5 Commits

Author SHA1 Message Date
David van Moolenbroek
139ae0da30 ASR pass: disable caller padding by default
The feature is fundamentally broken.  See the comment in the code.

Change-Id: If36b06b0732cc4d18f20240ed96d30a7959b0d21
2015-09-17 17:14:20 +00:00
David van Moolenbroek
0b98e8aad8 Import ASR pass from llvm-apps
Change-Id: I106c5faf8d8f1af5d3f5542fe666532895413909
2015-09-17 17:14:09 +00:00
David van Moolenbroek
b7725c8552 Fix mmap leak in malloc code upon state transfer
The NetBSD libc malloc implementation uses a memory-mapped area for
its page directory.  Since the process heap is reconstructed upon
state transfer for live update, this memory-mapped area must not be
transferred to the new process.  However, as the new instance of the
process being updated inherits all memory-mapped areas of the old
instance, it also automatically inherits the malloc implementation's
page directory.  Thus, we must explicitly free this area in order to
avoid a memory leak.

The magic pass already detects (de)allocation functions called from
within other (de)allocation functions, which is why the mmap(2) and
munmap(2) calls of the malloc code are not instrumented as it is.
This patch changes that particular case to allow a different hook
function to be called for such "nested" allocation calls, for a
particular set of nested calls.  In particular, the malloc(3) code's
mmap(2) and munmap(2) calls are replaced with magic_nested_mmap and
magic_nested_munmap calls, respectively.  The magic library then
tracks memory mapping allocations of the malloc code by providing an
implementation for these two wrappers, and frees the allocations upon
state transfer.

This approach was chosen over various alternatives:

- While it appears that nesting could be established by setting a
  flag while the malloc(3) wrapper is active, and testing the flag in
  the mmap(2)/munmap(2) wrappers, this approach would fail to detect
  memory-mapped allocations made from uninstrumented malloc(3) calls,
  and therefore not a viable option.
- It would be possible to obtain the value of the variables that
  store the information about the memory-mapped area in the malloc
  code.  However, this is rather difficult in practice due to the way
  the libc malloc implementation stores the size of the are, and it
  would make the solution more dependent on the specific libc malloc
  implementation.
- It would be possible to use the special "nested" instrumentation
  for allocations made from certain marked sections.  Since we mark
  the data section of the malloc code already, this would not be hard
  to do.  Switching to this alternative would change very little, and
  if for any reason this approach yields more advantages in the
  future, we can still choose to do so.

Change-Id: Id977405da86a72458dd10f18e076d8460fd2fb75
2015-09-17 14:04:43 +00:00
David van Moolenbroek
3e457fe321 Import magic pass from llvm-apps
Change-Id: I19535b913b50f2ff24aeb80ddefc92e305c31fe8
2015-09-17 13:57:53 +00:00
David van Moolenbroek
b5e2faaaaf Import sectionify pass from llvm-apps
Change-Id: I3e3ac102b4898ca22ed1d9c25ec309d77bbe32de
2015-09-17 13:57:29 +00:00