In order to resolve page faults on file-mapped pages, VM may need to
communicate (through VFS) with a file system. The file system must
therefore not be the one to cause, and thus end up being blocked on,
such page faults. To resolve this potential deadlock, the safecopy
system was previously extended with the CPF_TRY flag, which causes the
kernel to return EFAULT to the caller of a safecopy function upon
getting a pagefault, bypassing VM and thus avoiding the loop. VFS was
extended to repeat relevant file system calls that returned EFAULT,
after resolving the page fault, to keep these soft faults from being
exposed to applications.
However, general UNIX I/O semantics dictate that if an I/O transfer
partially succeeded before running into a failure, the partial result
is to be returned. Proper file system implementations may therefore
end up returning partial success rather than the EFAULT code resulting
from a soft fault. Since VFS does not get the EFAULT code in this
case, it does not know that a soft fault occurred, and thus does not
repeat the call either. The end result is that an application may get
partial I/O results (e.g., a short read(2)) even on regular files.
Applications cannot reasonably be expected to deal with this.
Due to the fact that most of the current file system implementations
do not implement proper partial-failure semantics, this problem is not
yet widespread. In fact, it has only occurred on direct block device
I/O so far. However, the next generation of file system services will
be implementing proper I/O semantics, thus exacerbating the problem.
To remedy this situation, this patch changes the CPF_TRY semantics:
whenever the kernel experiences a soft fault during a safecopy call,
in addition to returning FAULT, the kernel also stores a mark in the
grant created with CPF_TRY. Instead of testing on EFAULT, VFS checks
whether the grant was marked, as part of revoking the grant. If the
grant was indeed marked by the kernel, VFS repeats the file system
operation, regardless of its initial return value. Thus, the EFAULT
code now only serves to make the file system fail the call faster.
The approach is currently supported for both direct and magic grants,
but is used only with magic grants - arguably the only case where it
makes sense. Indirect grants should not have CPF_TRY set; in a chain
of indirect grants, the original grant is marked, as it should be.
In order to avoid potential SMP issues, the mark stored in the grant
is its grant identifier, so as to discard outdated kernel writes.
Whether this is necessary or effective remains to be evaluated.
This patch also cleans up the grant structure a bit, removing reserved
space and thus making the structure slightly smaller. The structure
is used internally between system services only, so there is no need
for binary compatibility.
Change-Id: I6bb3990dce67a80146d954546075ceda4d6567f8
The memory grant identifier for safecopies now includes a sequence
number in its upper bits, to prevent accidental reuse of a grant ID
after revocation and subsequent reallocation. This should increase
overall system robustness by a tiny amount, and possibly help catch
bugs in system services early on. For now, the lower 20 bits of the
grant ID are used as grant table slot index (thus allowing for up to
a million grants per process), and the next 11 bits of the (signed
32-bit) grant ID are used to store the per-slot sequence number. As
grant IDs are never exposed to userland, the split can be changed
later on without breaking the userland ABI.
Change-Id: Ic34be27ff2a45db0ea5db037a24eef9efcd9ca40
Apply the x86 overflow check from git-d09f72c to ARM code as well.
Not just stack traces, but also system services can trigger this
case, possibly as a result of being handed bad pointers by userland,
ending in a kernel panic.
Change-Id: Ib817e8b682fafec8edb486a094319ad11eda7081
Changed all K&R style functions to ANSI-style declarations within the
kernel directory. The code compiles and aparently works for i386. For
arm my toolchain does not work, but I have changed the code with great
care. Also, the make command fails for the test suite. Therefore, I
strongly recommand to review the code with care.
Edited by David van Moolenbroek to convert really all K&R functions.
Change-Id: I58cde797d36f4caa9c72db4e4dc27d8545ab8866
This functionality is required for BSD top(1), as exposed through
the CTL_KERN KERN_CP_TIME sysctl(2) call. The idea is that the
overall time spent in the system is divided into five categories.
While NetBSD uses a separate category for the kernel ("system") and
interrupts, we redefine "system" to mean userspace system services
and "interrupts" to mean time spent in the kernel, thereby providing
the same categories as MINIX3's own top(1), while adding the "nice"
category which, like on NetBSD, is used for time spent by processes
with a priority lowered by the system administrator.
Change-Id: I2114148d1e07d9635055ceca7b163f337c53c43a
The new MIB service implements the sysctl(2) system call which, as
we adopt more NetBSD code, is an increasingly important part of the
operating system API. The system call is implemented in the new
service rather than as part of an existing service, because it will
eventually call into many other services in order to gather data,
similar to ProcFS. Since the sysctl(2) functionality is used even
by init(8), the MIB service is added to the boot image.
MIB stands for Management Information Base, and the MIB service
should be seen as a knowledge base of management information.
The MIB service implementation of the sysctl(2) interface is fairly
complete; it incorporates support for both static and dynamic nodes
and imitates many NetBSD-specific quirks expected by userland. The
patch also adds trace(1) support for the new system call, and adds
a new test, test87, which tests the fundamental operation of the
MIB service rather thoroughly.
Change-Id: I4766b410b25e94e9cd4affb72244112c2910ff67
Magic instrumentation is now performed on all system services if the
system is built with MKMAGIC=yes, which implies MKBITCODE=yes.
Change-Id: I9d1233650188b7532a9356b720fb68d5f8248939
This brings our tree to NetBSD 7.0, as found on -current on the
10-10-2015.
This updates:
- LLVM to 3.6.1
- GCC to GCC 5.1
- Replace minix/commands/zdump with usr.bin/zdump
- external/bsd/libelf has moved to /external/bsd/elftoolchain/
- Import ctwm
- Drop sprintf from libminc
Change-Id: I149836ac18e9326be9353958bab9b266efb056f0
- the userland call is now made to PM only, and PM relays the call to
other servers as appropriate; this is an ABI change that will
ultimately allow us to add proper support for wait3() and the like;
for the moment there is backward compatibility;
- the getrusage-specific kernel subcall has been removed, as it
provided only redundant functionality, and did not provide the means
to be extended correctly in the future - namely, allowing the kernel
to return different values depending on whether resource usage of
the caller (self) or its children was requested;
- VM is now told whether resource usage of the caller (self) or its
children is requested, and it refrains from filling in wrong values
for information it does not have;
- VM now uses the correct unit for the ru_maxrss values;
- VFS is cut out of the loop entirely, since it does not provide any
values at the moment; a comment explains how it should be readded.
Change-Id: I27b0f488437dec3d8e784721c67b03f2f853120f
The current value was both wrong (counting spawned kernel signals
rather than delivered user signals) and returned for the calling
process even if the request was for the process's children.
For now we are better off not populating this field at all.
Change-Id: I6c660be266b5746b7c3db57ae88fa7f872961ee2
Currently, the userland ABI uses a single field ('user_sp') far
into the very large 'kinfo' structure on the shared kernel
information page. This precludes us from modifying or getting
rid of 'kinfo' in the future without breaking userland. This
patch adds a separate 'kuserinfo' structure to the kernel
information page, with only information that is part of the
userland ABI, in an extensible manner. Userland now uses this
field if it is present, and falls back to the old field if not.
Change-Id: Ib7b24b53a440f40a2edc28cdfa48447ac2179288
This change serves to reduce the clutter inside the top-level kerninfo
structure, and allows other ARM-specific values to be added on the
kernel page in one place.
Change-Id: I36a6aada9dbd1230b25014728be675d389088667
Please note that this information is for use by system services only!
The clock facility is not ready to be used directly by userland, and
thus, this kernel page extension is NOT part of the userland ABI.
For service programmers' convenience, change the prototype of the
getticks(3) to return the uptime clock value directly, since the call
can no longer fail.
Correct the sys_times(2) reply message to use the right field type
for the boot time.
Restructure the kernel internals a bit so as to have all the clock
stuff closer together.
Change-Id: Ifc050b7bd253aecbe46e3bd7d7cc75bd86e45555
The filtering also exposed the risk that a process be killed or
swapped while on the list of VM memory requests. These cases are
now handled properly as well.
Change-Id: Ibd3897b34abdf33bce19d37b8e5f65fbd0fd9316
. make arch-independent, and local to proc.c, reduce code duplication
. make vm_suspend public but unduplicated in proc.c
. ask VM for handling once, 2nd time SIGSEGV process
. remove debug printfs
. test case for bogus sendrec() address argument
Change-Id: I3893758910c01de60b8fe3e50edd594296a0b73e
Add support for compact address layout. This feature can be enabled
through the ac_layout=1 boot option.
Change-Id: Ie20b808fce32b5c54d0a7e7210e0084a540e9613
If an asynchronous message is delivered during an ipc_receive(2) call,
but a failure occurred while copying out the status to the sending
process, then the receiving process would be left in an inconsistent
state, leading to a kernel crash shortly after.
For now, we fix this by altogether ignoring errors while copying out
the status field to the sending process. While this resolves the
kernel crash, it is hardly ideal, since it will likely cause the same
message to be delivered repeatedly. It would be better to disable
asynchronous communication from the sender process altogether, but this
solution requires more changes and thus more testing.
Change-Id: Ib00bf01ad29cdd10a5dee731d4788254d9037a76
Previously, there was a tiny chance that tickdelay(3) would return
early or that it would fail to reinstate a previous alarm.
- sys_setalarm(2) now returns TMR_NEVER instead of 0 for the time
left if no previous alarm was set;
- sys_setalarm(2) now also returns the current time, to allow the
caller to determine whether it got an alarm notification for the
alarm it set or for a previous alarm that has just gone off;
- tickdelay(3) now makes use of these facilities.
Change-Id: Id4f8fe19a61ca8574f43131964e6f0317f613f49
. bitcode fixes
. switch to compiler-rt instead of netbsd libc functions
or libgcc for support functions for both x86 and arm
. minor build fixes
. allow build with llvm without crossbuilding llvm itself
. can now build minix/arm using llvm and eabi - without C++
support for now (hence crossbuilding llvm itself is turned off
for minix/arm)
Change-Id: If5c44ef766f5b4fc4394d4586ecc289927a0d6eb
The entire infrastructure relied on an ACK feature, and as such, it
has been broken for years now, with no easy way to repair it.
Change-Id: I783c2a21276967af115a642199f31fef0f14a572