This commit adds a new TCP/IP service to MINIX 3. As its core, the
service uses the lwIP TCP/IP stack for maintenance reasons. The
service aims to be compatible with NetBSD userland, including its
low-level network management utilities. It also aims to support
modern features such as IPv6. In summary, the new LWIP service has
support for the following main features:
- TCP, UDP, RAW sockets with mostly standard BSD API semantics;
- IPv6 support: host mode (complete) and router mode (partial);
- most of the standard BSD API socket options (SO_);
- all of the standard BSD API message flags (MSG_);
- the most used protocol-specific socket and control options;
- a default loopback interface and the ability to create one more;
- configuration-free ethernet interfaces and driver tracking;
- queuing and multiple concurrent requests to each ethernet driver;
- standard ioctl(2)-based BSD interface management;
- radix tree backed, destination-based routing;
- routing sockets for standard BSD route reporting and management;
- multicast traffic and multicast group membership tracking;
- Berkeley Packet Filter (BPF) devices;
- standard and custom sysctl(7) nodes for many internals;
- a slab allocation based, hybrid static/dynamic memory pool model.
Many of its modules come with fairly elaborate comments that cover
many aspects of what is going on. The service is primarily a socket
driver built on top of the libsockdriver library, but for BPF devices
it is at the same time also a character driver.
Change-Id: Ib0c02736234b21143915e5fcc0fda8fe408f046f
As part of this, we import bpf_filter.c from NetBSD. Even though that
file is part of the NetBSD kernel, it is also used by userland (as is
clear here). Our LWIP service has its own bpf_filter.c implementation
but that implementation has certain limits (e.g. on program size) that
are fine for a system service but should not apply to userland.
The libpcap code has a number of blocks guarded by __NetBSD__, but
none of those blocks apply to MINIX 3. In particular, some of the
alignment logic used for NetBSD may in fact not work in our case.
Change-Id: Ib187e22d627c929e111d5d4a991c3bee3c0154cb
Also known as ISC bind. This import adds utilities such as host(1),
dig(1), and nslookup(1), as well as many other tools and libraries.
Change-Id: I035ca46e64f1965d57019e773f4ff0ef035e4aa3
This commit (temporarily) leaves MINIX 3 without a TCP/IP service.
Thanks go out to Philip Homburg for providing this TCP/IP stack in the
first place. It has served MINIX well for a long time.
Change-Id: I0e3eb6fe64204081e4e3c2b9d6e6bd642f121973
This library provides an event-based abstraction model and dispatching
facility for socket drivers. Its main goal is to eliminate any and
all need for socket drivers to keep track of pending socket calls.
Additionally, this library takes over responsibility of a number of
other tasks that would otherwise be duplicated between socket drivers,
but in such a way that individual socket drivers retain a large degree
of freedom in terms of API behavior. The library's main features are:
- suspension, resumption, and cancellation of socket calls;
- an abstraction layer for select(2);
- state tracking of shutdown(2);
- pending (asynchronous) errors and the SO_ERROR socket option;
- listening-socket tracking and the SO_ACCEPTCONN socket option;
- generation of SIGPIPE signals; SO_NOSIGPIPE, MSG_NOSIGNAL;
- send and receive low-watermark tracking, SO_SNDLOWAT, SO_RCVLOWAT;
- send and receive timeout support and SO_SNDTIMEO, SO_RCVTIMEO;
- an abstraction layer for the SO_LINGER socket option;
- tracking of various on/off socket options as well as SO_TYPE;
- a range of pre-checks on socket calls that are required POSIX.
In order to track per-socket state, the library manages an opaque
"sock" object for each socket. The allocation of such objects is left
entirely to the socket driver. Each sock object has an associated
callback table for calls from libsockevent to the socket driver. The
socket driver can raise events on the sock object in order to flag
that any previously suspended operations of a particular type should
be resumed. The library may defer processing such raised events if
immediate processing could interfere with internal consistency.
The sockevent library is layered on top of libsockdriver, and should
be used by all socket driver implementations if at all possible.
Change-Id: I3eb2c80602a63ef13035f646473360293607ab76
This library provides abstractions for socket drivers, and should be
used as the basis for all socket driver implementations. It provides
the following functionality:
- a function call table abstraction, hiding the details of the
socket driver protocol with simple parameters and presenting the
socket driver with callback functions very similar to the BSD
socket API calls made from userland;
- abstracting data structures and helper functions for suspending
and resuming blocking calls;
- abstracting data structures and helper functions for copying data
from and to the caller.
Overall, the library is similar to lib{block,char,fs,input,net}driver
in concept. Some of the abstractions provided here should in fact be
applied to libchardriver as well. As always, for the case that the
provided message loop is too restrictive, a set of more low-level
message processing functions is provided.
Change-Id: I79ec215f5e195c3b0197e223636f987d3755fb13
This was a MINIX3-specific header file placed outside of the minix/
header subdirectory, with its definitions duplicated in the more
standard minix/sysutil.h header.
Also make env_prefix(3) take constant pointers.
Change-Id: I243c38eb38e24eb98f0c0dddf7f340e7fec255f4
Most of the nodes in the general sysctl tree will be managed directly
by the MIB service, which obtains the necessary information as needed.
However, in certain cases, it makes more sense to let another service
manage a part of the sysctl tree itself, in order to avoid replicating
part of that other service in the MIB service. This patch adds the
basic support for such delegation: remote services may now register
their own subtrees within the full sysctl tree with the MIB service,
which will then forward any sysctl(2) requests on such subtrees to the
remote services.
The system works much like mounting a file system, but in addition to
support for shadowing an existing node, the MIB service also supports
creating temporary mount point nodes. Each have their own use cases.
A remote "kern.ipc" would use the former, because even when such a
subtree were not mounted, userland would still expect some of its
children to exist and return default values. A remote "net.inet"
would use the latter, as there is no reason to precreate nodes for all
possible supported networking protocols in the MIB "net" subtree.
A standard remote MIB (RMIB) implementation is provided for services
that wish to make use of this functionality. It is essentially a
simplified and somewhat more lightweight version of the MIB service's
internals, and works more or less the same from a programmer's point
of view. The most important difference is the "rmib" prefix instead
of the "mib" prefix. Documentation will hopefully follow later.
Overall, the RMIB functionality should not be used lightly, for
several reasons. First, despite being more lightweight than the MIB
service, the RMIB module still adds substantially to the code
footprint of the containing service. Second, the RMIB protocol not
only adds extra IPC for sysctl(2), but has also not been optimized for
performance in other ways. Third, and most importantly, the RMIB
implementation also several limitations. The main limitation is that
remote MIB subtrees must be fully static. Not only may the user not
create or destroy nodes, the service itself may not either, as this
would clash with the simplified remote node versioning system and
the cached subtree root node child counts. Other limitations exist,
such as the fact that the root of a remote subtree may only be a
node-type node, and a stricter limit on the highest node identifier
of any child in this subtree root (currently 4095).
The current implementation was born out of necessity, and therefore
it leaves several improvements to future work. Most importantly,
support for exit and crash notification is missing, primarily in the
MIB service. This means that remote subtrees may not be cleaned up
immediately, but instead only when the MIB service attempts to talk
to the dead remote service. In addition, if the MIB service itself
crashes, re-registration of remote subtrees is currently left up to
the individual RMIB users. Finally, the MIB service uses synchronous
(sendrec-based) calls to the remote services, which while convenient
may cause cascading service hangs. The underlying protocol is ready
for conversion to an asynchronous implementation already, though.
A new test set, testrmib.sh, tests the basic RMIB functionality. To
this end it uses a test service, rmibtest, and also reuses part of
the existing test87 MIB service test.
Change-Id: I3378fe04f2e090ab231705bde7e13d6289a9183e
We do not support any PF functionality, nor do we intend to. However,
some NetBSD utilities rely on the presence of these files. Not all of
the files are installed. The NetBSD source seems rather inconsistent
in where from to include these files. We simply follow what NetBSD
does, though.
Change-Id: Ib244dfcc60b16ebc4697af22f71b7e014374b855
While still a small subset of the NetBSD headers, this set should
allow various additional utilities to be compiled without too many
MINIX3-specific changes (even if those utilities will not yet work).
Change-Id: Idc70e9901d584e960cd406f75f561dcc9a4ddb7d
Some functions in lib/libc/net were disabled on MINIX3 only, but with
a few added header files they build just fine, even though some of
them rely on system functionality that has not yet been implemented.
Since the functionality is unlikely to be used in practice (because
it typically requires the use of protocol families that themselves are
not yet supported, such as IPv6), already enabling it right now helps
in building packages that rely on the functionality being present at
compile time, while not posing any practical risk of breaking the same
packages at run time.
Change-Id: Idee8e3963c9e300bde9575429f0e77b0565acaef
Imported with no changes, but not all parts are expected to be
functional. The libc nlist functionality is enabled for the
purpose of successful linking, although the nlist functionaly has
not been tested on MINIX3 nor is it needed for how we use libkvm.
In terms of function calls: kvm_getproc2, kvm_getargv2,
kvm_getenvv2, and kvm_getlwps are expected to work, whereas
kvm_getproc, kvm_getargv, kvm_getenvv, and kvm_getfiles are not.
Change-Id: I7539209736f1771fc0b7db5e839d2df72f5ac615
The new MIB service implements the sysctl(2) system call which, as
we adopt more NetBSD code, is an increasingly important part of the
operating system API. The system call is implemented in the new
service rather than as part of an existing service, because it will
eventually call into many other services in order to gather data,
similar to ProcFS. Since the sysctl(2) functionality is used even
by init(8), the MIB service is added to the boot image.
MIB stands for Management Information Base, and the MIB service
should be seen as a knowledge base of management information.
The MIB service implementation of the sysctl(2) interface is fairly
complete; it incorporates support for both static and dynamic nodes
and imitates many NetBSD-specific quirks expected by userland. The
patch also adds trace(1) support for the new system call, and adds
a new test, test87, which tests the fundamental operation of the
MIB service rather thoroughly.
Change-Id: I4766b410b25e94e9cd4affb72244112c2910ff67
The magic runtime library is now built as part of the regular build, if
the MKMAGIC=yes flag is passed to the build system. The library has
been renamed from "magic" to "magicrt" to resolve a name clash with BSD
file(1)'s libmagic. All its level-5 LLVM warnings have been resolved.
The final library, "libmagicrt.bcc", is now stored in the destination
library directory rather than in the source tree.
Change-Id: Iebd4b93a2cafbb59f95d938ad1edb8b4f6e729f6
This brings our tree to NetBSD 7.0, as found on -current on the
10-10-2015.
This updates:
- LLVM to 3.6.1
- GCC to GCC 5.1
- Replace minix/commands/zdump with usr.bin/zdump
- external/bsd/libelf has moved to /external/bsd/elftoolchain/
- Import ctwm
- Drop sprintf from libminc
Change-Id: I149836ac18e9326be9353958bab9b266efb056f0
The minix set is now divided into minix-base, minix-comp, minix-games,
minix-kernel, minix-man and minix-tests.
This allows massive space savings on the installlation CD because only
the base system used for installation is stored uncompressed. Also, it
makes the system more modular.
Change-Id: Ic8d168b4c3112204013170f07245aef98aaa51e7