
Due to differences in (mainly) measuring and accumulating CPU times, the two top programs end up serving different purposes: the NetBSD top is a system administration tool, while the MINIX3 top (now mtop) is a performance debugging tool. Therefore, we keep both. The newly imported BSD top has a few MINIX3-specific changes. CPU statistics separate system time from kernel time, rather than kernel time from time spent on handling interrupts. Memory statistics show numbers that are currently relevant for MINIX3. Swap statistics are disabled entirely. All of these changes effectively bring it closer to how mtop already worked as well. Change-Id: I9611917cb03e164ddf012c5def6da0e7fede826d
730 lines
19 KiB
C
730 lines
19 KiB
C
/*
|
|
* Copyright (c) 1984 through 2008, William LeFebvre
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following disclaimer
|
|
* in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* * Neither the name of William LeFebvre nor the names of other
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* top - a top users display for Unix
|
|
*
|
|
* SYNOPSIS: PowerPC running AIX 4.2 or higher
|
|
*
|
|
* DESCRIPTION:
|
|
* This is the machine-dependent module for AIX 4.2 and higher
|
|
* It is currenlty only tested on PowerPC architectures.
|
|
*
|
|
* TERMCAP: -lcurses
|
|
*
|
|
* CFLAGS: -DORDER -DHAVE_GETOPT
|
|
*
|
|
* LIBS: -bD:0x18000000
|
|
*
|
|
* AUTHOR: Joep Vesseur <joep@fwi.uva.nl>
|
|
*
|
|
* PATCHES: Antoine Tabary <tabary@bruyeres.cea.fr>
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <fcntl.h>
|
|
#include <nlist.h>
|
|
#include <sys/sysinfo.h>
|
|
#include <procinfo.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/times.h>
|
|
#include <sys/param.h>
|
|
#include <pwd.h>
|
|
#include "top.h"
|
|
#include "machine.h"
|
|
#include "utils.h"
|
|
|
|
|
|
#define PROCRESS(p) (((p)->pi_trss + (p)->pi_drss)*4)
|
|
#define PROCSIZE(p) (((p)->pi_tsize/1024+(p)->pi_dvm)*4)
|
|
#define PROCTIME(pi) (pi->pi_ru.ru_utime.tv_sec + pi->pi_ru.ru_stime.tv_sec)
|
|
|
|
|
|
/*
|
|
* structure definition taken from 'monitor' by Jussi Maki (jmaki@hut.fi)
|
|
*/
|
|
struct vmker {
|
|
uint n0,n1,n2,n3,n4,n5,n6,n7,n8;
|
|
uint totalmem;
|
|
uint badmem; /* this is used in RS/6000 model 220 */
|
|
uint freemem;
|
|
uint n12;
|
|
uint numperm; /* this seems to keep other than text and data segment
|
|
usage; name taken from /usr/lpp/bos/samples/vmtune.c */
|
|
uint totalvmem,freevmem;
|
|
uint n15, n16, n17, n18, n19;
|
|
};
|
|
|
|
|
|
#define KMEM "/dev/kmem"
|
|
|
|
/* Indices in the nlist array */
|
|
#define X_AVENRUN 0
|
|
#define X_SYSINFO 1
|
|
#define X_VMKER 2
|
|
#define X_PROC 3
|
|
#define X_V 4
|
|
|
|
static struct nlist nlst[] = {
|
|
{ "avenrun", 0, 0, 0, 0, 0 }, /* 0 */
|
|
{ "sysinfo", 0, 0, 0, 0, 0 }, /* 1 */
|
|
{ "vmker", 0, 0, 0, 0, 0 }, /* 2 */
|
|
{ "proc", 0, 0, 0, 0, 0 }, /* 3 */
|
|
{ "v", 0, 0, 0, 0, 0 }, /* 4 */
|
|
{ NULL, 0, 0, 0, 0, 0 }
|
|
};
|
|
|
|
|
|
/* get_process_info returns handle. definition is here */
|
|
struct handle
|
|
{
|
|
struct procsinfo **next_proc;
|
|
int remaining;
|
|
};
|
|
|
|
/*
|
|
* These definitions control the format of the per-process area
|
|
*/
|
|
static char header[] =
|
|
" PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
|
|
/* 0123456 -- field to fill in starts at header+6 */
|
|
#define UNAME_START 7
|
|
|
|
#define Proc_format \
|
|
"%6d %-8.8s %3d %4d %5d%c %4d%c %-5s %6s %5.2f%% %5.2f%% %.14s%s"
|
|
|
|
|
|
/* these are for detailing the process states */
|
|
int process_states[9];
|
|
char *procstatenames[] = {
|
|
" none, ", " sleeping, ", " state2, ", " runnable, ",
|
|
" idle, ", " zombie, ", " stopped, ", " running, ", " swapped, ",
|
|
NULL
|
|
};
|
|
|
|
|
|
/* these are for detailing the cpu states */
|
|
int cpu_states[4];
|
|
char *cpustatenames[] = {
|
|
"idle", "user", "kernel", "wait",
|
|
NULL
|
|
};
|
|
|
|
/* these are for detailing the memory statistics */
|
|
long memory_stats[4];
|
|
char *memorynames[] = {
|
|
"K Total, ", "K Free, ", "K Buffers", NULL
|
|
};
|
|
#define M_REAL 0
|
|
#define M_REALFREE 1
|
|
#define M_BUFFERS 2
|
|
|
|
long swap_stats[3];
|
|
char *swapnames[] = {
|
|
"K Total, ", "K Free", NULL
|
|
};
|
|
|
|
#define M_VIRTUAL 0
|
|
#define M_VIRTFREE 1
|
|
|
|
char *state_abbrev[] = {
|
|
"", "sleep", "", "", "sleep", "zomb", "stop", "run", "swap"
|
|
};
|
|
|
|
/* sorting orders. first is default */
|
|
char *ordernames[] = {
|
|
"cpu", "size", "res", "time", "pri", NULL
|
|
};
|
|
|
|
/* compare routines */
|
|
int compare_cpu(), compare_size(), compare_res(), compare_time(),
|
|
compare_prio();
|
|
|
|
int (*proc_compares[])() = {
|
|
compare_cpu,
|
|
compare_size,
|
|
compare_res,
|
|
compare_time,
|
|
compare_prio,
|
|
NULL
|
|
};
|
|
|
|
/* useful externals */
|
|
extern int errno;
|
|
extern char *sys_errlist[];
|
|
long lseek();
|
|
long time();
|
|
long percentages();
|
|
|
|
|
|
/* useful globals */
|
|
int kmem; /* file descriptor */
|
|
|
|
/* offsets in kernel */
|
|
static unsigned long avenrun_offset;
|
|
static unsigned long sysinfo_offset;
|
|
static unsigned long vmker_offset;
|
|
static unsigned long proc_offset;
|
|
static unsigned long v_offset;
|
|
|
|
/* used for calculating cpu state percentages */
|
|
static long cp_time[CPU_NTIMES];
|
|
static long cp_old[CPU_NTIMES];
|
|
static long cp_diff[CPU_NTIMES];
|
|
|
|
/* the runqueue length is a cumulative value. keep old value */
|
|
long old_runque;
|
|
|
|
/* process info */
|
|
struct var v_info; /* to determine nprocs */
|
|
int nprocs; /* maximum nr of procs in proctab */
|
|
int ncpus; /* nr of cpus installed */
|
|
|
|
int ptsize; /* size of process table in bytes */
|
|
struct proc *p_proc; /* a copy of the process table */
|
|
struct procsinfo *p_info; /* needed for vm and ru info */
|
|
struct procsinfo **pref; /* processes selected for display */
|
|
int pref_len; /* number of processes selected */
|
|
|
|
/* needed to calculate WCPU */
|
|
unsigned long curtime;
|
|
|
|
|
|
/*
|
|
* Initialize globals, get kernel offsets and stuff...
|
|
*/
|
|
machine_init(struct statics *statics)
|
|
|
|
{
|
|
time_t uptime, now;
|
|
struct tms tbuf;
|
|
|
|
if ((kmem = open(KMEM, O_RDONLY)) == -1) {
|
|
perror(KMEM);
|
|
return -1;
|
|
}
|
|
|
|
/* get kernel symbol offsets */
|
|
if (knlist(nlst, 5, sizeof(struct nlist)) != 0) {
|
|
perror("knlist");
|
|
return -1;
|
|
}
|
|
avenrun_offset = nlst[X_AVENRUN].n_value;
|
|
sysinfo_offset = nlst[X_SYSINFO].n_value;
|
|
vmker_offset = nlst[X_VMKER].n_value;
|
|
proc_offset = nlst[X_PROC].n_value;
|
|
v_offset = nlst[X_V].n_value;
|
|
|
|
getkval(v_offset, (caddr_t)&v_info, sizeof v_info, "v");
|
|
|
|
ncpus = v_info.v_ncpus; /* number of cpus */
|
|
nprocs = PROCMASK(PIDMAX);
|
|
if (nprocs > 1024) nprocs = 1024;
|
|
|
|
ptsize = nprocs * sizeof (struct proc);
|
|
p_proc = (struct proc *)malloc(ptsize);
|
|
p_info = (struct procsinfo *)malloc(nprocs * sizeof (struct procsinfo));
|
|
pref = (struct procsinfo **)malloc(nprocs * sizeof (struct procsinfo *));
|
|
|
|
if (!p_proc || !p_info || !pref) {
|
|
fprintf(stderr, "top: not enough memory\n");
|
|
return -1;
|
|
}
|
|
|
|
/* set boot time */
|
|
now = time(NULL);
|
|
uptime = times(&tbuf) / HZ;
|
|
statics->boottime = now - uptime;
|
|
|
|
statics->procstate_names = procstatenames;
|
|
statics->cpustate_names = cpustatenames;
|
|
statics->memory_names = memorynames;
|
|
statics->order_names = ordernames;
|
|
statics->swap_names = swapnames;
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
|
|
char *format_header(char *uname_field)
|
|
|
|
{
|
|
register char *ptr;
|
|
|
|
ptr = header + UNAME_START;
|
|
while (*uname_field != '\0')
|
|
{
|
|
*ptr++ = *uname_field++;
|
|
}
|
|
|
|
return(header);
|
|
}
|
|
|
|
|
|
|
|
void
|
|
get_system_info(struct system_info *si)
|
|
|
|
{
|
|
int load_avg[3];
|
|
struct sysinfo s_info;
|
|
struct vmker m_info;
|
|
int i;
|
|
double total = 0;
|
|
|
|
/* get the load avarage array */
|
|
getkval(avenrun_offset, (caddr_t)load_avg, sizeof load_avg, "avenrun");
|
|
|
|
/* get the sysinfo structure */
|
|
getkval(sysinfo_offset, (caddr_t)&s_info, sizeof s_info, "sysinfo");
|
|
|
|
/* get vmker structure */
|
|
getkval(vmker_offset, (caddr_t)&m_info, sizeof m_info, "vmker");
|
|
|
|
/* convert load avarages to doubles */
|
|
for (i = 0; i < 3; i++)
|
|
si->load_avg[i] = (double)load_avg[i]/65536.0;
|
|
|
|
/* calculate cpu state in percentages */
|
|
for (i = 0; i < CPU_NTIMES; i++) {
|
|
cp_old[i] = cp_time[i];
|
|
cp_time[i] = s_info.cpu[i];
|
|
cp_diff[i] = cp_time[i] - cp_old[i];
|
|
total += cp_diff[i];
|
|
}
|
|
|
|
total = total/1000.0; /* top itself will correct this */
|
|
for (i = 0; i < CPU_NTIMES; i++) {
|
|
cpu_states[i] = cp_diff[i] / total;
|
|
}
|
|
|
|
/* calculate memory statistics, scale 4K pages to megabytes */
|
|
#define PAGE_TO_MB(a) ((a)*4/1024)
|
|
memory_stats[M_REAL] = PAGE_TO_MB(m_info.totalmem);
|
|
memory_stats[M_REALFREE] = PAGE_TO_MB(m_info.freemem);
|
|
memory_stats[M_BUFFERS] = PAGE_TO_MB(m_info.numperm);
|
|
swap_stats[M_VIRTUAL] = PAGE_TO_MB(m_info.totalvmem);
|
|
swap_stats[M_VIRTFREE] = PAGE_TO_MB(m_info.freevmem);
|
|
|
|
/* runnable processes */
|
|
process_states[0] = s_info.runque - old_runque;
|
|
old_runque = s_info.runque;
|
|
|
|
si->cpustates = cpu_states;
|
|
si->memory = memory_stats;
|
|
si->swap = swap_stats;
|
|
}
|
|
|
|
static struct handle handle;
|
|
|
|
caddr_t
|
|
get_process_info(struct system_info *si, struct process_select *sel, int compare_index)
|
|
|
|
{
|
|
int i, nproc;
|
|
int ptsize_util;
|
|
int active_procs = 0, total_procs = 0;
|
|
struct procsinfo *pp, **p_pref = pref;
|
|
unsigned long pctcpu;
|
|
pid_t procsindex = 0;
|
|
struct proc *p;
|
|
|
|
si->procstates = process_states;
|
|
|
|
curtime = time(0);
|
|
|
|
/* get the procsinfo structures of all running processes */
|
|
nproc = getprocs(p_info, sizeof (struct procsinfo), NULL, 0,
|
|
&procsindex, nprocs);
|
|
if (nproc < 0) {
|
|
perror("getprocs");
|
|
quit(1);
|
|
}
|
|
|
|
/* the swapper has no cmd-line attached */
|
|
strcpy(p_info[0].pi_comm, "swapper");
|
|
|
|
/* get proc table */
|
|
ptsize_util = (PROCMASK(p_info[nproc-1].pi_pid)+1) * sizeof(struct proc);
|
|
getkval(proc_offset, (caddr_t)p_proc, ptsize_util, "proc");
|
|
|
|
memset(process_states, 0, sizeof process_states);
|
|
|
|
/* build a list of pointers to processes to show. walk through the
|
|
* list of procsinfo structures instead of the proc table since the
|
|
* mapping of procsinfo -> proctable is easy, the other way around
|
|
* is cumbersome
|
|
*/
|
|
for (pp = p_info, i = 0; i < nproc; pp++, i++) {
|
|
|
|
p = &p_proc[PROCMASK(pp->pi_pid)];
|
|
|
|
/* AIX marks all runnable processes as ACTIVE. We want to know
|
|
which processes are sleeping, so check used cpu ticks and adjust
|
|
status field accordingly
|
|
*/
|
|
if (p->p_stat == SACTIVE && p->p_cpticks == 0)
|
|
p->p_stat = SIDL;
|
|
|
|
if (pp->pi_state && (sel->system || ((pp->pi_flags & SKPROC) == 0))) {
|
|
total_procs++;
|
|
process_states[p->p_stat]++;
|
|
if ( (pp->pi_state != SZOMB) &&
|
|
(sel->idle || p->p_cpticks != 0 || (p->p_stat == SACTIVE))
|
|
&& (sel->uid == -1 || pp->pi_uid == (uid_t)sel->uid)) {
|
|
*p_pref++ = pp;
|
|
active_procs++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* the pref array now holds pointers to the procsinfo structures in
|
|
* the p_info array that were selected for display
|
|
*/
|
|
|
|
/* sort if requested */
|
|
if (si->p_active)
|
|
qsort((char *)pref, active_procs, sizeof (struct procsinfo *),
|
|
proc_compares[compare_index]);
|
|
|
|
si->last_pid = -1; /* no way to figure out last used pid */
|
|
si->p_total = total_procs;
|
|
si->p_active = pref_len = active_procs;
|
|
|
|
handle.next_proc = pref;
|
|
handle.remaining = active_procs;
|
|
|
|
return((caddr_t)&handle);
|
|
}
|
|
|
|
char fmt[MAX_COLS]; /* static area where result is built */
|
|
|
|
/* define what weighted cpu is. use definition of %CPU from 'man ps(1)' */
|
|
#define weighted_cpu(pp) (PROCTIME(pp) == 0 ? 0.0 : \
|
|
(((PROCTIME(pp)*100.0)/(curtime-pi->pi_start)/ncpus)))
|
|
#define double_pctcpu(p) ((double)p->p_pctcpu/(double)FLT_MODULO)
|
|
|
|
char *
|
|
format_next_process(caddr_t handle, char *(*get_userid)())
|
|
|
|
{
|
|
register struct handle *hp;
|
|
register struct procsinfo *pi;
|
|
register struct proc *p;
|
|
char *uname;
|
|
long cpu_time;
|
|
int proc_size, proc_ress;
|
|
char size_unit = 'K';
|
|
char ress_unit = 'K';
|
|
|
|
hp = (struct handle *)handle;
|
|
if (hp->remaining == 0) { /* safe guard */
|
|
fmt[0] = '\0';
|
|
return fmt;
|
|
}
|
|
pi = *(hp->next_proc++);
|
|
hp->remaining--;
|
|
p = &p_proc[PROCMASK(pi->pi_pid)];
|
|
|
|
cpu_time = PROCTIME(pi);
|
|
|
|
/* we disply sizes up to 10M in KiloBytes, beyond 10M in MegaBytes */
|
|
if ((proc_size = (pi->pi_tsize/1024+pi->pi_dvm)*4) > 10240) {
|
|
proc_size /= 1024;
|
|
size_unit = 'M';
|
|
}
|
|
if ((proc_ress = (pi->pi_trss + pi->pi_drss)*4) > 10240) {
|
|
proc_ress /= 1024;
|
|
ress_unit = 'M';
|
|
}
|
|
|
|
sprintf(fmt, Proc_format ,
|
|
pi->pi_pid, /* PID */
|
|
(*get_userid)(pi->pi_uid), /* login name */
|
|
getpriority(PRIO_PROCESS, pi->pi_pid),
|
|
EXTRACT_NICE(p), /* fixed or vari */
|
|
proc_size, /* size */
|
|
size_unit, /* K or M */
|
|
proc_ress, /* resident */
|
|
ress_unit, /* K or M */
|
|
state_abbrev[p->p_stat], /* process state */
|
|
format_time(cpu_time), /* time used */
|
|
weighted_cpu(pi), /* WCPU */
|
|
100.0 * double_pctcpu(p), /* CPU */
|
|
printable(pi->pi_comm), /* COMM */
|
|
(pi->pi_flags & SKPROC) == 0 ? "" : " (sys)" /* kernel process? */
|
|
);
|
|
return(fmt);
|
|
}
|
|
|
|
|
|
/*
|
|
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
|
|
* "offset" is the byte offset into the kernel for the desired value,
|
|
* "ptr" points to a buffer into which the value is retrieved,
|
|
* "size" is the size of the buffer (and the object to retrieve),
|
|
* "refstr" is a reference string used when printing error meessages,
|
|
* if "refstr" starts with a '!', then a failure on read will not
|
|
* be fatal (this may seem like a silly way to do things, but I
|
|
* really didn't want the overhead of another argument).
|
|
*
|
|
*/
|
|
|
|
int
|
|
getkval(unsigned long offset, caddr_t ptr, int size, char *refstr)
|
|
|
|
{
|
|
int upper_2gb = 0;
|
|
|
|
/* reads above 2Gb are done by seeking to offset%2Gb, and supplying
|
|
* 1 (opposed to 0) as fourth parameter to readx (see 'man kmem')
|
|
*/
|
|
if (offset > 1<<31) {
|
|
upper_2gb = 1;
|
|
offset &= 0x7fffffff;
|
|
}
|
|
|
|
if (lseek(kmem, offset, SEEK_SET) != offset) {
|
|
fprintf(stderr, "top: lseek failed\n");
|
|
quit(2);
|
|
}
|
|
|
|
if (readx(kmem, ptr, size, upper_2gb) != size) {
|
|
if (*refstr == '!')
|
|
return 0;
|
|
else {
|
|
fprintf(stderr, "top: kvm_read for %s: %s\n", refstr,
|
|
sys_errlist[errno]);
|
|
quit(2);
|
|
}
|
|
}
|
|
|
|
return 1 ;
|
|
}
|
|
|
|
/* comparison routine for qsort */
|
|
/*
|
|
* The following code is taken from the solaris module and adjusted
|
|
* for AIX -- JV .
|
|
*/
|
|
|
|
#define ORDERKEY_PCTCPU \
|
|
if (lresult = p2->p_pctcpu - p1->p_pctcpu, \
|
|
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
|
|
|
|
#define ORDERKEY_CPTICKS \
|
|
if ((result = PROCTIME(pi2) - PROCTIME(pi1)) == 0)
|
|
|
|
|
|
#define ORDERKEY_STATE \
|
|
if ((result = sorted_state[p2->p_stat] \
|
|
- sorted_state[p1->p_stat]) == 0)
|
|
|
|
/* Nice values directly reflect the process' priority, and are always >0 ;-) */
|
|
#define ORDERKEY_PRIO \
|
|
if ((result = EXTRACT_NICE(p1) - EXTRACT_NICE(p2)) == 0)
|
|
|
|
#define ORDERKEY_RSSIZE \
|
|
if ((result = PROCRESS(pi2) - PROCRESS(pi1)) == 0)
|
|
#define ORDERKEY_MEM \
|
|
if ((result = PROCSIZE(pi2) - PROCSIZE(pi1)) == 0)
|
|
|
|
static unsigned char sorted_state[] =
|
|
{
|
|
0, /* not used */
|
|
0,
|
|
0,
|
|
0,
|
|
3, /* sleep */
|
|
1, /* zombie */
|
|
4, /* stop */
|
|
6, /* run */
|
|
2, /* swap */
|
|
};
|
|
|
|
/* compare_cpu - the comparison function for sorting by cpu percentage */
|
|
|
|
int
|
|
compare_cpu(struct procsinfo **ppi1, struct procsinfo **ppi2)
|
|
|
|
{
|
|
register struct procsinfo *pi1 = *ppi1, *pi2 = *ppi2;
|
|
register struct proc *p1;
|
|
register struct proc *p2;
|
|
register int result;
|
|
register long lresult;
|
|
|
|
p1 = &p_proc[PROCMASK(pi1->pi_pid)];
|
|
p2 = &p_proc[PROCMASK(pi2->pi_pid)];
|
|
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* compare_size - the comparison function for sorting by total memory usage */
|
|
|
|
int
|
|
compare_size(struct procsinfo **ppi1, struct procsinfo **ppi2)
|
|
|
|
{
|
|
register struct procsinfo *pi1 = *ppi1, *pi2 = *ppi2;
|
|
register struct proc *p1;
|
|
register struct proc *p2;
|
|
register int result;
|
|
register long lresult;
|
|
|
|
p1 = &p_proc[PROCMASK(pi1->pi_pid)];
|
|
p2 = &p_proc[PROCMASK(pi2->pi_pid)];
|
|
|
|
ORDERKEY_MEM
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* compare_res - the comparison function for sorting by resident set size */
|
|
|
|
int
|
|
compare_res(struct procsinfo **ppi1, struct procsinfo **ppi2)
|
|
|
|
{
|
|
register struct procsinfo *pi1 = *ppi1, *pi2 = *ppi2;
|
|
register struct proc *p1;
|
|
register struct proc *p2;
|
|
register int result;
|
|
register long lresult;
|
|
|
|
p1 = &p_proc[PROCMASK(pi1->pi_pid)];
|
|
p2 = &p_proc[PROCMASK(pi2->pi_pid)];
|
|
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* compare_time - the comparison function for sorting by total cpu time */
|
|
|
|
int
|
|
compare_time(struct procsinfo **ppi1, struct procsinfo **ppi2)
|
|
|
|
{
|
|
register struct procsinfo *pi1 = *ppi1, *pi2 = *ppi2;
|
|
register struct proc *p1;
|
|
register struct proc *p2;
|
|
register int result;
|
|
register long lresult;
|
|
|
|
p1 = &p_proc[PROCMASK(pi1->pi_pid)];
|
|
p2 = &p_proc[PROCMASK(pi2->pi_pid)];
|
|
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
ORDERKEY_MEM
|
|
ORDERKEY_RSSIZE
|
|
;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* compare_prio - the comparison function for sorting by cpu percentage */
|
|
|
|
int
|
|
compare_prio(struct procsinfo **ppi1, struct procsinfo **ppi2)
|
|
|
|
{
|
|
register struct procsinfo *pi1 = *ppi1, *pi2 = *ppi2;
|
|
register struct proc *p1;
|
|
register struct proc *p2;
|
|
register int result;
|
|
register long lresult;
|
|
|
|
p1 = &p_proc[PROCMASK(pi1->pi_pid)];
|
|
p2 = &p_proc[PROCMASK(pi2->pi_pid)];
|
|
|
|
ORDERKEY_PRIO
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
;
|
|
|
|
return result;
|
|
}
|
|
|
|
int
|
|
proc_owner(int pid)
|
|
|
|
{
|
|
int uid;
|
|
register struct procsinfo **prefp = pref;
|
|
register int cnt = pref_len;
|
|
|
|
while (--cnt >= 0) {
|
|
if ((*prefp)->pi_pid == pid)
|
|
return (*prefp)->pi_uid;
|
|
prefp++;
|
|
}
|
|
|
|
return(-1);
|
|
}
|
|
|
|
|