5 Commits

Author SHA1 Message Date
David van Moolenbroek
27852ebe53 UDS: full rewrite
This new implementation of the UDS service is built on top of the
libsockevent library.  It thereby inherits all the advantages that
libsockevent brings.  However, the fundamental restructuring
required for that change also paved the way for resolution of a
number of other important open issues with the old UDS code.  Most
importantly, the rewrite brings the behavior of the service much
closer to POSIX compliance and NetBSD compatibility.  These are the
most important changes:

- due to the use of libsockevent, UDS now supports multiple suspending
  calls per socket and a large number of standard socket flags and
  options;
- socket address matching is now based on <device,inode> lookups
  instead of canonized path names, and socket addresses are no longer
  altered either due to canonization or at connect time;
- the socket state machine is now well defined, most importantly
  resolving the erroneous reset-on-EOF semantics of the old UDS, but
  also allowing socket reuse;
- sockets are now connected before being accepted instead of being
  held in connecting state, unless the LOCAL_CONNWAIT option is set
  on either the connecting or the listening socket;
- connect(2) on datagram sockets is now supported (needed by syslog),
  and proper datagram socket disconnect notification is provided;
- the receive queue now supports segmentation, associating ancillary
  data (in-flight file descriptors and credentials) with each segment
  instead of being kept fully separately; this is a POSIX requirement
  (and needed by tmux);
- as part of the segmentation support, the receive queue can now hold
  as many packets as can fit, instead of one;
- in addition to the flags supported by libsockevent, the MSG_PEEK,
  MSG_WAITALL, MSG_CMSG_CLOEXEC, MSG_TRUNC, and MSG_CTRUNC send and
  receive flags are now supported;
- the SO_PASSCRED and SO_PEERCRED socket options are replaced by
  LOCAL_CREDS and LOCAL_PEEREID respectively, now following NetBSD
  semantics and allowing use of NetBSD libc's getpeereid(3);
- memory usage is reduced by about 250 KB due to centralized in-flight
  file descriptor tracking, with a limit of OPEN_MAX total rather than
  of OPEN_MAX per socket;
- memory usage is reduced by another ~50 KB due to removal of state
  redundancy, despite the fact that socket path names may now be up to
  253 bytes rather than the previous 104 bytes;
- compared to the old UDS, there is now very little direct indexing on
  the static array of sockets, thus allowing dynamic allocation of
  sockets more easily in the future;
- the UDS service now has RMIB support for the net.local sysctl tree,
  implementing preliminary support for NetBSD netstat(1).

Change-Id: I4a9b6fe4aaeef0edf2547eee894e6c14403fcb32
2017-03-09 23:39:56 +00:00
David van Moolenbroek
10a44c0ee2 trace(1): add basic support for timestamps
This patch adds strace-like support for a -t command line option,
which causes a timestamp to be printed at the beginning of each line.
If the option is given more than once, the output will also include
microseconds.

Change-Id: I8cda581651859448c154b01815cc49d915b7b354
2016-12-28 13:06:04 +00:00
David van Moolenbroek
c38dbb97aa Prepare for switch to native BSD socket API
Currently, the BSD socket API is implemented in libc, translating the
API calls to character driver operations underneath.  This approach
has several issues:

- it is inefficient, as most character driver operations are specific
  to the socket type, thus requiring that each operation start by
  bruteforcing the socket protocol family and type of the given file
  descriptor using several system calls;
- it requires that libc itself be changed every time system support
  for a new protocol is added;
- various parts of the libc implementations violate the asynchronous
  signal safety POSIX requirements.

In order to resolve all these issues at once, the plan is to turn the
BSD socket calls into system calls, thus making the BSD socket API the
"native" ABI, removing the complexity from libc and instead letting
VFS deal with the socket calls.

The overall change is going to break all networking functionality. In
order to smoothen the transition, this patch introduces the fifteen
new BSD socket system calls, and makes libc try these first before
falling back on the old behavior.  For now, the VFS implementations of
the new calls fail such that libc will always use the fallback cases.
Later on, when we introduce the actual implementation of the native
BSD socket calls, all statically linked programs will automatically
use the new ABI, thus limiting actual application breakage.

In other words: by itself, this patch does nothing, except add a bit
of transitional overhead that will disappear in the future.  The
largest part of the patch is concerned with adding full support for
the new BSD socket system calls to trace(1) - this early addition has
the advantage of making system call tracing output of several socket
calls much more readable already.

Both the system call interfaces and the trace(1) support have already
been tested using code that will be committed later on.

Change-Id: I3460812be50c78be662d857f9d3d6840f3ca917f
2016-02-23 14:34:05 +00:00
David van Moolenbroek
e4e21ee1b2 Add MIB service, sysctl(2) support
The new MIB service implements the sysctl(2) system call which, as
we adopt more NetBSD code, is an increasingly important part of the
operating system API.  The system call is implemented in the new
service rather than as part of an existing service, because it will
eventually call into many other services in order to gather data,
similar to ProcFS.  Since the sysctl(2) functionality is used even
by init(8), the MIB service is added to the boot image.

MIB stands for Management Information Base, and the MIB service
should be seen as a knowledge base of management information.

The MIB service implementation of the sysctl(2) interface is fairly
complete; it incorporates support for both static and dynamic nodes
and imitates many NetBSD-specific quirks expected by userland.  The
patch also adds trace(1) support for the new system call, and adds
a new test, test87, which tests the fundamental operation of the
MIB service rather thoroughly.

Change-Id: I4766b410b25e94e9cd4affb72244112c2910ff67
2016-01-13 20:32:37 +01:00
David van Moolenbroek
521fa314e2 Add trace(1): the MINIX3 system call tracer
Change-Id: Ib970c8647409196902ed53d6e9631a1673a4ab2e
2014-11-04 21:46:31 +00:00