.c \ | ||||
| 	tanh.c | ||||
| 	n_j1.c \ | ||||
| 	tanh.c \ | ||||
| 	s_finite.c \ | ||||
| 	s_copysign.c | ||||
|  | ||||
							
								
								
									
										114
									
								
								lib/libc/math/mathimpl.h
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										114
									
								
								lib/libc/math/mathimpl.h
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,114 @@ | ||||
| /*	$NetBSD: mathimpl.h,v 1.9 2008/05/01 15:33:15 christos Exp $	*/ | ||||
| /*
 | ||||
|  * Copyright (c) 1988, 1993 | ||||
|  *	The Regents of the University of California.  All rights reserved. | ||||
|  * | ||||
|  * Redistribution and use in source and binary forms, with or without | ||||
|  * modification, are permitted provided that the following conditions | ||||
|  * are met: | ||||
|  * 1. Redistributions of source code must retain the above copyright | ||||
|  *    notice, this list of conditions and the following disclaimer. | ||||
|  * 2. Redistributions in binary form must reproduce the above copyright | ||||
|  *    notice, this list of conditions and the following disclaimer in the | ||||
|  *    documentation and/or other materials provided with the distribution. | ||||
|  * 3. Neither the name of the University nor the names of its contributors | ||||
|  *    may be used to endorse or promote products derived from this software | ||||
|  *    without specific prior written permission. | ||||
|  * | ||||
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | ||||
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||||
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||||
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | ||||
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||||
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||||
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||||
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||||
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||||
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||||
|  * SUCH DAMAGE. | ||||
|  * | ||||
|  *	@(#)mathimpl.h	8.1 (Berkeley) 6/4/93 | ||||
|  */ | ||||
| #ifndef _NOIEEE_SRC_MATHIMPL_H_ | ||||
| #define _NOIEEE_SRC_MATHIMPL_H_ | ||||
| 
 | ||||
| #include <sys/cdefs.h> | ||||
| #include <math.h> | ||||
| #include <stdint.h> | ||||
| 
 | ||||
| #if defined(__vax__) || defined(tahoe) | ||||
| 
 | ||||
| /* Deal with different ways to concatenate in cpp */ | ||||
| #define cat3(a,b,c)	a ## b ## c | ||||
| 
 | ||||
| /* Deal with vax/tahoe byte order issues */ | ||||
| #  ifdef __vax__ | ||||
| #    define	cat3t(a,b,c) cat3(a,b,c) | ||||
| #  else | ||||
| #    define	cat3t(a,b,c) cat3(a,c,b) | ||||
| #  endif | ||||
| 
 | ||||
| #  define vccast(name) (cat3(__,name,x).d) | ||||
| 
 | ||||
|    /*
 | ||||
|     * Define a constant to high precision on a Vax or Tahoe. | ||||
|     * | ||||
|     * Args are the name to define, the decimal floating point value, | ||||
|     * four 16-bit chunks of the float value in hex | ||||
|     * (because the vax and tahoe differ in float format!), the power | ||||
|     * of 2 of the hex-float exponent, and the hex-float mantissa. | ||||
|     * Most of these arguments are not used at compile time; they are | ||||
|     * used in a post-check to make sure the constants were compiled | ||||
|     * correctly. | ||||
|     * | ||||
|     * People who want to use the constant will have to do their own | ||||
|     *     #define foo vccast(foo) | ||||
|     * since CPP cannot do this for them from inside another macro (sigh). | ||||
|     * We define "vccast" if this needs doing. | ||||
|     */ | ||||
| #ifdef _LIBM_DECLARE | ||||
| #  define vc(name, value, x1,x2,x3,x4, bexp, xval) \ | ||||
|     const union { uint32_t l[2]; double d; } cat3(__,name,x) = { \ | ||||
| 	.l = { [0] = cat3t(0x,x1,x2), [1] = cat3t(0x,x3,x4) } }; | ||||
| #elif defined(_LIBM_STATIC) | ||||
| #  define vc(name, value, x1,x2,x3,x4, bexp, xval) \ | ||||
|     static const union { uint32_t l[2]; double d; } cat3(__,name,x) = { \ | ||||
| 	.l = { [0] = cat3t(0x,x1,x2), [1] = cat3t(0x,x3,x4) } }; | ||||
| #else | ||||
| #  define vc(name, value, x1,x2,x3,x4, bexp, xval) \ | ||||
| 	extern const union { uint32_t l[2]; double d; } cat3(__,name,x); | ||||
| #endif | ||||
| #  define ic(name, value, bexp, xval)  | ||||
| 
 | ||||
| #else	/* __vax__ or tahoe */ | ||||
| 
 | ||||
|    /* Hooray, we have an IEEE machine */ | ||||
| #  undef vccast | ||||
| #  define vc(name, value, x1,x2,x3,x4, bexp, xval)  | ||||
| 
 | ||||
| #ifdef _LIBM_DECLARE | ||||
| #  define ic(name, value, bexp, xval) \ | ||||
| 	const double __CONCAT(__,name) = value; | ||||
| #elif _LIBM_STATIC | ||||
| #  define ic(name, value, bexp, xval) \ | ||||
| 	static const double __CONCAT(__,name) = value; | ||||
| #else | ||||
| #  define ic(name, value, bexp, xval) \ | ||||
| 	extern const double __CONCAT(__,name); | ||||
| #endif | ||||
| 
 | ||||
| #endif	/* defined(__vax__)||defined(tahoe) */ | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * Functions internal to the math package, yet not static. | ||||
|  */ | ||||
| extern double	__exp__E(double, double); | ||||
| extern double	__log__L(double); | ||||
| extern int	infnan(int); | ||||
| 
 | ||||
| struct Double {double a, b;}; | ||||
| double __exp__D(double, double); | ||||
| struct Double __log__D(double); | ||||
| 
 | ||||
| #endif /* _NOIEEE_SRC_MATHIMPL_H_ */ | ||||
							
								
								
									
										448
									
								
								lib/libc/math/n_j1.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										448
									
								
								lib/libc/math/n_j1.c
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,448 @@ | ||||
| /*	$NetBSD: n_j1.c,v 1.6 2003/08/07 16:44:51 agc Exp $	*/ | ||||
| /*-
 | ||||
|  * Copyright (c) 1992, 1993 | ||||
|  *	The Regents of the University of California.  All rights reserved. | ||||
|  * | ||||
|  * Redistribution and use in source and binary forms, with or without | ||||
|  * modification, are permitted provided that the following conditions | ||||
|  * are met: | ||||
|  * 1. Redistributions of source code must retain the above copyright | ||||
|  *    notice, this list of conditions and the following disclaimer. | ||||
|  * 2. Redistributions in binary form must reproduce the above copyright | ||||
|  *    notice, this list of conditions and the following disclaimer in the | ||||
|  *    documentation and/or other materials provided with the distribution. | ||||
|  * 3. Neither the name of the University nor the names of its contributors | ||||
|  *    may be used to endorse or promote products derived from this software | ||||
|  *    without specific prior written permission. | ||||
|  * | ||||
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | ||||
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||||
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||||
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | ||||
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||||
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||||
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||||
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||||
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||||
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||||
|  * SUCH DAMAGE. | ||||
|  */ | ||||
| 
 | ||||
| #ifndef lint | ||||
| #if 0 | ||||
| static char sccsid[] = "@(#)j1.c	8.2 (Berkeley) 11/30/93"; | ||||
| #endif | ||||
| #endif /* not lint */ | ||||
| 
 | ||||
| /*
 | ||||
|  * 16 December 1992 | ||||
|  * Minor modifications by Peter McIlroy to adapt non-IEEE architecture. | ||||
|  */ | ||||
| 
 | ||||
| /*
 | ||||
|  * ==================================================== | ||||
|  * Copyright (C) 1992 by Sun Microsystems, Inc. | ||||
|  * | ||||
|  * Developed at SunPro, a Sun Microsystems, Inc. business. | ||||
|  * Permission to use, copy, modify, and distribute this | ||||
|  * software is freely granted, provided that this notice | ||||
|  * is preserved. | ||||
|  * ==================================================== | ||||
|  * | ||||
|  * ******************* WARNING ******************** | ||||
|  * This is an alpha version of SunPro's FDLIBM (Freely | ||||
|  * Distributable Math Library) for IEEE double precision | ||||
|  * arithmetic. FDLIBM is a basic math library written | ||||
|  * in C that runs on machines that conform to IEEE | ||||
|  * Standard 754/854. This alpha version is distributed | ||||
|  * for testing purpose. Those who use this software | ||||
|  * should report any bugs to | ||||
|  * | ||||
|  *		fdlibm-comments@sunpro.eng.sun.com | ||||
|  * | ||||
|  * -- K.C. Ng, Oct 12, 1992 | ||||
|  * ************************************************ | ||||
|  */ | ||||
| 
 | ||||
| /* double j1(double x), y1(double x)
 | ||||
|  * Bessel function of the first and second kinds of order zero. | ||||
|  * Method -- j1(x): | ||||
|  *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... | ||||
|  *	2. Reduce x to |x| since j1(x)=-j1(-x),  and | ||||
|  *	   for x in (0,2) | ||||
|  *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x; | ||||
|  *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 ) | ||||
|  *	   for x in (2,inf) | ||||
|  * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) | ||||
|  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) | ||||
|  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) | ||||
|  *	   as follows: | ||||
|  *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4) | ||||
|  *			=  1/sqrt(2) * (sin(x) - cos(x)) | ||||
|  *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4) | ||||
|  *			= -1/sqrt(2) * (sin(x) + cos(x)) | ||||
|  * 	   (To avoid cancellation, use | ||||
|  *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) | ||||
|  * 	    to compute the worse one.) | ||||
|  * | ||||
|  *	3 Special cases | ||||
|  *		j1(nan)= nan | ||||
|  *		j1(0) = 0 | ||||
|  *		j1(inf) = 0 | ||||
|  * | ||||
|  * Method -- y1(x): | ||||
|  *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN | ||||
|  *	2. For x<2. | ||||
|  *	   Since | ||||
|  *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) | ||||
|  *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. | ||||
|  *	   We use the following function to approximate y1, | ||||
|  *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 | ||||
|  *	   where for x in [0,2] (abs err less than 2**-65.89) | ||||
|  *		U(z) = u0 + u1*z + ... + u4*z^4 | ||||
|  *		V(z) = 1  + v1*z + ... + v5*z^5 | ||||
|  *	   Note: For tiny x, 1/x dominate y1 and hence | ||||
|  *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) | ||||
|  *	3. For x>=2. | ||||
|  * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) | ||||
|  * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) | ||||
|  *	   by method mentioned above. | ||||
|  */ | ||||
| 
 | ||||
| #include "mathimpl.h" | ||||
| #include <float.h> | ||||
| #include <errno.h> | ||||
| 
 | ||||
| #if defined(__vax__) || defined(tahoe) | ||||
| #define _IEEE	0 | ||||
| #else | ||||
| #define _IEEE	1 | ||||
| #define infnan(x) (0.0) | ||||
| #endif | ||||
| 
 | ||||
| static double pone (double), qone (double); | ||||
| 
 | ||||
| static const double | ||||
| huge    = 1e300, | ||||
| zero    = 0.0, | ||||
| one	= 1.0, | ||||
| invsqrtpi= 5.641895835477562869480794515607725858441e-0001, | ||||
| tpi	= 0.636619772367581343075535053490057448, | ||||
| 
 | ||||
| 	/* R0/S0 on [0,2] */ | ||||
| r00 =  -6.250000000000000020842322918309200910191e-0002, | ||||
| r01 =   1.407056669551897148204830386691427791200e-0003, | ||||
| r02 =  -1.599556310840356073980727783817809847071e-0005, | ||||
| r03 =   4.967279996095844750387702652791615403527e-0008, | ||||
| s01 =   1.915375995383634614394860200531091839635e-0002, | ||||
| s02 =   1.859467855886309024045655476348872850396e-0004, | ||||
| s03 =   1.177184640426236767593432585906758230822e-0006, | ||||
| s04 =   5.046362570762170559046714468225101016915e-0009, | ||||
| s05 =   1.235422744261379203512624973117299248281e-0011; | ||||
| 
 | ||||
| #define two_129	6.80564733841876926e+038	/* 2^129 */ | ||||
| #define two_m54	5.55111512312578270e-017	/* 2^-54 */ | ||||
| 
 | ||||
| double | ||||
| j1(double x) | ||||
| { | ||||
| 	double z, s,c,ss,cc,r,u,v,y; | ||||
| 	y = fabs(x); | ||||
| 	if (!finite(x)) {		/* Inf or NaN */ | ||||
| 		if (_IEEE && x != x) | ||||
| 			return(x); | ||||
| 		else | ||||
| 			return (copysign(x, zero)); | ||||
| 	} | ||||
| 	y = fabs(x); | ||||
| 	if (y >= 2) {			/* |x| >= 2.0 */ | ||||
| 		s = sin(y); | ||||
| 		c = cos(y); | ||||
| 		ss = -s-c; | ||||
| 		cc = s-c; | ||||
| 		if (y < .5*DBL_MAX) {  	/* make sure y+y not overflow */ | ||||
| 		    z = cos(y+y); | ||||
| 		    if ((s*c)<zero) cc = z/ss; | ||||
| 		    else 	    ss = z/cc; | ||||
| 		} | ||||
| 	/*
 | ||||
| 	 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) | ||||
| 	 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) | ||||
| 	 */ | ||||
| #if !defined(__vax__) && !defined(tahoe) | ||||
| 		if (y > two_129)	 /* x > 2^129 */ | ||||
| 			z = (invsqrtpi*cc)/sqrt(y); | ||||
| 		else | ||||
| #endif /* defined(__vax__) || defined(tahoe) */ | ||||
| 		{ | ||||
| 		    u = pone(y); v = qone(y); | ||||
| 		    z = invsqrtpi*(u*cc-v*ss)/sqrt(y); | ||||
| 		} | ||||
| 		if (x < 0) return -z; | ||||
| 		else  	 return  z; | ||||
| 	} | ||||
| 	if (y < 7.450580596923828125e-009) {	/* |x|<2**-27 */ | ||||
| 	    if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */ | ||||
| 	} | ||||
| 	z = x*x; | ||||
| 	r =  z*(r00+z*(r01+z*(r02+z*r03))); | ||||
| 	s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); | ||||
| 	r *= x; | ||||
| 	return (x*0.5+r/s); | ||||
| } | ||||
| 
 | ||||
| static const double u0[5] = { | ||||
|   -1.960570906462389484206891092512047539632e-0001, | ||||
|    5.044387166398112572026169863174882070274e-0002, | ||||
|   -1.912568958757635383926261729464141209569e-0003, | ||||
|    2.352526005616105109577368905595045204577e-0005, | ||||
|    -9.190991580398788465315411784276789663849e-0008, | ||||
| }; | ||||
| static const double v0[5] = { | ||||
|    1.991673182366499064031901734535479833387e-0002, | ||||
|    2.025525810251351806268483867032781294682e-0004, | ||||
|    1.356088010975162198085369545564475416398e-0006, | ||||
|    6.227414523646214811803898435084697863445e-0009, | ||||
|    1.665592462079920695971450872592458916421e-0011, | ||||
| }; | ||||
| 
 | ||||
| double | ||||
| y1(double x) | ||||
| { | ||||
| 	double z, s, c, ss, cc, u, v; | ||||
|     /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ | ||||
| 	if (!finite(x)) { | ||||
| 		if (!_IEEE) return (infnan(EDOM)); | ||||
| 		else if (x < 0) | ||||
| 			return(zero/zero); | ||||
| 		else if (x > 0) | ||||
| 			return (0); | ||||
| 		else | ||||
| 			return(x); | ||||
| 	} | ||||
| 	if (x <= 0) { | ||||
| 		if (_IEEE && x == 0) return -one/zero; | ||||
| 		else if(x == 0) return(infnan(-ERANGE)); | ||||
| 		else if(_IEEE) return (zero/zero); | ||||
| 		else return(infnan(EDOM)); | ||||
| 	} | ||||
|         if (x >= 2) {			 /* |x| >= 2.0 */ | ||||
|                 s = sin(x); | ||||
|                 c = cos(x); | ||||
|                 ss = -s-c; | ||||
|                 cc = s-c; | ||||
| 		if (x < .5 * DBL_MAX) {	/* make sure x+x not overflow */ | ||||
|                     z = cos(x+x); | ||||
|                     if ((s*c)>zero) cc = z/ss; | ||||
|                     else            ss = z/cc; | ||||
|                 } | ||||
|         /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
 | ||||
|          * where x0 = x-3pi/4 | ||||
|          *      Better formula: | ||||
|          *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) | ||||
|          *                      =  1/sqrt(2) * (sin(x) - cos(x)) | ||||
|          *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) | ||||
|          *                      = -1/sqrt(2) * (cos(x) + sin(x)) | ||||
|          * To avoid cancellation, use | ||||
|          *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) | ||||
|          * to compute the worse one. | ||||
|          */ | ||||
|                 if (_IEEE && x>two_129) { | ||||
| 			z = (invsqrtpi*ss)/sqrt(x); | ||||
|                 } else { | ||||
|                     u = pone(x); v = qone(x); | ||||
|                     z = invsqrtpi*(u*ss+v*cc)/sqrt(x); | ||||
|                 } | ||||
|                 return z; | ||||
|         } | ||||
|         if (x <= two_m54) {    /* x < 2**-54 */ | ||||
|             return (-tpi/x); | ||||
|         } | ||||
|         z = x*x; | ||||
|         u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4]))); | ||||
|         v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4])))); | ||||
|         return (x*(u/v) + tpi*(j1(x)*log(x)-one/x)); | ||||
| } | ||||
| 
 | ||||
| /* For x >= 8, the asymptotic expansions of pone is
 | ||||
|  *	1 + 15/128 s^2 - 4725/2^15 s^4 - ...,	where s = 1/x. | ||||
|  * We approximate pone by | ||||
|  * 	pone(x) = 1 + (R/S) | ||||
|  * where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 | ||||
|  * 	  S = 1 + ps0*s^2 + ... + ps4*s^10 | ||||
|  * and | ||||
|  *	| pone(x)-1-R/S | <= 2  ** ( -60.06) | ||||
|  */ | ||||
| 
 | ||||
| static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ | ||||
|    0.0, | ||||
|    1.171874999999886486643746274751925399540e-0001, | ||||
|    1.323948065930735690925827997575471527252e+0001, | ||||
|    4.120518543073785433325860184116512799375e+0002, | ||||
|    3.874745389139605254931106878336700275601e+0003, | ||||
|    7.914479540318917214253998253147871806507e+0003, | ||||
| }; | ||||
| static const double ps8[5] = { | ||||
|    1.142073703756784104235066368252692471887e+0002, | ||||
|    3.650930834208534511135396060708677099382e+0003, | ||||
|    3.695620602690334708579444954937638371808e+0004, | ||||
|    9.760279359349508334916300080109196824151e+0004, | ||||
|    3.080427206278887984185421142572315054499e+0004, | ||||
| }; | ||||
| 
 | ||||
| static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ | ||||
|    1.319905195562435287967533851581013807103e-0011, | ||||
|    1.171874931906140985709584817065144884218e-0001, | ||||
|    6.802751278684328781830052995333841452280e+0000, | ||||
|    1.083081829901891089952869437126160568246e+0002, | ||||
|    5.176361395331997166796512844100442096318e+0002, | ||||
|    5.287152013633375676874794230748055786553e+0002, | ||||
| }; | ||||
| static const double ps5[5] = { | ||||
|    5.928059872211313557747989128353699746120e+0001, | ||||
|    9.914014187336144114070148769222018425781e+0002, | ||||
|    5.353266952914879348427003712029704477451e+0003, | ||||
|    7.844690317495512717451367787640014588422e+0003, | ||||
|    1.504046888103610723953792002716816255382e+0003, | ||||
| }; | ||||
| 
 | ||||
| static const double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ | ||||
|    3.025039161373736032825049903408701962756e-0009, | ||||
|    1.171868655672535980750284752227495879921e-0001, | ||||
|    3.932977500333156527232725812363183251138e+0000, | ||||
|    3.511940355916369600741054592597098912682e+0001, | ||||
|    9.105501107507812029367749771053045219094e+0001, | ||||
|    4.855906851973649494139275085628195457113e+0001, | ||||
| }; | ||||
| static const double ps3[5] = { | ||||
|    3.479130950012515114598605916318694946754e+0001, | ||||
|    3.367624587478257581844639171605788622549e+0002, | ||||
|    1.046871399757751279180649307467612538415e+0003, | ||||
|    8.908113463982564638443204408234739237639e+0002, | ||||
|    1.037879324396392739952487012284401031859e+0002, | ||||
| }; | ||||
| 
 | ||||
| static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ | ||||
|    1.077108301068737449490056513753865482831e-0007, | ||||
|    1.171762194626833490512746348050035171545e-0001, | ||||
|    2.368514966676087902251125130227221462134e+0000, | ||||
|    1.224261091482612280835153832574115951447e+0001, | ||||
|    1.769397112716877301904532320376586509782e+0001, | ||||
|    5.073523125888185399030700509321145995160e+0000, | ||||
| }; | ||||
| static const double ps2[5] = { | ||||
|    2.143648593638214170243114358933327983793e+0001, | ||||
|    1.252902271684027493309211410842525120355e+0002, | ||||
|    2.322764690571628159027850677565128301361e+0002, | ||||
|    1.176793732871470939654351793502076106651e+0002, | ||||
|    8.364638933716182492500902115164881195742e+0000, | ||||
| }; | ||||
| 
 | ||||
| static double | ||||
| pone(double x) | ||||
| { | ||||
| 	const double *p,*q; | ||||
| 	double z,r,s; | ||||
| 	if (x >= 8.0) 			   {p = pr8; q= ps8;} | ||||
| 	else if (x >= 4.54545211791992188) {p = pr5; q= ps5;} | ||||
| 	else if (x >= 2.85714149475097656) {p = pr3; q= ps3;} | ||||
| 	else /* if (x >= 2.0) */	   {p = pr2; q= ps2;} | ||||
| 	z = one/(x*x); | ||||
| 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); | ||||
| 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); | ||||
| 	return (one + r/s); | ||||
| } | ||||
| 
 | ||||
| 
 | ||||
| /* For x >= 8, the asymptotic expansions of qone is
 | ||||
|  *	3/8 s - 105/1024 s^3 - ..., where s = 1/x. | ||||
|  * We approximate pone by | ||||
|  * 	qone(x) = s*(0.375 + (R/S)) | ||||
|  * where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 | ||||
|  * 	  S = 1 + qs1*s^2 + ... + qs6*s^12 | ||||
|  * and | ||||
|  *	| qone(x)/s -0.375-R/S | <= 2  ** ( -61.13) | ||||
|  */ | ||||
| 
 | ||||
| static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ | ||||
|    0.0, | ||||
|   -1.025390624999927207385863635575804210817e-0001, | ||||
|   -1.627175345445899724355852152103771510209e+0001, | ||||
|   -7.596017225139501519843072766973047217159e+0002, | ||||
|   -1.184980667024295901645301570813228628541e+0004, | ||||
|   -4.843851242857503225866761992518949647041e+0004, | ||||
| }; | ||||
| static const double qs8[6] = { | ||||
|    1.613953697007229231029079421446916397904e+0002, | ||||
|    7.825385999233484705298782500926834217525e+0003, | ||||
|    1.338753362872495800748094112937868089032e+0005, | ||||
|    7.196577236832409151461363171617204036929e+0005, | ||||
|    6.666012326177764020898162762642290294625e+0005, | ||||
|   -2.944902643038346618211973470809456636830e+0005, | ||||
| }; | ||||
| 
 | ||||
| static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ | ||||
|   -2.089799311417640889742251585097264715678e-0011, | ||||
|   -1.025390502413754195402736294609692303708e-0001, | ||||
|   -8.056448281239359746193011295417408828404e+0000, | ||||
|   -1.836696074748883785606784430098756513222e+0002, | ||||
|   -1.373193760655081612991329358017247355921e+0003, | ||||
|   -2.612444404532156676659706427295870995743e+0003, | ||||
| }; | ||||
| static const double qs5[6] = { | ||||
|    8.127655013843357670881559763225310973118e+0001, | ||||
|    1.991798734604859732508048816860471197220e+0003, | ||||
|    1.746848519249089131627491835267411777366e+0004, | ||||
|    4.985142709103522808438758919150738000353e+0004, | ||||
|    2.794807516389181249227113445299675335543e+0004, | ||||
|   -4.719183547951285076111596613593553911065e+0003, | ||||
| }; | ||||
| 
 | ||||
| static const double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ | ||||
|   -5.078312264617665927595954813341838734288e-0009, | ||||
|   -1.025378298208370901410560259001035577681e-0001, | ||||
|   -4.610115811394734131557983832055607679242e+0000, | ||||
|   -5.784722165627836421815348508816936196402e+0001, | ||||
|   -2.282445407376317023842545937526967035712e+0002, | ||||
|   -2.192101284789093123936441805496580237676e+0002, | ||||
| }; | ||||
| static const double qs3[6] = { | ||||
|    4.766515503237295155392317984171640809318e+0001, | ||||
|    6.738651126766996691330687210949984203167e+0002, | ||||
|    3.380152866795263466426219644231687474174e+0003, | ||||
|    5.547729097207227642358288160210745890345e+0003, | ||||
|    1.903119193388108072238947732674639066045e+0003, | ||||
|   -1.352011914443073322978097159157678748982e+0002, | ||||
| }; | ||||
| 
 | ||||
| static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ | ||||
|   -1.783817275109588656126772316921194887979e-0007, | ||||
|   -1.025170426079855506812435356168903694433e-0001, | ||||
|   -2.752205682781874520495702498875020485552e+0000, | ||||
|   -1.966361626437037351076756351268110418862e+0001, | ||||
|   -4.232531333728305108194363846333841480336e+0001, | ||||
|   -2.137192117037040574661406572497288723430e+0001, | ||||
| }; | ||||
| static const double qs2[6] = { | ||||
|    2.953336290605238495019307530224241335502e+0001, | ||||
|    2.529815499821905343698811319455305266409e+0002, | ||||
|    7.575028348686454070022561120722815892346e+0002, | ||||
|    7.393932053204672479746835719678434981599e+0002, | ||||
|    1.559490033366661142496448853793707126179e+0002, | ||||
|   -4.959498988226281813825263003231704397158e+0000, | ||||
| }; | ||||
| 
 | ||||
| static double | ||||
| qone(double x) | ||||
| { | ||||
| 	const double *p,*q; | ||||
| 	double s,r,z; | ||||
| 	if (x >= 8.0)			   {p = qr8; q= qs8;} | ||||
| 	else if (x >= 4.54545211791992188) {p = qr5; q= qs5;} | ||||
| 	else if (x >= 2.85714149475097656) {p = qr3; q= qs3;} | ||||
| 	else /* if (x >= 2.0) */	   {p = qr2; q= qs2;} | ||||
| 	z = one/(x*x); | ||||
| 	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); | ||||
| 	s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); | ||||
| 	return (.375 + r/s)/x; | ||||
| } | ||||
							
								
								
									
										35
									
								
								lib/libc/math/s_copysign.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										35
									
								
								lib/libc/math/s_copysign.c
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,35 @@ | ||||
| /* @(#)s_copysign.c 5.1 93/09/24 */ | ||||
| /*
 | ||||
|  * ==================================================== | ||||
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||
|  * | ||||
|  * Developed at SunPro, a Sun Microsystems, Inc. business. | ||||
|  * Permission to use, copy, modify, and distribute this | ||||
|  * software is freely granted, provided that this notice | ||||
|  * is preserved. | ||||
|  * ==================================================== | ||||
|  */ | ||||
| 
 | ||||
| #include <sys/cdefs.h> | ||||
| #if defined(LIBM_SCCS) && !defined(lint) | ||||
| __RCSID("$NetBSD: s_copysign.c,v 1.11 2002/05/26 22:01:54 wiz Exp $"); | ||||
| #endif | ||||
| 
 | ||||
| /*
 | ||||
|  * copysign(double x, double y) | ||||
|  * copysign(x,y) returns a value with the magnitude of x and | ||||
|  * with the sign bit of y. | ||||
|  */ | ||||
| 
 | ||||
| #include "math.h" | ||||
| #include "math_private.h" | ||||
| 
 | ||||
| double | ||||
| copysign(double x, double y) | ||||
| { | ||||
| 	unsigned long hx,hy; | ||||
| 	GET_HIGH_WORD(hx,x); | ||||
| 	GET_HIGH_WORD(hy,y); | ||||
| 	SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000)); | ||||
|         return x; | ||||
| } | ||||
							
								
								
									
										32
									
								
								lib/libc/math/s_finite.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										32
									
								
								lib/libc/math/s_finite.c
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,32 @@ | ||||
| /* @(#)s_finite.c 5.1 93/09/24 */ | ||||
| /*
 | ||||
|  * ==================================================== | ||||
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | ||||
|  * | ||||
|  * Developed at SunPro, a Sun Microsystems, Inc. business. | ||||
|  * Permission to use, copy, modify, and distribute this | ||||
|  * software is freely granted, provided that this notice | ||||
|  * is preserved. | ||||
|  * ==================================================== | ||||
|  */ | ||||
| 
 | ||||
| #include <sys/cdefs.h> | ||||
| #if defined(LIBM_SCCS) && !defined(lint) | ||||
| __RCSID("$NetBSD: s_finite.c,v 1.11 2002/05/26 22:01:55 wiz Exp $"); | ||||
| #endif | ||||
| 
 | ||||
| /*
 | ||||
|  * finite(x) returns 1 is x is finite, else 0; | ||||
|  * no branching! | ||||
|  */ | ||||
| 
 | ||||
| #include "math.h" | ||||
| #include "math_private.h" | ||||
| 
 | ||||
| int | ||||
| finite(double x) | ||||
| { | ||||
| 	int hx; | ||||
| 	GET_HIGH_WORD(hx,x); | ||||
| 	return (int)((unsigned int)((hx&0x7fffffff)-0x7ff00000)>>31); | ||||
| } | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 Ben Gras
						Ben Gras