/* This file contains the architecture-independent clock functionality, which * handles time related functions. Important events that are handled here * include setting and monitoring alarm timers and deciding when to * (re)schedule processes. System services can access its services through * system calls, such as sys_setalarm(). * * Changes: * Aug 18, 2006 removed direct hardware access etc, MinixPPC (Ingmar Alting) * Oct 08, 2005 reordering and comment editing (A. S. Woodhull) * Mar 18, 2004 clock interface moved to SYSTEM task (Jorrit N. Herder) * Sep 30, 2004 source code documentation updated (Jorrit N. Herder) * Sep 24, 2004 redesigned alarm timers (Jorrit N. Herder) */ #include #include #include #include #include "clock.h" #ifdef USE_WATCHDOG #include "watchdog.h" #endif /* Function prototype for PRIVATE functions. */ static void load_update(void); /* The CLOCK's timers queue. The functions in operate on this. * Each system process possesses a single synchronous alarm timer. If other * kernel parts want to use additional timers, they must declare their own * persistent (static) timer structure, which can be passed to the clock * via (re)set_kernel_timer(). * When a timer expires its watchdog function is run by the CLOCK task. */ static minix_timer_t *clock_timers; /* queue of CLOCK timers */ /* Number of ticks to adjust realtime by. A negative value implies slowing * down realtime, a positive value implies speeding it up. */ static int32_t adjtime_delta = 0; /* * Initialize the clock variables. */ void init_clock(void) { char *value; /* Initialize clock information structure. */ memset(&kclockinfo, 0, sizeof(kclockinfo)); /* Get clock tick frequency. */ value = env_get("hz"); if (value != NULL) kclockinfo.hz = atoi(value); if (value == NULL || kclockinfo.hz < 2 || kclockinfo.hz > 50000) kclockinfo.hz = DEFAULT_HZ; /* Load average data initialization. */ memset(&kloadinfo, 0, sizeof(kloadinfo)); } /* * The boot processor's timer interrupt handler. In addition to non-boot cpus * it keeps real time and notifies the clock task if need be. */ int timer_int_handler(void) { /* Update user and system accounting times. Charge the current process * for user time. If the current process is not billable, that is, if a * non-user process is running, charge the billable process for system * time as well. Thus the unbillable process' user time is the billable * user's system time. */ struct proc * p, * billp; /* FIXME watchdog for slave cpus! */ #ifdef USE_WATCHDOG /* * we need to know whether local timer ticks are happening or whether * the kernel is locked up. We don't care about overflows as we only * need to know that it's still ticking or not */ watchdog_local_timer_ticks++; #endif if (cpu_is_bsp(cpuid)) { kclockinfo.uptime++; /* if adjtime_delta has ticks remaining, apply one to realtime. * limit changes to every other interrupt. */ if (adjtime_delta != 0 && kclockinfo.uptime & 0x1) { /* go forward or stay behind */ kclockinfo.realtime += (adjtime_delta > 0) ? 2 : 0; adjtime_delta += (adjtime_delta > 0) ? -1 : +1; } else { kclockinfo.realtime++; } } /* Update user and system accounting times. Charge the current process * for user time. If the current process is not billable, that is, if a * non-user process is running, charge the billable process for system * time as well. Thus the unbillable process' user time is the billable * user's system time. */ p = get_cpulocal_var(proc_ptr); billp = get_cpulocal_var(bill_ptr); p->p_user_time++; if (! (priv(p)->s_flags & BILLABLE)) { billp->p_sys_time++; } /* Decrement virtual timers, if applicable. We decrement both the * virtual and the profile timer of the current process, and if the * current process is not billable, the timer of the billed process as * well. If any of the timers expire, do_clocktick() will send out * signals. */ if ((p->p_misc_flags & MF_VIRT_TIMER) && (p->p_virt_left > 0)) { p->p_virt_left--; } if ((p->p_misc_flags & MF_PROF_TIMER) && (p->p_prof_left > 0)) { p->p_prof_left--; } if (! (priv(p)->s_flags & BILLABLE) && (billp->p_misc_flags & MF_PROF_TIMER) && (billp->p_prof_left > 0)) { billp->p_prof_left--; } /* * Check if a process-virtual timer expired. Check current process, but * also bill_ptr - one process's user time is another's system time, and * the profile timer decreases for both! */ vtimer_check(p); if (p != billp) vtimer_check(billp); /* Update load average. */ load_update(); if (cpu_is_bsp(cpuid)) { /* * If a timer expired, notify the clock task. Keep in mind * that clock tick values may overflow, so we must only look at * relative differences, and only if there are timers at all. */ if (clock_timers != NULL && tmr_has_expired(clock_timers, kclockinfo.uptime)) tmrs_exptimers(&clock_timers, kclockinfo.uptime, NULL); #ifdef DEBUG_SERIAL if (kinfo.do_serial_debug) do_ser_debug(); #endif } arch_timer_int_handler(); return(1); /* reenable interrupts */ } /*===========================================================================* * get_realtime * *===========================================================================*/ clock_t get_realtime(void) { /* Get and return the current wall time in ticks since boot. */ return(kclockinfo.realtime); } /*===========================================================================* * set_realtime * *===========================================================================*/ void set_realtime(clock_t newrealtime) { kclockinfo.realtime = newrealtime; } /*===========================================================================* * set_adjtime_delta * *===========================================================================*/ void set_adjtime_delta(int32_t ticks) { adjtime_delta = ticks; } /*===========================================================================* * get_monotonic * *===========================================================================*/ clock_t get_monotonic(void) { /* Get and return the number of ticks since boot. */ return(kclockinfo.uptime); } /*===========================================================================* * set_boottime * *===========================================================================*/ void set_boottime(time_t newboottime) { kclockinfo.boottime = newboottime; } /*===========================================================================* * get_boottime * *===========================================================================*/ time_t get_boottime(void) { /* Get and return the number of seconds since the UNIX epoch. */ return(kclockinfo.boottime); } /*===========================================================================* * set_kernel_timer * *===========================================================================*/ void set_kernel_timer( minix_timer_t *tp, /* pointer to timer structure */ clock_t exp_time, /* expiration monotonic time */ tmr_func_t watchdog, /* watchdog to be called */ int arg /* argument for watchdog function */ ) { /* Insert the new timer in the active timers list. Always update the * next timeout time by setting it to the front of the active list. */ (void)tmrs_settimer(&clock_timers, tp, exp_time, watchdog, arg, NULL, NULL); } /*===========================================================================* * reset_kernel_timer * *===========================================================================*/ void reset_kernel_timer( minix_timer_t *tp /* pointer to timer structure */ ) { /* The timer pointed to by 'tp' is no longer needed. Remove it from both the * active and expired lists. Always update the next timeout time by setting * it to the front of the active list. */ if (tmr_is_set(tp)) (void)tmrs_clrtimer(&clock_timers, tp, NULL, NULL); } /*===========================================================================* * load_update * *===========================================================================*/ static void load_update(void) { u16_t slot; int enqueued = 0, q; struct proc *p; struct proc **rdy_head; /* Load average data is stored as a list of numbers in a circular * buffer. Each slot accumulates _LOAD_UNIT_SECS of samples of * the number of runnable processes. Computations can then * be made of the load average over variable periods, in the * user library (see getloadavg(3)). */ slot = (kclockinfo.uptime / system_hz / _LOAD_UNIT_SECS) % _LOAD_HISTORY; if(slot != kloadinfo.proc_last_slot) { kloadinfo.proc_load_history[slot] = 0; kloadinfo.proc_last_slot = slot; } rdy_head = get_cpulocal_var(run_q_head); /* Cumulation. How many processes are ready now? */ for(q = 0; q < NR_SCHED_QUEUES; q++) { for(p = rdy_head[q]; p != NULL; p = p->p_nextready) { enqueued++; } } kloadinfo.proc_load_history[slot] += enqueued; /* Up-to-dateness. */ kloadinfo.last_clock = kclockinfo.uptime; } int boot_cpu_init_timer(unsigned freq) { if (init_local_timer(freq)) return -1; if (register_local_timer_handler( (irq_handler_t) timer_int_handler)) return -1; return 0; } int app_cpu_init_timer(unsigned freq) { if (init_local_timer(freq)) return -1; return 0; }